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%e study the efFects of statistical broadening and population loss on the dynamics of strongly excited 'three-

level quantum systems. The results of both analytic and numerical treatments of the three-level Schrodinger
equation are displayed. In order to allow for statistical broadening, solutions are required for arbitrary
detuning of the two very intense monochromatic lasers. The most efFicient statistically averaged population
depletion occurs when the Rabi frequency of the second transition is greater than that of the first.

I. INTRODUCTION

The production of excited states of atoms and
molecules has always been important for spectro-
scopic purposes. It is usefuI to know how to pro-
duce highly selected excited states in quantities
as large as possible.

One method for doing this relies on the ability
of nearly monochromatic lasers to stimulate up-
ward transitions in atoms or molecules. Once
the atom or molecule reaches an appropriate ex-
cited state, it is studied in some way. This pro-
cess usually involves an irreversible interaction
of some kind, perhaps deexcitation, ionization, or
dissociation, with consequent removal from the
studied sample. A general photoexcitation-plus-
reaction sequence can be sketched as in Fig. &.

It appears, on simple heuristic grounds, that
the more powerful and monochromatic the lasers
are, and the closer they are tuned to resonance
with the favored atom or molecule, the greater
will be the extent of the desired reaction. Most
experimental studies to data of multilevel and
multiphoton applications have been based on this
simple notion. Such arguments are valid only if
the absorption processes are describable by rate
constants; that is, if the population of each. suc-
cessively higher level of the atom or molecule
grows smoothly at a rate proportional to the popu-
lation of the level below it. Vfhen such a picture
is accurate we can speak of being in the "rate re-
gime" of absorptive interaction.

However, when the stimulated transition rate is
too high, this rate-regime picture is not accurate
and the rate constant is not a reliable gauge of the
transition process. Instead of smooth population
flow from one level to the next, one then finds
population oscillations breaking out. The extreme

limit of this process is just the multilevel analog
of the long-studied Habi oscillations of two-level
systems. ' Vfe will say that we are in the "Rabi
regime" when such population oscillations are
the dominant feature of an absorptive interaction.
If the number of near-resonant levels involved is
greater than two, the theory of the Rabi regime is
much more complicated than rate-regime theory,
and it is necessary to employ numerical techni-
ques almost exclusively. Nevertheless, recent

FIG. 1.. Schematic repre-
sentation of photoexcitation,
relaxation, and reaction of
an atom or molecule. The
vertical lines represent
laser-stimulated emission
and absorption transitions.
The vertical arrows repre-
sent laser-independent re-
laxation; and the horizon-
tal arrow represents re-
laxation via population loss
out of the system. Hori-
zontal lines represent dif-
ferent states associated
with each energy level.
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FIG. 2. (a) Schematic representation of an atom or
molecule undergoing photoexcitation and relaxation in
the rate regime. The existence of separate states within
a level is not recognized and the levels are simply as-
signed a featureless width s determined by their relaxa-
tion rates. (b) Schematic representation of an atom or
molecule undergoing photoexcitation in the Rabi regime.
The levels are taken to be sharp, and population-loss
relaxation is ignored. The vertical lines are drawn with
arrows to indicate that strong laser-induced population
cycling, downward as well as upward, is the primary
feature of the dynamical behavior.

work has clarified the general characteristics of
population flow in multilevel systems in the Rabi
regime' and a few analytic results are available
in special cases' to describe population flow in
multilevel systems when the laser power is so
high that population oscillations are dominant.

It is helpful to associate each of these two re-
gimes with a simplified model of the radiative ex-
citation of the "real" atom or molecule depicted
in Fig. ~. The model associated with the rate re-
gime is one in which each level has a well-defined
width and in which population flows only upward,
under the influence of fields that are not too
strong. On the other hand, the extreme Rabi-re-
gime atomic model is characterized by zero line-
widths, a zero reaction rate at the top, and a sig-
nificant population flow in both directions. These
two models are shown in Figs. 2(a) and 2(b).

Although the Rabi-regime theory is much more
fundamental in many respects than the rate-re-
gime theory, it is inferior in an important way.
Because the Rabi-regime theory concentrates just
on the oscillations of the level populations, that is,
on the coherent and phase-preserving features of
the interaction between laser and atom or mole-
cule, it must reflect very poorly the physics of
the final reaction stage in any of the applications
sketched above. This is because an ionization,

dissociation, reaction, or collection event is al-
most certainly irreversible, and therefore com-
pletely phase destructive and incoherent. Since
the ultimate reaction process should be made as
efficient as possible, it is highly unrealistic to
ignore completely its incoherent effect on the sys-
tem's population dynamics. Unfortunately, the
problem of incorporating the reaction into the the-
ory cannot be solved simply by the expedient of
assuming that it is so large that it dominates the
dynamics of the final level. This is so for two
suitably. In the first place, it has been shown4

that if the power levels of the lasers involved are
suitable arranged, a large degree of incoherence
in the last level can be transferred to all of the
levels, destroying the coherence of the entire sys-
tem and placing its absorptive behavior squarely
in the rate regime. In the second place, the limit
of very large reaction rate must be avoided for
practical reasons: contrary to what might be ex-
pected at first thought, a large irreversible reac-
tion rate acting on the last level is actually count-
erproductive, leading to a decrease in collected
reactant. '

The difficulties faced in modeling phase-destroy-
ing collection from the highest level together with
phase-coherent oscillations in lower levels can be
overcome numerically. Both of the extreme mod-
els shown in Fig. 2 and a number of intermediate
cases have been discussed recently in the three-
level case. '

However an important feature of the "real" atom
or molecule undergoing both excitation interac-
tions and a collection reaction, as shown in Fig.
1., has not yet been investigated in multilevel and
multiphoton absorption. Figure 1 reminds us that
in any absorber there may be several or many
paths from the ground level to the reaction-collec-
tion level. We have indicated these alternative
paths by sketching a few sublevels associated with
each principle level. These alternative paths can
be distinguished from each other, for example by
dipole moment, by angular momentum quantum
number, by transition frequency, or by combina-
tions of these. In a molecule, the alternative
paths could arise from the rotational sublevels
associated with a vibrational level. In an atom a
variety of alternative paths could arise from the
existence of hyperfine or Zeeman splittings, or
from the range of possible transition frequencies
implied by the Doppler widths of the levels. What-
ever their origin, these 'sublevels and their as-
sociated alternative upward paths create enormous
complications for the theory. '

In this paper, we take a step toward the realis-
tic case by incorporating both a manifold of sub-
levels associated with each principle level, as
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well as a finite collection rate from the highest
level. We are not able to deal with the general
N-level system, and are restricted to numerical
methods at most stages of analysis, but we can
obtain some analytic as well as numerical solu-
tions for a variety of cases whenN=3. As our
main interest will be in the qualitative effect of
the sublevels, our choice of a particular value,
namely 3, for N does not seem unduly restrictive.

The approach we will use to incorporate sublev-
els, without becoming swamped in the details of
the magnetic quantum numbers and dipole moments
of each sublevel's transitions, is motivated as fol-'
lows. We assume as in Fig. 1 that all of the eub-
level sequences participate independently in the
absorption process, and that the dipole moments
are near enough to being the same that we can call
them equal, However, the resonant character of
the interaction of the laser with the atom or mole-
cule is central to successful and efficient absorp-
tion. For this reason, we retain a specific fre-
quency label for each sublevel. Most of the sub-
levels will be out of resonance with the laser and
only a very narrow band will be close to reso-
nance, for any given laser tuning. Furthermore,
to avoid the arbitrariness of an assumption about
exactly how many sublevels are attached to a giv-
en principle level, we assume that- there is a con-
tinuous distribution of sublevels, characterized
by a sublevel bandwidth function, fo r each prin-
ciple level. One may call our approach a statis-
tical (or inhomogeneous) broadening approach to
the sublevel problem. The absorbing system im-
plied by such a statistical broadening assumption
might be sketched as shown in Fig. 3. The line
shape used below is Gaussian.

Our model gives an accurate quantitative picture
of the effect of Doppler broadening on multistage
absorption in both atomic and molecular gases,
and we make use of this feature to investigate the
possible advantages of Doppler-free excitation and
reaction as well. We expect that the results ob-
tained from our oversimplified version of the al-
ternative absorption paths of real atoms and mole-
cules will also be at least qualitatively relevant to
the multilevel and multiphoton absorption problem
in a variety of other cases including the hyperfine-
broadened case for atoms, and the rotationally
broadened case for molecules.

A preview of the paper's contents can be given
briefly. We study the excitation-plus-reaction dy-
namics of three-level systems stimulated by two
coherent light sources. We consider a variety of
relative intensities of the two sources, allowing
both coyropagating and counterpropagating light
beams. We allow population less from the third
level such as might be due to chemical reaction,

L

FIG. 3. Schematic rep-
resentation of a three-level
atom or molecule undergo-
ing statistically broadened
photoexcitation. The energy
levels cce.sist of identifiable
states spread over a finite
range of energies, and the
states of the upper level
can undergo relaxation due
to population loss. The
dynamics may be charac-
terized by stimulated rate
processes as in the rate
regime, or by coherent
population cycling as in
the Rabi regime.

or relaxation to a fourth level. Our objective is to
find effective techniques for reacting as large a
portion of the inhomogeneous distribution as possi-
ble.

In the following sections, we display examples
of both analytical and numerical solutions of the
three-level Schrodinger equation. For simplicity,
we refer to the reaction mechanism as ionization
and to the statistical distribution of detuning as a
Doppler average. We show both the on-resonance
level populations P„(t;& =0) and ionized population
P&„(t;b =0) as well as the ensemble averages
P„(t) and P„,(t) (obtained by numerical quadrature
of the distribution integral). By means of such ex-
amples, we demonstrate the dependence of solu-
tions upon the basic model parameters, the two
Rabi frequencies 0, and 0» the reaction rate R,
and the width of the statistical distribution of de-
tinings, denoted 1/T*.

We exhibit the Schrodinger dynamics as a func-
tion of the laser powers with all other parameters
fixed. The statistical width 1/T* is scaled to
unity. The reaction rate R in level 3 provides a
nonstatistical (homogeneous) linewidth, chosen
smaller than 1/T*:

For example, B=].Q' sec ' corresponds to a Dopp-
ler half width of about 2 6Hz. We will follow the
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evolution of the level populations for ten "reaction
times" 10/R. The interesting region to study the
growth of reactant versus laser power occurs
where the Rabi frequencies are close in value to
the statistical width:

The behavior for smaller values of 0 is expected
to be dominated by the nonstatistical rea, ction rate
B, and for larger values to consist primarily of
weakly smoothed pure Rabi oscillations.

II. THREE-LEVEL ROTATINGWAVE-APPROXIMATION

MODEL

our three-level systems have energy levels E„
E„and E„excited by two monochromatic lasers
whose frequencies ~, and e2 are close to the Bohr
transition frequencies (d, = (Z, E,)/K-and v, =

(g @ )/g. We call this system an atom, although

our results apply equally well to a molecular system.
Figure 3 symbolizes the excitation sequence of one

such atom. We express the three-level state vec-
tor g(t) as a three-component superposition of

basis states (t(„

4(((= Q(:„(((&„exp(-(a„j
n=&

The phases e„ implicit in any such expansion are,
of course, a,rbitrary. We express them in terms
of the light frequencies, thereby employing the
rotating-wave picture; in the Schrodinger picture
the phases are identically zero whereas in the
Dirac (or interaction) picture the phases are the
Bohr frequencies.

Because-the three levels are intended to repres-
ent the real atom, with infinitely many levels, in

its interaction with an external "reaction" mech-
anism as well as with two lasers, the matrix ele-
ments of the Hamiltonian within the three-element
subspa, ce are generally complex and non-Hermit-
ian. Diagonal elements have the form

(2.2)

where I'„/s is the rate at which probability is irre-
versibly lost into the reaction channel. We shall
assume that such loss occurs only from level 3 at
a rate B. This loss may originate in many ways,
for example, via collisions, tunneling in static
fields, photoionization, autoionization, etc. We

assume that the energies E„and the Bohr frequen-
cies (d, and &am are time independent (because we
assume cw or long-pulse lasers), and that they
incorporate all laser-dependent shifts.

We assume that the lasers are sufficiently in-

tense that stimulated emission dominates spontane-
ous emission. Thus we express the laser fields as
prescribed classical harmonic functions of time.
The nonzero matrix elements of the atom-field in-
teraction can then be written

H„=H„=—aQ("cos((d, t) —IQp'cos((o, t),

H»~H»= —KQ,'"cos(e, t) —KQ,("cos(&d, t) .
(2.8}

Here „' ' is the intera, ction-energy frequency, or
Rabi frequency, ' for the nth transition, associated
with the ~th la,ser.

Upon substituting expansion (2.1) into the Schro-
dinger equation

iI
d, 0(t)=H(t)4(t) (2 4)

and using formulas (2.2) and (2.3), we obtain the
" set of coupled equations

(2 5)

(2.V)

so that we can replace such oscillating terms by
their null time average.

One physical distinction between photoexcitation
of atoms on one hand, and molecules on the other,
should be mentioned. If the molecular levels are
nearly harmonic, so that ~,=v„ then it is very
h»d to satisfy I~i —~2I~O IQI within th«e»-
resonance context in which ~, = +, and ~2=&2. But
then the second laser is unnecessary, and only one
term in E(ls. (2.8) is sufficient. In atoms e, =to,
occurs very rarely.

Upon dropping the rapidly oscillating terms we

obtain the usual rotating-wave approximation'
(RWA} for either atoms or molecules:

~23 22 =2 2&

yielding the time-independent RWA matrix

1-202

a=202

&,+&,-i~B )

The time dependence of W occurs only in off-diag-
onal elements. For example, one easily finds

W„(t)=—', Q,"'(I+exp[i ((o,+(o 2)t]]

+-,'Q &,'&(exp[i ((o,-(o,)t]+exp[i((o, +u),)t]] .
(2 6)

The atom responds to these forces on a time scale
set by the Rabi frequencies. We assume that this
response time is much slower than the occurring
sum and difference frequencies,
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where ~„ is the detuning of the nth laser frequency
away from the corresponding Bohr frequency:

16,= (E, E-,)-Ro„

S42= (E, E,)-- I'&o, .
(2.10a)

(2.10b)

III. STATISTICAL AVERAGES

The statistical ensemble comprises a distribu-
tion of atomic or molecular detunings. It is the
nature of Doppler broadening that if the atoms or
molecules at rest are resonant at each successive
upward transition, then the atoms or molecules in
motion find each successive upward transition
further off resonance. If the transition frequencies
are nearly equal, then a two-photon transition will
be twice as far above or below resonance as will
the one-photon transition. For copropagating las-
er beams this is true. Both transitions experience
Doppler shifts in the same direction. The one-pho-
ton detunings are

b;=~,v/c= b, b,=- (,d/v=c&, (3 .1)

where v is the component of velocity along the
lasers' common axis. The two-photon detuning is
the sum of these

b ~+5~26. (3.2)

P„(t;~)=lc„(t;~)l' (3.3)

and the probability of finding the atom ionized is

P,.„(t;&)=1- P„(t;&). (3 4)

'The corresponding statistical averages over de-
tuning are

(3.5)

and

&,.„(t)= 1-g&„(t).
ns:&

(3.6)

We shall take the statistical weighting function
g{&) to be a Gaussian distribution,

g(~) = (T*/~)expl. -(1/~)(&T*)'1 (3 7)

as is appropriate to Doppler broadening. We mea-
sure the width of the distribution by 7.'*, the sta-

Note that Eq. (3.1), which implies that l&,-&,
l is

negligibly small, is not in conflict with the require-
ment in Eq. (2.V) that l((),-((),l be large, because
v/c is so small.

To indicate the implicit dependence of the prob-
ability amplitudes upon detuning we employ the
notation C„(t;b ). Then the probability of observ-
ing the atom having detuning ~ in level n at time t
1s

tistical (inhomogeneous) relaxation time of the
system. It is related to the laser wave vector k
and mean atomic velocity I by

(ku)'=m/(T *)' (3 .8)

IV. EQUAL RABI FREQUENCIES

To establish the basic features of the statistical-
ly broadened excitation and reaction process that
are common to all cases we first consider the
special case in which the two Rabi frequencies
are equal: &,=0, . Figures 4(a) —4(c), show the
behavior of each of the resonant populations
P„(t; 0) together with their sum, and the ionization
probability P,.„(t; 0). We observe the familiar
Rabi population oscillations. These grow progres-
sively more rapid with increasing interaction
strength. The ionization probability grows until
saturated, modulated by the Rabi oscillations.

In Figs. 5(a)-5(c) we exhibit the statistical aver-
ages P„(t) and P;,„(t). This shows the effect of
averaging over anensemble of different transition
frequencies the cases whose resonance (b =0)
populations appear in Figs. 4(a)-4(c).

The curves of Figs. 4(a) and 5(a) pertain to Rabi
frequency —, and ionization rate —', . Figures 4(b),
5(b), 4(c), and 5(c) show the same quantities:
resonant populations, Doppler averaged popula-
tions, andionizationprofile, for Rabi frequencies
1 and 4 (that is, for power levels 16 and 256 times
greater), respectively.

In the statistical averages, we have the com-
bination of the resonance transition and the corn-
plete ensemble of nonresonant transitions, whose
excitation and ionization is less complete and
whose populations oscillate more rapidly. Their
oscillation frequency is the rms value of their
resonant Rabi frequency ance their detuning. Be-
cause of the Gaussian weighting function g(&),

and to the half width at half maximum ~,@ by

~„,= (~in2)'~(1/V'+) =1.5/T +. (3 .9)

The Schrodinger equation (2.5) with the RWA
Hamiltonian (2.9) can be solved exactly by finding
the roots to a cubic equation. The solutions are
very complicated in the general case, even for
fixed values of ~, and~, . However, our main in-
terest is in atomic or molecular systems with a
range of transition frequencies. The integrations
over ~, and 4, must be carried out numerically in
any event, so we simply solve the time-dependent
Schrodinger equation numerically as well, and
display the results graphically. In Secs. V and
VI we will find it useful to contrast some of these
numerical results with approximate analytic 'solu-
tions, and with recent experimental observations.
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0

FIG. 4. Level probabil-
ities P„(t; 0) for three-
level system undergoing
on-resonant excitation
by two lasers. Solid curves
labeled 1, 2, 3 show popu-
lations of individual levels
vs time, dotted curve
labeled I is reacted (ion-
ized) fraction, unlabeled
dotted line is the sum of
bound-state probabilities.
Frame (a): Babi frequen-
cies Q&=Q2=~, frame (b):
0&= Q2=1; frame (c): Q&

=Q2=4. All cases have
reaction (population-loss)
rate 8= 8.

4'4

FIG. 5. Level probabil-
ities P„(t) for the three
cases of Fig. 4, but popu-
lations are averaged over
a statistical distribution
of detunings as in Eq. (3.5).
The distribution width 1/T*
is taken equal to 1.

the major contribution to the statistical average
comes from transitions that are, at most, a few
times 1/T* away from resonance. When 0 is
much smaller than 1/T*, as it is in Figs. 4(a) and
5(a) (where 0/T*= ,'), almos-t the entire contribu-

3-3 3M

FIG. 6. Dotted curve shows distribution of relative
atomic populations P„(t;6) as a function of detuning;
solid curves show, at a succession of ten equidistant
times dg = I/8 out to f = 80, the ionized fraction of this
statistical distribution as a function of detuning. The
three frames correspond to the parameter choices of
Fig. 4: Frame (a): Q~=Q2=~, frame (b): Qf Q2 1;
frame (c): Q~=Q2=4.

tion to P„(f) comes from atoms whose behavior
differs little from the resonance case P„(t;0).
Then the Rabi frequencies are much greater than
the relaxation rate 1/T*, as they are in Figs.
4(c) and 5(c) (where AT*=4) the contributions to
T„(f) from off-resonance atoms are nearly equally
as effective as the resonant contributions. As a
result, the statistical average is much more effec-
tively excited and ionized when Q»1/T~.

Note that, although the averaged ionization curve
approaches the resonance-case ionizatiori curve
as the Habi frequencies become much larger than
the relaxation rate, nevertheless the averaged in-
dividual level populations do not in general ap-
proach the corresponding resonance-case popula-
tions. Only during a time interval smaller than
T* are the population curves P„(f;0) and P„(t)
closely similar. At later times, the population
average P„(f) oscillates at the frequency of P„(t;0)
bat with reduced amplitude. As we should expect,
we see that increasing the laser intensity (by in-
creasing the Rabi frequency} leads to an increase
at each instant in the distribution of detunings
which can ionize. This is "power broadening" of
the ionization profile.

In Figs. 6(a)-6(c) we show the contributions of
various detunings ~ to the total ionization prob-
ability, at a succession of times f =1/R,
2/R, . . . , 10/R, where R is the iomzation rate
from level 3. Vfe have plotted here with the fall
lines the product

P;..(f'd )g(d. )/g(0)

0 80

representing relative ionization probability, and
with the dotted lines the envelope g(4)/g(0) repres
enting the upper limit to this ionization. The three
cases shown correspond to the three cases of Figs.
4 and 5, namely, A, =O,=&, 1, 4.
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V. UNEQUAL RABI FREQUENCIES

Section IV showed the effect of averaging the
three-level population dynamics over an ensemble
of different transition frequencies when the two
Rabi frequencies were equal. Here we consider a
more interesting series of cases in which the first
Rabi frequency gets progressively larger, viz. ,
the sequence

and then we consider the opposite situation, a s e-
quence in which the second Rabi frequency is larg-
er:

t'

C I

! ;llllgi~,

f
r

I

I

I
I

As we show, the two situations lead to results that
are different both qualitatively and quantitatively.

A. Numerical experiments

First we study the on-resonance situation. Fig-
ure 7 shows the time-dependent populations for the
on;resonance member of the statistical ensemble.
In this figure, the top frame has equal Rabi fre-

0;

I I I I I I
I

0, :laI:,-, &III'. I, ., ll. »,Illegal&IC, „IILIIIIll prie
0 t 800

FEG. 7. Level populations P„(t;0) for resonantly tuned
excitation. Left-hand sequence of frames (a)-(c) have
increasing values of Q&=2, 1,2; right-hand frames a, d, e
have increasing values of Q2=~, 1,2. Frame (a): Q&

1 1 ~=~, Q2—-~, frame (b): Qq=l, Q2=~,- frame (c): Q )=2,
1 ~Q&=» frame (d): Q&=2, Q2=1 ~ frame (e): Q =—'

Q 2=2. All cases have 8= 8.

0 80

FIG. 8. Populations P„{t;4)for case Q ~=~, Q2=2
when first laser is detuned by amount approximately
equal to the dynamic Stark shift 6= 0.640.

quencies; down the left-hand side the second Rabi
frequency increases.

We see that ionization proceeds more effective-.
ly w'hen the stronger laser drives the second tran-
sition. We also see that, when the first laser- is
stronger, populations in levels 1 and 2 oscillate
with increasing rapidity and level 3 plays a de-
creasing role, as the Rabi frequency increases.
In effect our system reduces to a two-level atom
weakly coupled to a third level. This behavior has
been studied' in many cases not involving statisti-
cal averaging, and has been observed recently. in
ionization.

A second striking difference appears in the de-
gree of population modulation which occurs. We
see this quite clearly in the two bottom frames.
The incomplete modulation in Fig. V(e) indicates
that, although we are considering the resonant
transitlo+ +=(oy (Joj . .0, the atom is not really, on
resonance. The presence of intense laser 2 has
split the position of resonance in transition i by
the dynamic Stark shift. If we detune the first
laser by 0.640 we obtain, in place of Fig. V(e),
Fig. 8. Here the modulation is nearly complete
between level I and a combination of levels 2 and
3.

Now we proceed to a discussion of the same se-
quences of cases, but focusing this time on a sta-
tistical average of all atoms. Figure 9 shows the
averaged populations. From Pigs. 9(b} and 9(c)
wherein &, is fixed, we observe that the ionization
versus time is very nearly independent of the in-
tensity of laser 1. On the other hand, Figs. 9(d)
and 9(e) show that the total ionization does increase
with increasing ~,. Note that the statistically
averaged population oscillations in Fig. 9(e) are
approximately one-half as frequent as the on-reso-



19 STATISTICAL BROADENING AND POPULATION LOSS IN. . . 255

1
2'2

0,
0;

0

C
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C:
s-+x. -r. —3

E

0

1
t, 2 ~

1—,22'

0
0

s a+"r-s-- r.m ~-J i

800
~ I ~ L I I I I ~ ~

FIG. 9. Population averages P„(t) over statistical
distribution with T*=1. Parameters are the same as
Fig. 6.

80
0 . I L
—3 0 3 —3 0 3

FIG. 10. Relative ionization probability P«~(t;4) at
successive times, as a function of detuning. Parameters
are the same as Fig. 6.

nance oscillations in Fig. V(e).
Figure 10, like Fig. 6 shows the relative. ioniza-

tion probability at successive times for the pre-
ceding cases.

As either laser power is increased, we see, as
expected, a power broadening of the ion output.
The single-peak structure which exists for equal
Rabi frequencies becomes a doublet if either Rabi
frequency is much larger than the other. This
doublet structure can be interpreted as the dynam-
ic Stark effect. 9 Since in Figs. 10(c) and 10(e)
one Rabi frequency is much greater than the other,
in each case we can consider the three-level atom
as a "dressed" two-level atom weakly coupled to a
third level. The two peaks in the ionization rate
correspond to laser-atom detunings which are
located at resonances of the "dressed" two-level
atom. Since the structure is independent of which
Rabi frequency is larger, the interpretation must
also be independent of which Rabi frequency is
larger.

While the structure is independent of which Rabi
frequency is larger, the overall ionization is not.
A greater number of atoms are ionized if ,
This means that more ions are produced if the
"dressed" atom is associated with transition 2.
A larger Rabi frequency for transition 2 means a

greater power broadening which more effectively
overlaps the very broad Doppler width of level 3
thereby increasing the overall ionization.

B. Theoretical analysis

It is possible to give a nonperturbative analysis
of a few of the features of Figs. V-10, in particu-
la, r the pronounced doublet structure in Figs. 10(c)
and 10(e) and the increased ionization when Q, &Q, .
It is helpful to use the idea of "dressed" states'
in order to facilitate such an analysis. Consider
a two-level system with the RWA Hamiltonian
shown below

If the coupling strength 0 between the two states
is very strong, so that O»c, b, it is as if the two
levels are, in effect, degenerate. In such a case
it is appropriate to remove the quasidegeneracy
before proceeding with a treatment of the dynam-
ics. Note that when R is relatively small and y
and Q2 are comparable with or larger than 1/T*,
then the upper-left and lower-right corners of W

given in (2.9) are 2&&2 matrices with this same
kind of quasidegeneracy.

The unitary transformation that lifts the quasi-
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where

sin2y= -Q/[(b-a)'+Q']'~,

cos2tt) = (b-a)/[(b -a)'+Q']'~'.

The new Hamiltonian becomes

(x 0)
H' =UtaU=

0

(5.3a)

(5.3b)

(5 .4)

where

x,=-,'(a+b)~-,'[(b -a)'+Q']'". (5 .5)

degeneracy (i.e., "dresses" the two states) is

( cosQ -sintI) ) (5 .2)U= I

sin cos

The new diagonal elements X& are the usual
"dressed"-atom energy levels. The coupling of
these levels to level 3 is through Rabi frequency
Q, . If ~b ]«Q„ then these levels are equally cou-
pled to level 3. If ~& ~»Q„ then the original Ham-
iltonian had no quasidegeneracy. However, having
dressed the atomic states, when ~&~»Q, the cou-
pling of level 3 is stronger to dressed level 1
when ~ is negative, and stronger to dressed level
2 when 4 is positive.

The equations of motion for the amplitudes C,
associated with the energy levels E, are obtained
from the Schrodinger equation in the standard
way:

C =$20 since e C3) (5.10a)

The new eigenvalues are located symmetrically
about an energy midway between the unperturbed
levels a and b. The new levels are further from
the midpoint energy than the original levels were,
since

~=2-' cosee "' ""e'" "C
2 2 2 3P

C =i 'Q (sinae" ~—"-)'e'" 2)'C
3 2 2 1

+cosnel(26-xo) tetR /2)tC )

where

(5.10b)

(5.10c)

)"Q']'".-Ib

COSe

U=l sine

-sine 0

cose 0

0

(5 7}

[where sinn and cosa are the same as sintI) and
cosQ above, but witha=0, b=b, and Q=Q, ], has
the effect of diagonalizing (2.9) exactly when Q,

0o

(
w=U'wU= 0

-20,sine =2', cose

-202sine
1-2 ~2COSe

2~ -S2R

The laser always tends to move the unperturbed
levels further from one another.

This degeneracy-lifting process can now be ap-
plied to the two cases in which (2.9) reduces to a
quasidegenerate 2x2 matrix weakly coupled to the
remainder, namely, A,»02 and Ap&01.

Let us consider first the case A,»O„which
should be relevant to frame (c) of Figs. V, 9, and
10. From (2.9) we observe that for Q,»Q„&
levels 1 and 2 are quasidegenerate and weakly
coupled to level 3. A unitary transformation of
the Schrodinger equation (2.5} of the form

C -&x„g
1

4(t)=
-f (2~) te"(R/2) t

(5.11)

(1) ( cosa)
$(0)=U' 0 ~

= ' -sinn

4) k ~ 1
(5.12)

=2COse,

6=2~-x„

y=R.

(5.13a}

(5.13b)

(5.13c)

If we set C,=O in (5.10), then (5.10a) and (5.10c)
are the equations of motion describing another
two-level atom undergoing ionization, with the
parameters

0=02sine,

6=2~-x,
(5.14a)

(5.14b)

(5.14c)

If we set C, =O in (5.10), then (5.10b) and (5.10c)
are the equations of motion describing a two-level
atom undergoing ionization. The Rabi frequency
0, detuning p, and ionization rate y of that two-
level atom are

where

x, =-,'~ ~-,'(a'+Q2, )'".

(5 6)

(5 .9)

Since the effective population precession frequen-
cies (6'+Q')'I' for each of these two-level sets of
equations are always significantly different, ex-
cept at resonance, there is in most cases negli-
gible coherent coupling between the populations gov-
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emed by each of these sets of equations. We now
go one step further and assert that the amplitude
C3 may be split into two parts C„and C,2 that
couple only to the amplitudes C, and C„respec-
tively. Then the three Etls. (5.10}become two in-
dependent sets of two equations

C =—iQ since" ~ "-"e '"~"tC,
1 2 2 31~

C = l signet(2+ + ) te(R/2)tC
31 3 2' 17

C =-'iO cosine '" +"e ' "'C2-2 2 327

C =-'i0 cosine" ~ "e'~ "C .32-2 2 2'

(5.15a)

(5.15b)

(5.16a)

(5.16b)

where

cos2z = 5/(5'+ 0'}'@.

(.5.1Va)

(5.1Vb)

The approximation used here relies on the validity
of the inequality A»y, an inequality that is weQ
satisfied in the numerical examples treated below.
Therefore the solutions to Etls. (5.15}and (5.16)
are

P, ,(t)=cos'n(cos'e, e!R""'t"
+sm2e e (Rcot2g&)t-)

P»(t)= sin'n(cos'eg '"""'2)'
t

+Sinn&+ (Rect t&)t)-

where P, ,(t)=~C, (t))+~Cat(t)$, etc., and

(5.18)

(5.19)

[(2g y }2 (g )2]«»
:"1

2h-y.
.
' [(2&-X.)'+(&,cosn)']' ''

The ionization probability is

(5.20a)

(5.20b)

(5.21)P,.„=l-P, ,(t)-P, ,(t).
In all cases the solutions (5.18) and (5.19) can be
approximated by a single exponential:

P, ,(t)-cos'n exp[-, ~R(l, -)cos2z, ~)t],
P, ,(t)"sin'+exp[=,'R(1-)cos2e, ))t] .

(5.22)

(5.23)

An important feature of the numerical solutions
is contained in Eqs. (5.20). Note that each ex-
pression involves a resonant denominator. As a

The initial population in each set is determined by
the dressed-atom transformation (5.12).

Now, with respect to these two uncoupled tmo-
level systems, we recall that the solution for the
total bound probability of a two-level atom under-
going ionization from the upper level at rate y
(while being pumped from the lower level by a
laser detuned by 5 and with Rabi fretluency Q) is
approximately

P(t) P(0)(cos'ee ')'"" "'+sin'ze ')'"""')

consequence, resonances in the ionization rate
appear at 24=X&, that is, for the detuning values

~R=~fl, /2V2 . (5.24)

These resonances, appearing symmetrically about
4=0, arise from the ac Stark effect. Upon sub-
stituting the parameters of Fig. 10(c) into (5.22)-
(5.24), we find

4~= +0.707,

P,,„(&=O,Rt=10)=0.2V,

P, „(t).=. b, R, Rt=10)=0.35.

(5.25a)

(5.25b)

(5.25c)

After normalization to the heights of the Doppler
profile at 4=0 and ~=~~ these values are in good
agreement with Fig. 10(c).

The time dependence of the bound probability
for the two channels (5.22} and (5.23) is described
in each case by a single rate. At either resonance
one channel is described by a rate corresponding
to the strong-field limit and the other by a, rate
corresponding to the weak-field limit. In all other
regions, away from the two resonances, both are
described by a weak-field limit rate. Interference
between these channels, as we asserted in deriv-
ing (5.15) and (5.16) is small. The transition re-
gion between resonance and far off resonance is
the region where the error in (5.22) or (5.23) is
greatest.

The population in each channel (5.22) and (5.23)
is determined by the "dressed" atom transforma-
tion (5.12). As the population increases in either
channel with changing detuning, the rate of ioniza-
tion decreases. On.a resonance the population
ionized readily at rate &R is always -', . For very
large 0, the detuning scan without the Doppler-
profile weight factor mould appear as two peaks.
For any fixed large time, as 0, increases, the
width of the peak increases proportional to 0,.
As the peaks move into the tails of the Doppler
profile the overall ionization decreases.

It is interesting to observe how much closer to
the underlying physics one gets by making the
"dressing" transformation (5.V). . In Fig. 11 we
show the results of two numerical calculations of
the same ionization probabilities, one calculation
proceeding from the original Hamiltonian (2.9)
and the other from the "dressed" Hamiltonian
(5.8}. The smoothness of the curves in Fig. 11(b)
is graphic justification for the use in dressed-
atom calculations' of perturbati:on theory based
on dressed zero-order eigenstates.

Next we consider the case Og&A, . It is apparent
from a comparison of Figs. V(c} and V(e) that dif-
ferent results are to be expected. However, the
basic principle of our analytic method remains
valid. Because 02 is so large, there is an effec-
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Conventional tion is not unitary since U '& U ~.
The equations of motion for the amplitudes C;

are obtained from the Schrodinger equation in the
standard way:

C, =-, iA, (cosXe '" ""C, -»nye *"

C =—'u cos-e'" "'"C
2 2 I X 1~

C =='iA si..e'"~ "-"C

(5.29a)

(5.29b)

(5.29c)

Transformed

where

(5.so}

J',JlfIf'-~i v"V'&

(0,
q(i) C+ 0(RE 000)0

C~-i(26 P ) 0

(5.8l)

O.f
0

(t)
0(0)=U ' 0 = 0 (5.s2)

tive degeneracy of levels 2 and 8 [cf. W in E(I.
(2.9)]. We begin by removing this (Iuasidegener-
acy by applying the transformation

0 0

0 cosX
~

~

0 sinx cosx

(5.26a)

FIG. 11. Comparison of the three-level population
time dependences before and after the dresssing trans-
formation (5.7).

For smallR we find

1/2

&2 (4'+0')'"
1/2

X ~g (g2+pm)l jR

|'sin'y )
Xy+2iB cos X

(5.33a)

(5.3Sb)

(5.34)

(5.35)

(I 0

U '=
~

0 cosy sinX

0 —slnX cosy

0

(5.26b}

O'=U '8'U = =~0,cosx

g +gslnx

-2 gcosy 2 gsinx

&+a 0

0 ~+x

(5.2V)

Here the presence of R leads to complex eigenval-
ues

~,=-'.(~--', m)~-'. [&',+ (~ =,'if')']'". (5.28)

Also, the transformation of the Schrodinger equa-

where sinX and cosx are the same as sing and
cosP in (5.3), with the replacements b-a- (& —~ iB)
and A-A, . This transformation would diagonalize
W in (2.9) exactly if 0, were zero:

a=A -x,
y =R cos'X .

(5.36b)

(5.36c)

If C,=O in (5.29), then (5.29a) and (5.29b) are the
equations of motion describing a two-level atom
undergoing ionization with the parameters

0=0,cosx,

6=2~-x„

y =A sin'y.

(5.8Va)

(5.3Vb)

(5.8Vc)

Here sinX and cosy are the usual dressed-atom
transformation functions, and the eigenvalues p. &

are the usual dressed-atom eigenvalues X+ plus a
small additiona, l positive imaginary part.

If we set C,=O in (5.29), then (5.29a) and (5.29c)
are the equations of motion describing a two-level
atom undergoing ionization. The Rabi frequency
0, detuning p, and ionization rate y are

Q = -Q~sinx, (5.s6 )
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Just as in the case O,»A2 we assert that coherent
coupling between the populations governed by each
of these sets of equations is always negligible.

By splitting the amplitude C, into two parts, C.1p
and C», the two independent sets of equations be-
come

1 g cos &-f 2L-w)t&-~z/2)gtnmxtC
12 2~ 1

C =-'iO cos e"' "e'~+)"""'C,
1~@ si~,~ f(2A-1 )t~ (g/2)c0$ xtc2 j. "g

—~Q si,g&&&~-&-)t~+(~ /2) F08 xtC
3 & 1 ~~/, 13 ~

(5.3Sa)

(5.38b)

(5.39a)

(5.39b)

The general solution to (5.38) and (5.$9) is given
in (5.1V). These solutions are

P (t) P (0}(COSZ C-sin «&Rsin ns)t

~ Sm2Z C-s{n «{Rcosng ) t}1

P,(t)=P,(0)(cos'z~--' «&" " ~&t

+ SinnZ+ cos «{Rco-sn&sn) t)

(5.40)

(5.41)

where 24-X,
[(2b -X )'+(Q,cosy)']'" '

2~-x
2 [(2A y )2+ (Q sin )2]1/2 '

(5.42a)

(5.42b)

In all cases the solutions (5.40) and (5.41) can be
approximated by a single exponential:

P,(t)-P, (0)exp[=',R sin'X(I-) cos2z, ~)t],

P2(t)-Pn(0)exp[-2Rcos'X(1-~cos2z J)t].

(5.43)

(5.44)

t&,„=m,/2H . (5.4V)

Substituting the parameters of Fig. 10(e) into
(5.$3), (5.$5), (5.42), (5.45), and (5.4V) we find
the resonant frequencies to have the values

4„=+O.VOV (5.48a)

and the corresponding value of the ionization to be

P;„„(&,Rt =10)=O.S2 (5.48b)

These are both in good agreement with Fig 10(e).
after normalizing to the height of the Doppler
curve at the Stark peak.

Since both channels are described by a single rate
and share the population in the ground state 1, we
require the total bound probability to be of the form
of a single exponential whose rate is the sum of the
rates given in (5.43) and (5.44)

P„,„„(t)=exp[=,'R t(1-cos'yJ cos2z, (
-sin'X

) cos2z, ))].

(5.45)
From (5.42) we see that the resonances occur at

(5.46)

andthis reduces, as before, to

Comparing (5.48a) and (5.25a), we see the loca-
tion of the resonances is independent of which
laser is more intense. This symmetric structure
was illustrated in Figs. 10(c) and 10(e}. The differ-
ence in the amplitudes of the resonances in Figs.
10(c) and 10(e) is easily understood after compar-
ing (5.45} with (5.22) and (5.23). For Q,»Q2 the
two independent channels leading to ionization
share the population in level 1: one channel has
cos g population and the other has sinn/ population.
The dressed-atom transformation which couples
levels 1 and 2 determines the strength of the two
channels. For A,»O„ there are also two indepen-
dent channels leading to ionization, but all the
population is available to each channel. The rate
out of the initially totally populated level 1 is sim-
ply the sum of the two rates governing each chan-
nel. . The ionization is therefore greater for 0,
»0, .

VI. COUNTERPROPAGATING BEAMS

The preceding examples dealt with excitation
steps whose frequency shifts accumulated: a shift
of ~ in each step gave a cumulative detuning M,
after two steps. We now consider the case when
the second shift opposes the first shift, so that the
two produce a null cumulative detuning. Such can-
cellation occurs with counterpropagating laser
beams, if the detunings originate from the Doppler
distribution of velocities. That is, if tt&o,/c and
-tt{dn/c are the wave vectors of the two laser
beams, then for an atom with velocity v along n
we have t{,={0,v/c and&2=-{02@/c. As before, we
assume that the difference ~,-~, is much smaller
than any other frequency and neglect it. We put
4,+~,=0. This case has been studied both analyt-
ically and numerically by Hodgkinson and Briggs"
in the population conserving (R =0} limit.

A. Numerical experiments

The exactly resonant members of the statistical
ensemble cannot distinguish between copropagat-
ing and counter-propagating lasers; Fig. 7 ap-
plies in both cases. However, the Doppler
averages P„(t} shown in Fig. 12 for counterpropa-
g@ting lasers differ appreciably from the curves
of Fig. 9 for copropagating lasers. This differ-
ence is most pronounced in Figs. 12(a) and 9(a),
where both transitions have equal Rabi frequency.
In Figs. 12(a) and 9(a) we see that Doppler aver-
aging damps out the population oscillations, just
as in the copropagating case, but that the ioniza-
tion proceeds almost as effectively as in the reso-
nant case, shown in Fig. V(a). This is because,
for any detuning, the condition ~,+~,=0 maintains
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0. 0

0,

0
8000 80

FIG. 12. Population averages P„(t) over Doppler dis-
tribution for counter-propagating lasers, T*=1. Para-
meters as in Fig. 6.

an exact two-photon resonance between the ground
state and the ionizing level 3.

As either Rabi frequency is increased the aver-
aged ionization curves P,,„(t) for counterpropagating
and copropagating lasers begin to look alike. This
is because all of the atoms behave more and more
like on-resonant atoms as the Rabi frequencies
(and thus the power broadenings) are increased.
However, the details of individual population aver-
ages differ appreciably. This difference is most
striking when the second Rabi frequency is the
larger; Doppler averaging then damps out almost
all the oscillation in level &.

The differences between copropagating and count-
erpropagating lasers is particularly striking in
plots of ionization versus detuning, as in Fig. 13.
The ripples here are caused by Rabi oscillations;
the ac Stark-effect splitting of the copropagating
case, shown in Figs. 10(c) and 10(e), is not evi-
dent. We also see that the total ionization is less
dependent upon which laser is the stronger —in
contrast to the copropagating case where ioniza-
tion is favored by a strong second laser.

B. Theoretical analysis

0
~3 0 0

FIG. 13. Relative ionization probability P«, (t;6) at
successive times, as a function of detuning, for counter-
propagating beams. Parameters as in Fig. 6.

cost 0, -sing)
00 (6.1)

where

ever one of the Rabi frequencies dominates the
other. In the following several paragraphs we

analyze the counterpropagating dynamics with a
view to explaining features of Figs. 13(c) and
12(e), in particular the level of ionization on reso-
nance and the absence of the Stark splitting seen
in Figs. 10(c) and 10(e). Our analysis generalizes
that of Hodgkinson and Briggs" to the case where
losses are present (R&0).

.For counterpropagating lasers, &,+ &,=0. This
creates a degeneracy between the energies of
levels 1 and 3 if the weak ionization rate R is
neglected in (2.9). We therefore look for a solu-
tion of the Schrodinger equation after applying the
following unitary transformation, which removes
the degeneracy:

Just as in the copropagating case, some features
of the population dynamics can be subjected to a,

dressed-atom analysis. Such an analysis can be
carried through in a relatively simple way when-

cos/ =0,/(&', +Ã,)'@,

sing= -0,/(0', +0')'12

The new Hamiltonian. S'=U 'WU becomes

(6.2a)

(6.2b)
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=,'iR sin'g 0~ ~

5'=
)

O

-aiR slIlfc os/ R Qlsin|t-R Q,cosg~ ~ ~

=', iR sistcost 'I
RQ, slug 'p-Qmcosg

IC.)'=—0,

)C )
2 os sinmg (Rco8-.2t) t

(6.9b)

(6.9c)

(6.4)

If Q,»Q„ then ) sing)») cosf), and vice versa
In either case the product singcosg, is small and
the off-diagonal coupling between levels 1 and 3
can be neglected completely:

-R iR sin'((i 0 0

=~A

=0 =iRcos 0)
(6.5)

Q = (Q ', +Q,')'". (6.6)

The unitary txansforination and the approxima-
tions made in obtaining (6.5) imply that the dynam-
ics are dominated by the double quantum transition
1-3. Since one of the lasers is being assumed
weak, the two-step transition coupling does not
appear in (6.5}. The population has two channels
for ionization. Channel 1, which dominates if 0,
»„depends on the detuning ~ of laser 1. Chan-
nel 2, which dominates if A~&G„ is independent
of level 2. Far off resonance the coupling to level
2 is negligible, making channels 1 and 2 equiva-
lent.

The Schrodinger equation, which is governed by
the Hamiltonian (6.5) for the state vector

)C,)'=—cos /exp(-Rsin'g)t,

) C()'=sin'g eXp(- RcR' to)st sIin'-,'Qt,
(6.8a)

(6.8b)

is easily solved, but the solutions are very com-
plicated. Therefore, we will exhibit only the solu-
tions on resonance and far off resonance. On reso-
nance, when~=0, we find

On resonance the population in levels 2 and 3 is
very rapidly oscillating between these levels,
effectively reducing the ionization rate by a factor
of -', in (6.8b} and (6.8c). Far off resonance very
little population reaches level 2, making the 2-3
ionization rate formany equivalent to the 1 ioniza-
tion rate; compare (6.9a) and (6.9b). These re-
sults, with 8=0, give the time-dependences under-
lying the time-averaged results obtained recently
by Hodgkinson and Briggs. " Our Doppler-aver-
aged curves in Figs. 12 and 13 show the influence
that a finite population loss rate B has on the loss-
free time-averaged populations of Ref. 11.

Upon substituting the parameters of Fig. 12(c}
into (6.8), we find the ionization probability on
resonance to be

P,(Rt =10)=1- )C,)'=0.28
=j.

(6.10)

which is in excellent agreement with Fig. 12(c}.
Far off resonance the ionization probability is in-
dependent of which is greater, 0, or ~„compare
the tails of the ionization curves in Figs. 13(c)
and 1$(e). Upon substituting the parameters of
Fig. 12(e} into (6.8) or (6.9) we find the ionization
probability (which is independent of 4):

.Pi(R t = 10)=0.46 (6.11)

which is in excellent agreement with Fig. 13(e) for
each detuning, after taking into account the Dopp-
ler profile. The independence of the ionization as
a function of de@ming is due entirely to the fact
that ~p&A, .

The difference in the on-resonance ionization
for A,»~, and 0,», is now easily understood
from (6.8). For Q,»Q, the ionization occurs at
a rate which is —, the rate of ionization when 0,», .
The difference is due to the coupling to level 2
which exists when A,»A, . In this case the popula-
tion of level 1 is almost zero. The majority of the
population, is shared equally between levels 2 and
3. Thus, ionization occurs only from level 3, re-
ducing the ionization rate by a factor of 2.

)CR)'=—sin~g exp( RRcos'g)t c-os~ RQt . (6.8c)
VII. SUMMARY

(6.9a)

Far off resonance the approximate solutions are

C,)2 coy+-(st(n't) t
We have presented numerical solutions as well

as nonperturbative analytic expressions for the
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population lost from a two-laser-excited statisti-
cally broadened three-level quantum system.
These expressions are valid for large or small
detuning of the two lasers, in the limit that laser-
stimulated processes dominate spontaneous ones.
The numerical results reflect the strong smooth-
ing influence on the overall population dynamics
of the statistical distribution of transition frequen-
cies. Nevertheless, the coherent effect of dynam-
ic Stark splitting is clearly evident even after the
statistical averages are computed.

A general rule found for relative laser powers,
to produce most efficient population loss, G,&A„
is reminiscent of earlier findings" based on in-
vestigations of homogeneously (nonstatistically)
broadened three-level systems. The analytic re-
sults of Sec. V can be regarded as generalizations
of some of the two-laser on-resonance findings of
Cohen-Tannoudji and Reynaud. ' The complexity of
their three dressed states is avoided by our off-
resonance assumption, first encountered in going
from Egs. (5.10) to Egs. (5.15) and (5.16). The
utility of this assumption, even at resonance, is
illustrated by the agreement, usually within sever-
al percent, between the approximate analytic and
exact numerical results.

A superficial contrast to the general rule , &0,
is provided by the case of counterpropagating la-

sers. Hodgkinson and Briggs have shown" analy-
tically in both limits T*-0 and T*~ that in the
absence of population loss (R=O} the population of
level 3 is maximized when ~,=, .

However, the existence of reactivity itself mod-
ifies this conclusion, and -it can be considered re-
liable only at low laser powers [as in Fig. 13(a)],
The reason for this can be seen in Eqs. (6.8) and
(6.9}. At low powers, almost all atoms are far
off resonance and Eqs. (6.9) show that the popula-
tion remaining in the atom is minimized (reactiv-
ity is maximized) when cos'(= sin'g, i.e., when

Q, =Q, . On the other hand, in the more interest-
ing high-power case, a significant fraction of the
atoms are power broadened into near resonance,
and Eqs. (6.8) apply. In that case, for Bt not too
small, maximum reactivity is achieved for 0,'= 20', .
Thus, we find again, even in the Doppler-free
case, that the second laser should be the more
powerful for the greatest degree of population
loss (ionization, dissociation, chemical reaction,
etc.) from the three-level system.
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