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Van der Waals interaction between atoms: Finite-size effects
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An analysis is made of the theory of Van der Waals interaction between atoms by means of linear-response

theory. It is shown that the spread of the atomic wave functions leads to removal of divergences at close

distances in the interaction in a natural way, while asymptotic large-distance behavior remains unchanged,

being of the London form,

I. INTRODUCTION

The dispersion or Van der Waals interaction en-
ergy of two atoms or moleeules is usually studied
in the asymptotic limit in which the distance of
separation of the atoms far exceeds the spread of
their charge distribution. For smaller distances
of separation their finite size would have a role
in this interaction. This aspect of the problem has
been analyzed phenomenologically by Mahanty and
Ninham, ' and more rigorously by Richardson. '
The main conclusion of the analysis is that the
finite size of the interacting atoms would make the
Van der Waals interaction tend to a finite limit at
close distances —this applies not only to the London
dipole-dipole interaction, but to multipole inter-
actions as well. The object of this paper is to give
a unified treatment of Van der Waals interaction
between two atomic systems taking into consider-
ation their finite size and thereby automatically
including multipolar interactions to all orders.

The method of analysis adopted here is the zero-
point energy approach, ' ' in which the interaction
energy of the two atomic systems is expressed as
the change in the zero-point energy of the electro-
magnetic field due to the presence of the systems.
This approach is more convenient for our purpose'
than using time-independent perturbation theory
as is usual in the theory of Van der Waals forces. 4

Detailed numerical estimates of the dispersion in-
teraction energy for a real system are not attemp-
ted here; but in Sec. IV the main features of the
finite size effects will be brought out considering
a simple example.

those systems in which the magnetic part of the
dispersion interaction' can be ignored, and shall
confine ourselves to the nonretarded situation tak-
ing the electrostatic potential as the main form of
the interaction. The generalization to include re-
tardation effects, although straightforward, will
not be attempted here.

Consider an external potential P,„(r, &u) at fre-
quency ~ interacting with two atoms centered at
R„& and R,». The atomic system will then be
perturbed by an interaction Hamiltonian

x'(t)= H'e ' '-

"Z 4-(R|,)+r(,), ~ )) e ' ' (2.l)

where r&»& is the coordinate of the j th electron
in atom (1) measured from R&», and likewise for
r„„.. The potential energy of each atomic nu-
cleus due to P,„ is dropped, since it does not play
any role in the analysis.

The change in any property A due to this pertur-
bation ean be evaluated by using Kubo's linear-
response theory' in the form

(n)A[m)(m[ a'[ n)

Eg ~E~+ AQ)

(N[a') m)&m)elm))
E~ —E~ —k(d

II. THEORY

For completeness, we shall summarize the main
points of the zero-point energy method which is
well known in literature. ' ' We shall deal with only

where ~n) is the unperturbed state of the system in
which we wish to study A, and $ ~ m) ) is the set of
all the unperturbed states, E being the energy of
the system in the state ~ni .
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Setting in (2.2)

1A=- (-e) Z,. ~r-R&»-r, »~i

(2 8)

D„C,k 'k;(r)= P(—,)

(
If'"%)I'If'"'Ck')] If"'(k)1'[f".."Ck')])

E -E +keg E -E -ku

~(g)+ &k' R()i) (2.7)

we get the potential at r induced by the external
potential through the atoms at R,», l = 1, 2. The
secular equation from which the change in the
spectral density of the field is obtained, is given
by the condition of self-consistency identifying the
external potential with the induced potential. We
then obtain the secular equation in the form

(2.8)

and V is the normalization volume of the plane
.waves used in the Fourier transformation.

The solvability condition for (I) in (2.5) is the
vanishing of the secular determinant

(niA[ m)(m[a' i n)

Etf Eat + (d i
I -D((k))i —=

[ 6T, ], f —D(k, k'; (k))[ = 0 . (2.9)

( k)[ r) I))())l)lI' I )))))
E -E —her

(2.4)

The dispersion energy Z, is obtained from (2.9)
using the following formula, ':

where A is given by (2.3)
In terms of Fourier components, (2.4) can be

written as an integral e(Iuation in f. space
d(o Tr[D((u)]' .S 1

4' p, P
(2.10)

(I)(k, (u) =Q D(k, k'; (u) y(k', (u), (2.5)

D(kk'; )),) = Q D„(k,k'; (r),
s, r'= i

(2.6)

where the explicit form of the kernel D(k, k'; &u) is
obtained in the following form after some algebra:

To obtain the dispersion or Van der Waals inter-
action energy between the two atoms we have to
subtract from E, the dispersion energies of the
individual atoms, i.e., of the two-atom system at
infinite separation. Up to terms of the order of
(e') this interaction energy as a function of R

R(» R(2) ls

V(B)= . f ()))I Q ID(k k) (rD;(k lr;—( ) —„D„(k k;(d)]

1
2 [ Ck, k'; w)D(k'k;(rl —D„Ck fr';rr)B„Ck'k;))) —B) (kk';(r)D, Ck k;)))]+ )„',

kg k'

d&ui P [D»(k, k; (k))+D»(k, k; &u)]4'
+

2 Q ILD„(k,kf; (u) D(k', k;co) +D(k22, k'; (d)D„$',k; (u)

+E$,%f; (d)E(k', %; (d)+E$,kf; (d)[D„(k',k; (k))+D22(k', k; (B)]

. ~ [D„(kk'; ru) D„((kk';, w)]FC k; (r)k] + ' ') .
Here, we have

E(k, k'; (k)) -=D„(k,k'; ())+D„k(kk ;(k),) .'

(2.11)

(2.12)
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Equations (2.11), (2.12), (2.7), and (2.8) constitute the framework of the approach of this paper.

III. FINITE SIZE EFFECTS

Expression (2.11) gives the complete expression for the dispersion interaction energy within the limita-
tion of a linear response theory. If the unperturbed states [ m& are chosen as products of the two atomic
wave functions, as is usual in the analysis of Van der Waals interactions, it is easy to see that

D»~ (k, k; Id) for I e I' and hence E(k, k'; &u) will identically vanish. In this case (2.11) becomes

(3.1)

Two features emerge from this. Firstly, for large
II we need the small (k, k') form of the summand
above; but from (2.8) it is clear that for mtn,
f'„'„' (k)-0 as k-0, [The term m=n drops out
identically in (2.7)J The leading term for f'„'„' $)
is linear in k, when

~
m& has opposite parity to

~ n& . It is easy to then show from (3.1) that the
(k, k') summation will give us as the leading term
1/R'. This is done by replacing the summation
by integration. It is also possible to demonstrate
that if the exponential function in f ~'„)(k) is expand-
ed in powers of k, we will get explicitly the var-
ious multipolar contributions to the &an der Waals
interaction between the two atoms. Thus, (3.1)
contains the total Va~ der Waals interaction when
the states

~
m& are chosen as product wave func-

tions.
Secondly, for R 0 the summations of k and%'

give finite values in (3.1). This convergence
arises from the fact that f„"„'(k)will go to zero
sufficiently rapidly for large k, being basically
the Fourier transform of a well-behaved function.
Hence, in this approximation of using product
wave functions for

~ m& the dispersion interaction
is finite at R- 0 to all orders of multipolarity.
Thus, this formalism includes results of Rich-
ardson' —in fact, one can get term-by-term cor-
respondence with Richardson's multipolar terms
by taking (2.7), expanding one f„„(k)in a power
series in k, and retaining the other as such in
each of the two terms in the right-hand side and

using that in (2.11). The limit R-0 is, of course,
only of academic interest since exchange effects
will dominate at small. R and the approximation of
taking product wave functions for

~ m& will break
down,
If instead of product wave functions, properly

antisymmetrized wave functions are used for
~ m&, D»i@,P; &v) for I x I will not vanish identi-
cally. We will then get for V(B) in (2.11) nonvan-
ishing contributions in the first order in (e'); but
these contributions will always be of the short
range type, containing exponentially decaying
functions of R, which arise from the exchange
integrals.

IV. AN EXAMPLE

As an illustration of the above formalism we
consider the case of two hydrogen atoms in their
ground states, and we shall take product wave
functions for the excited states.

Thus,

(4.1)

The excited states can be written in terms of hy-
drogen wave functions; but for simplicity we shall
estimate the sum over the intermediate states in
(3.1) by taking an average energy denominator, as
is customary in such problems. We can thus write,
using (2.8)

(4.2)
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Here 0, = (2/a, ), a, being the Bohr radius. This
approximation, which is equivalent to having a
dominant oscillator strength at the frequency
(E, /21), also preserves the properties of the
above sum that it vanishes for k=k'=0, andfor
$,R')-~. Substituting this in (3.1) we get,

1 k4,

[(' (g P)*]' (h' k')'(k' ~ 0'')')

-s (k- k )~BX e ~ (4 8)

(4 4)

Although this expression is an approximation, it
contains the various size effects we have discussed
in Sec. III. For R-O, V(R) goes to the finite limit

V. CONCLUSION

The main result we have is obtaining the Van
der Waals interaction energy of two atoms in a
compact form incorporating all the multipolar
contributions. It is a well-behaved function for all
values of the distance of separation R. Although
this has been demonstrated in a simple example
taking product wave functions, in principle this
approach can be used, taking properly antisym-
metrized wave functions, to yield the Van der
Waals part of the interatomic potential exactly.

The effect of the finite size of the atomic charge
distribution is taken into consideration in a natural
way through the form factors f '„'„' (k) defined in
(2.8). Such form factors were taken into account
phenomenologically in related problems earlier, "'
and they also occur in the problem of dispersion
energy of an impurity in a dielectric" ' which is
connected with the theory of a bound polaron.

For large R we get the asymptotic series
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