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Koimogorov entropy of a dynamical system with an increasing number of degrees of freedom
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Lyapunov characteristic numbers are used to estimate numerically the Kolmogorov entropy of an isolated
one-dimensional self-gravitating system consisting of N plane parallel sheets with uniform density. It appears
that the Kolmogorov entropy increases linearly when the number of degrees of freedom is greater than or
equal to 2.

I. INTRODUCTION

In recent years much numerical work has been
devoted to the investigation of the ergodic proper-
ties of classical dynamical systems, ' Namely,
while the extreme cases of near-integrable and of
ergodic systems are presently at least partially
understood in a rigorous mathematical context,
almost nothing is known theoretically for many
models of physical interest, which are in fact very
far from both integrability and ergodicity.

Numerical experiments, however, strongly in-
dicate that these extreme situations are at least
good "paradigms" for understanding the behavior
of other dynamic systems. Indeed, it is often
found that the phase space of a system decomposes
(at least roughly) into two invariant components:
an "ordered" region with integrablelike behavior
and a. "stochastic" region, with ergodiclike behav-
101 .

On the one hand, relatively simple techniques
are available for the study of systems with two

degrees of freedom: namely, for such systems it
is not too difficult to compute"' an extensive quan-
tity, i.e. , the relative measure p,, of the stochastic
region, and just one intensive quantity, i.e. , the
maximal Lyapunov characteristic number of the
flow. Then, using Piesin's -formula, one can esti-
mate the Kolmogorov entropy, which is certainly
a quantity very relevant to ergodic theory.

On the other hand, for systems with more than
two degrees of freedom the situation is not so sim-
ple. Indeed, computing p, , is not straightforward
and moreover, to estimate entropy it is nece sary
to compute all the positive Lyapunov characteristic
numbers besides the maximal one.

In t;he present paper we are concerned with a
system consisting of N parallel plane sheets,
coupled by gravitational potential, i.e. , a system
with N degrees of freedom. This model, which is
of astrophysical interest, has already been studied
in Hefs. 7 and 8. Froeschle and Scheidecke. have
found that, with increasing N, the relative mea-
sure p, , tends rapidly to one. We now complete

the study of the system, by computing all its Lyap-
unov characteristic numbers (LCN) and its en-
tropy. For the LCN we use the very recent method
introduced in Ref. 10.

In Sec. D we describe the model and recall some
known results. In Sec. III, after recalling the nec-
essary mathematical notions, we briefly describe
the numerical technique. In Sec. IV we present and
discuss our results. .

II. MODEL

Let us consider as a model problem a one-di-
mensional dynamic system consisting of N plane
parallel sheets of equal mass m per unit area.
These sheets are of infinite extent and move per-
pendicularly to their plane along the x axis under
the influence of their mutual gravitation. Their
positions and velocities are indicated by x&, . . . , x„
and u„.. . , u„, respectively. The sheets are al-
lowed to pass freely through each other when they
cross.

The system is described by the Hamiltonian

XX(x, x) =-,'m g x,'+Sxcm' P ~x,. -x, ~,

x = (x„.. . , x„), u = (u„.. . , u„),

where G is the gravitational constant. It turns out
that two uniform integrals exist:

N

u(x, u) = — u, =U,

a(x, u) =Z;

i.e., the velocity U of the center of mass and the
total energy E are constant. By a trivial change
of the frame of reference one can always take the
center mass at rest in the origin, i.e. ,

N

x= gx,.=O. —
i=i
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TABLE I. Relative measure p~ of the stochastic re-
gion, entropy density p, and Kolmogorov' entropy h as
functions of the number N of sheets.

2

5
6
7
8

10

Ontegr able)
0. 04 0. 02
0.86 0.04
0. 99 0. 073
1 0.108
1 0.13
1 0.18
1 0. 24

0. 0008
0. 034
0. 072
0.108
0.13
0.18
0. 24

HI. LYAPUNOV CHARACTERISTIC NUMBERS

A. Divergence of trajectories and LCN's

It is well known that nearby trajectories of in-
tegrable systems diverge linearly. It has been
made clear by many numerical experiments '

that the stochastic region is characterized by ex-
ponential-like divergence of trajectories. To give
a precise quantitative definition of exponential di-
vergence, and thus of stochasticity, one is natur-

For N =2 the model is integrable. It has been
used for the study of the stochasticity of dynamic
systems when the number of degrees of freedom
increases.

From the particular form of the potential it fol-
lows that the motion on any surface of constant
energy reproduces on scale the motion on any other
surface of constant energy. Namely, lets =(x, u)
and P' denote the Hamiltonian flow, i.e., Q'(z) is
the trajectory with initial point z. Here F& is the
surface of constant energy E, which turns out to
be compact. A normalized measure p, & on F&
(Liouville measure) which is absolutely continuous
with respect to the Lebesque measure on it, is pre-
served by &f&'. The application 4'1.' I'~ I'12~ gl'ven

by 4'„(x,u) =(X2x, Xu) satisfies Q 'OC'„=4~ OP'.
The character of the trajectories is then not

affected by 4„. In particular, 4„ is measure pre-
serving, so that the relative measure p, , of the
stochastic region is the same on F& and r),2&, i.e.,
it does not depend on energy. This allows us to
obtain an estimate of p., by means of a Monte Carlo
procedure. ' It was found that p, , increases very
rapidly with the number N of sheets, as shown by
Table I.

To decide whether a point belongs to the stochas-
tic region, the simple qualitative criterion of di-
vergence of nearby trajectories was used. A pre-
cise and quantitative definition of stochasticity can
be given by introducing the Lyapunov characteristic
numbers, to which the next section is devoted.

ally led to consider the spectral properties of a
linear operator. That is, let M be an n-dimension-
al compact differentiable manifold, p. a normal-
ized measure on it, and Q' a measure-preserving
flow, i.e., a one-parameter group of measure-
preserving diffeomorphisms M M with composi-
tion law O'" = Q' OQ'. In the framework of ergodic
theory the collection (M, p, , &jb ) is called a classic-
al dynamic system. Let z cM and denote by T~
the space tangent to M at z and by DQ, the tangent
(or linearized) mapping, which maps T~ onto
Tg t(g) M.

In the particular case of a periodic orbit of per-
iod fo, DP,O is a mapping of T,M onto itself. Sup-
pose there are n independent eigenvectors
e„.. . , e„, with eigenvalues x„.. . , x„, with

I x, I

Let }(1 ——&O'Inl&1 I. &hen one
clearly has

where
I I I I

denotes the Euclidean norm on T,M.
For a vector m with a nonvanishing component
along e& it follows asymptotically for large t that

in the sense that

One has then asymptotic exponential divergence
for almost all tangent vectors as far as X& & 0.
The periodic orbit is in this case unstable, and
with an improper language usage one frequently
says that nearby orbits exponentially diverge from
it.

The problem is how to generalize this construc-
tion, to nonperiodic orbits. Suppose that one is able

'to identify naturally the tangent spaces at different
points of M; then DQ', becomes a linear operator on
the n-dimensional Euclidean space and its asymp-
totic spectral properties can be studied. One idea
is to study directly the behavior of the eigenvalues
XI, . . . , X„' of DP'„ in order to see whether lim, „f '

ln l&I I
exists. This idea is the basis of the numer-

ical computations of Ref. 11. However, the exist-
ence in general of the above limit is not theoretic-
ally guaranteed. Nevertheless, one can prove un-
der rather general hypotheses that the limit

exists for almost all initial data z and all nonzero
vectors m (=- T,M.

Thk X's are called Lyapunov characteristic num-
bers and allow us to extend the quantitative defin-
ition of exponential divergence to the case of non-
periodic orbits.
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B. Theoretical results on LCN's

Lyapunov characteristic numbers can be defined
for rather general flows (or mappings} on compact
manifolds. For simplicity we shall restrict our-
selves to the case of our Hamiltonian system of N
degrees of freedom. Let I"& be a compact surface
of constant energy which does not contain equilibri-
um points for E& 0; I'& has dimension n =2N-1.

From the general results of Ref. 5 one has in
our case the following theorems:

(a) For almost all z = (x, u) E I'z and all nonzero
vectors mc T,I'&, the limit

»m&'»IID@l(~) II =X(z ~) (8)

exists and is finite (M being compact, all equival-
ent norms give the same limit). Here X(z, w) de-
pends only on the orbit and on the direction of so,
in the sense that X(Q'(z), DQ', (cm)) =X(z, co) for any
s and any c40.

(b) As w varies in T,rz, X(z, m) takes at most
n distinct values X,(z), . . . , X„(z), which we suppose
ordered by decreasing values. There exists at
least one basis (e, . . .e„) of T,rz such that

The spectrum of LCN's at point z is then

41( }~ ~ XN-1(z }i0~ XN-1(z }~ ' ~ X1(z 0'

One has X(z, m) =0 for au in the direction of the
flow, as I'& is compact and does not contain equil-
ibrium points.

C. LCN's and Kolmogorov entropy

Piesin's formula gives the precise connection
between Kolmogorov entropy and LCN's. Properly
speaking, it is not guaranteed that this formula
can be applied to our flow, because it is not suf-
ficiently differentiable. The applicability of Pie-
sin's formula has then to be considered as an
assumption.

Denote by p(z) the sum of all positive LCN's,
l.e. ,

N-1

p(z} = Q X~(z}

in our case. Piesin s formula states that one has

lim f-' in
I
ID@',(e, ) I I =X,(z}. h(E) = p(z) dye, (12)

For any vector w =2& ~ c&e&, with e~4 0, we have

X(z, w) =X~(z). Thus for almost all vectors X(z, zv)

=xg(z)
(c) Let v', . . . , ~, 1 & k & n, be the parallelepip-

ed generated by the linearly independent vectors
sv', . . . , se belonging to T,I'z. We denote the cor-
responding k-dimensional volume by V (w&, . . .w„)
(as in proposition (a), the metric is irrelevant}.
The limit

limt ' lnV (DQ', (m ), . . . , DP,'(nr ))

where h(E) denotes the Kolmogorov entropy of
flow on rs. The quantity p(z) consequently defines
a density of Kolmogorov entropy.

For our model the E dependence of h is easily
worked out. Namely, the linear mapping gz'. I'z

r~2z (Sec. II) induces a maPPing

Dg: T,r, -r,,(z)r,2„
such that,

DQ„'(z) QDg =Dg ODP, .
=x'(z, ~', " ~')

exists and is finite for almost all z c I'&. The X

are LCN's of order k (previously defined LCN's
were of order 1).

(d) For almost all vectors te', .. . , to" belonging
to T,I'&, one has

(10)
~hen the new norm

I l~ I la
=

I ID@(w}I I
is intro-

duced, it easily follows from the definition of
LCN's that

X(z, ) =XX(4(z),DA (~))

As g~ is measure preserving, one has finally

)P(z, w', .. . , ut') =Q X, (z), @=1,. . . , n. (11}

This relation is formulated explicitly in Ref. 10,
but implicitly contained in Ref. 5. It is at the ba-
sis of the computational technique that we shall
shortly recall in Sec. IIID.

(e) As our system is Hamiltonian, we have in
addition"

X, (z) =- X„~.i(z), f =1, . . . , n.

a(z) =xa(x'z}.

This equality also follows from the definition of
entropy, if a suitable correspondence of partitions
on the different energy surfaces is made.

Before explaining the numerical technique used
to compute the LCN's, we must make one more
theoretical remark. As we shall see in Sec. IIID,
practically one does not work on the restriction
of P' to I'z, but on the whole 2N-dimensional phase
space. Precisely, let 0 be a region of phase space
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limited by two energy surfaces. Lebesgue mea-
sure on 0 is well known to be preserved by «&&'.

Consider the RN-dimensional tangent space T,Q,
of which T~I'& is a subspace, and the linear map-
ping D&I»," T,tl- 1",&, &A. The previously defined
tangent mapping was a restriction of DQ& on
T,F&. Theorems analogous to those given in Sec.
GIB hold, of course, with n replaced by n=n+1
=2N. Indicating LCN's by X„.. . , X», we can
write their spectrum

&X&(z) . X~-&(z) o o -X~ &(z) -X&(z)).

Moreover, one has )(&(z) ='y, (z), i = I, . . . , t&t —l.

D. Numerical technique for computing LCN's

The general computational method is explained
in Ref. 10. Previous computations of the largest
LCN's X, can be found in Ref. 4. In principle the
LCN's of any order k could be obtained by choos-
ing randomly k vectors in T,Q and applying defin-
ition (10). Practically, naive application of the
definition is not possible, because in general, in
the stochastic region, the vectors become too
large and the angles between their directions too
small to allow a numerical computation of vol-
umes. The procedure which follows overcomes
these difficulties.

Choose ~', ... , zo' orthonormal and fix at not-too-
large time T. The idea is to replace, at regular
time intervals r, the evolved vectors by new ortho-
normal vectors, using the Gram-Smith procedure.
Precisely, denoting vo —m, i =1, . . . , k, one de-
fines and computes recursively

i
v& =D@,« »;„(vr &}--

IV. RESULTS

A. Numerical integration

The particular form of the Hamiltonian allows us
to compute the trajectory by an "exact" numerical
method (i.e. , only approximation errors are pres-
ent}. Each sheet ha.s a constant acceleration be-
tween two crossings. The times necessary for
crossings of neighboring sheets are computed by
solving ordinary second-degree equations. Us ing
the shortest of these times we compute new posi-
tions and velocities of all sheets.

Once one knows Q'(z), it is not difficult to com-
pute DQ', (u&) by an exact numerical method. So
doing, we let the system have a crossing at time
t, in &t&'&(z), and let t2 be the time of the next cross-
ing. As &t&'(z) is nondifferentiable with respect to
z at the crossing times, DQ', (u&) is not continuous
at t, and t2. Denote by I& and t2 the instants immed-
iately before and after crossing. Let 4 and &};,
i =1, .. . ,N, be the components of I) in the system
of coordinates naturally induced on T,O by coor-
dinates (x, u) in O. If at t2 the rth and sth sheets
are crossing each other, it follows that

(a) between t; and t, ,

4 (t2) = (t2 tf)&}&(t&) &1&(t2) —&}$(t&),

for s = 1~. . . p Nq and

(b) between t, and t,', for i =1,. . . , N;i tv, s,

4 (t2) =&}&(t2), n (t2) = n&(t, ),

&}„(t')=&}„(t) = 4mGm($„— g, )/ ~

u„—u, ~,

&1 (t&) + 4«m (t, —S.)/ Iu. —u. I

vr = (v&)&./o&»

(14)
The above equations can be obtained by applying
the definition of tangent vector and tangent map-
ping. A quicker way is the following. In general,
from the differential equations

where (v,')„stands for the component of v, ortho-
gonal to all the (already orthonormal) v~& with
j&i, i.e. ,

(v', ), =v'„ i =1,
(15)

(19)

the so-called variational equation is easily deduced
for ZU:

(V &)&. =V& — (V l, VI)V «) ~~(x) ol 1„i
(20)

where ( ) is the Euclidean scalar product on T,Q.
It is then not difficult to prove, using the linearity
of D&I&', and relation (11), that one has

where I is the identity and A(x) is the matrix given
by

I
)(,(z) =Iim —Q Inn',z-~ L7

l-"f
(16)

For our model one has
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A.;;=—4&Gm5(x; —xj} for i0j,
N

~„=4vGm P 5(x,. -x, ),
y=f
iaaf

where 5(x) is Dirac's function. It follows that

N

&; =7l, , j; =4~Gm Q (f; —&;)5(x; —x,).
y=f
jgg

(21)

(22)

-2
10-

-3
10-

Equations (17) and (18) are then trivially obtained.
From Eqs. (17) and (18) it follows that the spec-

trum of the LCN's contains two additional zeros.
Namely, the vectors av =($, q), with $,=a and

n; =b, form a two-dimensional subspace (to which
the direction of the flow does not belong) for which
one has y(z, w) =0. The spectrum of the LCN's is
then

6((z) X~ 2(z), o, o, o o, —Xn ~(z), , -X((z)f.

410-

10

%I

'2

10 10 10'

This property is common to all systems conserv-
ing momentum.

B. Results

As in Ref. 9, our units are such that the total
mass Nm is equal to unity and 4mG is equal to
unity. Practically, we found it convenient to ortho-
normalize the vectors not at fixed intervals of
time, but after a fixed number of 'crossings. We
set it typically equal to 5, but this value was large-
ly irrelevant. Having fixed the initial point z and
k tangent vectors, we computed the quantities

1'
y)(t, z) = —Q Ino.'g, i =1.. . , , k ~2N,

/=f

where I is the number of orthonormalizations per-
formed up to time t. With increasing time, these
quantities approach more or less well-defined
limit values, which we identified with the LCN's
X~(z). As expected, by making different choices
of the initial vectors, we obtained a difference in
the values of each y, (t, z) which decreases rather
rapidly with time (like t '). Also the property
y, (z) =- }(„„,(z) was very well satisfied; precise-
ly, we always found that the sum y, (z, t) +y„&,&

(z, t) decreases regularly with time (as t '). In
the following we shall then consider only the first
N LCN's. The qualitative results of Ref. 9, from
which our estimate of p,, is taken, have been fully
confirmed by the computation of the LCN's,

Figure 1 shows on a log-log scale the behavior
of the y s as a function of time for N = 4 and an
initial point taken in the. ordered region. All the
y&'s appear to be decreasing functions of- time
(the two largest are not too different from t '), and

t

FIG. 1. Variation of the p s (the limits of which are
identified with the Lyapunov characteristic numbers) as
functions of time for &=4 and initial point taken in the
ordered region: the limit values clearly vanish.

one is allowed to take zero as limit value.
For N =5, Fig. 2(a} shows the behavior of the

first three y&'s for three different stochastic or-
bits. One can observe how, by increasing time,
the curves can be progressively differentiated
when approaching their limit values. The impres-
sion is that the three orbits have the same LCN's.
As only these are positive for N =5, their sum
gives the entropy density p(z}. Upper curves on
figure 2(a) show the behavior of the sum y, (t, z)
+y2(t, z) +y, (t, z); one can observe that a rather
well-defined limit value (=0.078) is approached.
As explained in Sec. IV A, X4 and X& have to vanish
for N = 5. The curves for the corresponding X&'s

are reported in Fig. 2(b) for the same initial con-
ditions as in Fig. 2(a). The limit value clearly
vanishes.

A good agreement between the qualitative cri-
terium of the divergence of nearby trajectories and
the computation of the LCN's has been found with
different values of N and different initial conditions.
In particular, for initial points in the stochastic
region we always found N —2 positive limits. In
addition, these limits seem to be independent of
the initial point. This supports the conjecture that
there is only one stochastic region, where the
LCN s are constant.

Table I summarizes, our results. For N from
2 to 10 we report the values of p.„ the limit for
the entropy density, and their product, i.e. , the
Kolmogorov entropy h. As remarked in Sec. IIIC,
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-210-
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I I I I I I I II

10
l I I I I i I I l

10
I I I I I I I I I

10

FIG. 2. Variation of the
p&'s as functions of time for
&= 5: (a) f~, p~, and p3are
plotted, as well as their
sum, i.e. , the' entropy den-
sity stochastic orbits: the
curves approach pos itive
limit values. (b) p4 and&5
are plotted for the same
initial conditions as in (a):
their limit values clearly
vanish.

-3
10—

10-

10
I I I I I I I I I

10
I l I I I l I li

10
I I i I I I ~ I I

10

the energy dependence of h is trivial. (The rela-
tion h(E) =Ah(X E) was confirmed well by our nu-
merical computations. ) Table I refers to fixed
specific energy E/N =0.5. We note that the values
of p, , for N =8 and 10 had not been computed in Ref.
9: by trivial extrapolation we assumed p.,=1.
Figure 3 reports graphically the results of Table
I. As a remarkable fact, our numerical experi-

ment strongly suggests that at fixed specific ener-
gy the Kolmogorov entropy is a linear function of

¹

In Ref. 9 few orbits were found with an "inter-
mediate" behavior, i.e. , in a few cases the quali-
tative criterium did not a,liow to decide clearly
between ordered and stochastic motion. In some
cases the computation of the LCN's shows that the
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0.25-

0.20-

Of course, due to the exponential divergence, it
is not possible to follow exactly a given orbit in
the stochastic region. Nevertheless, the computa-
tion of the LCN's can be considered reliable: for
a discussion of the point see Ref. 13.

0.1 5-

0.1 0-

0.05-

10

FIG. 3. Variation of the Kolmogorov entropy h with
the numbers of sheets; this figure reports the values of
Table. I. At fixed specific energy, Kolmogorov entropy
seems to be a linear function of ¹

above orbits are stochastic, but the stochasticity
appears later. In some other cases the time nec-
essary for the curves to approach a well-defined
behavior is so long that an answer cannot be given.
We cannot exclude the possibility that there exist
very small stochastic regions, separated from the
large one, where the LCN s assume different val-
ues. Actually; such a phenomenon has been found
for other models. ' In any ease the presence of
these regions would not change our results for the
Kolmogorov entropy appreciably.

Our computations have been performed on an
IBM370-168 with a precision of 15 digits. Energy
was very well conserved (relative error =10 ).

V. CONCLUSIONS

The computation of the LCN's allowed us to per-
form a quantitative study of the stochasticity of
our system. Agreement is found with the qualita-
tive criterium employed in Ref. 9, by means of
which the behavior of p., as a function of N was
obtained. For this particular dynamical system
the Kolmogorov entropy turns out to be a linearly
increasing function of the number of degrees of
freedom, as far as the specific energy is kept
constant. Other systems instead seem to behave
completely differently. 4 We note that our model
has two very particular features: (a) The energy
dependence is trivial and (b) the so-called "con-
nectance " is maximal, i.e. , each particle inter-
acts with equal strength with any other particle.
This property is probably responsible for the in-
creasing stochasticity with N, but we are not able
to explain the very regular linear behavior we have
found.
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