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Lower bounds for thermodynamic quantities of d-dimensional classical one-component plasmas
with d-dimensional Coulomb interactions (d = 1, 2, and 3)
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An exact lower bound for the correlation energy of a three-dimensional classical one-component plasma
(OCP), based on Mermin's inequality for the structure factor and a trivial inequality for the pair correlation
function, is generalized to the cases of d-dimensional OCP s with d-dimensional Coulomb interaction where
d = 1, 2, and 3. For d = 1 and d = 3, this lower bound gives valises close to the known exact values and
the results of numerical experiments, respectively. In the case of d = 2, where the interaction potential is
logarithmic, this lower bound improves upon the known one in the domain e /T & 25.0, e and T being the
charge and the temperature in energy units.

I. INTRODUCTION

The system of charged particles in the uniform
background of opposite charges, the one-compo-
nent plasma (OCP), has been studied not only as
a model system of real plasmas, but also as one
of the simplest systems having the long-range
interaction. It is sometimes useful to investigate
similar systems with different, dimensionalities d
from a unified point of view. As systems of
charged particles in the uniform background there
are two classes of d-dimensional OCP's, d-dimen-
sional OCP's with three-dimensional (1/r) Cou-
lomb interaction and d-dimensional OCP's with
d-dimensional Coulomb interaction. To the first
class belong usual three-dimensional OCP's and
two-dimensional OCP's which have recently be-
come available on the surface of liquid helium or
in the metal-oxide-semiconductor (MOS) inversion
layer. To the s'econd class belong three-dimen-
sional OCP's and systems of charged rods" and
of charged sheets ' where interaction potentials
are logarithmic and linear functions of the dis-
tance, respectively. The system of charged rods
has been investigated also in relation to the dis-
location theory of two-dimensional melting.

I have recently given exact lower bounds' for
thermodynamic quantities of three- and two-di-
mensional OCP's with three-dimensional Coulomb
interaction based on a method which is independent
of dimensionality. I have also obtained a much
improved lower bound' by making use of the in-
equality for the structure factor suggested by
Mermin, which is valid for three-dimensional
classical OCP's with three-dimensional Coulomb
inter action.

In this paper I generalize the latter lower bound
to the cases of d-dimensional QCP s with d-dimen-
sional Coulomb interaction where d= 1, 2, and 3.
Unified approaches to some properties of this

II. COULOMB POTENTIAL IN d DIMENSIONS

The Coulomb potential Q(x) in d dimensions may
be defined as the solution of the Poisson equation

(2. 1)n.y(~) = -2~""r(-',d)-'5(r),

where 5(r) denotes the d-dimensional 5 function.
When we take the zero level of the potential Q(r)
as

(t)(y=l)=0,

Q(v) is given by

y (~) = (2 w)
' 1dk ( () )(e"' -e"'),

where 1 is a vector of length l,

(2.2)

(2. 3)

(t)(k) =27(~j'I'( —'d) 'k '

and dk denotes the d-dimensional volume integral
in the Fourier space. Performing the integral,
we have

(2.4)

t, (y) 2&-((7(- )(+&) &2z'[& (d 1)] &

x dkk ' k d&sin 8 e' "'" —e' '"'
0 0

—2~-«21 (~ d)-)
2

x dkk "' z' ""g k~ ['-""J k)
0

(d —2) '[r' ' - f ' '] (0 (1(5, d v 2)

-in(r/f) (d=2), (2.5)

class of d-dimensiona1. OCP's have been given by
Deutsch' and by Sari and Merlini. ' I will give,
when possible, expressions for general values of
the dimensionality d, including noninteger values.
Lower bounds will be given for the correlation en-
ergy, from which other thermodynamic quantities
are easily derived.
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where Z„(x)is the Bessel function. Taking I = ~
for d + 2 and l = 0 for d &2, we obtain

gral of the inverse-Fourier-transform type for
p(~),

e(k)= f dr d(r)exp(-ik 'r), (2.7)

(2. 6)

which is meaningful only as the result of some
limiting procedure. '

III. CORRELATION ENERGY

where 8(x) is the unit step function. It is to be
noted that we have to retain the second term in the
integrand for d ~ 2.

In what follows, I do not make use of the inte-

The total potential energy Ne, of a system com-
posed of N particles with the charge e and neutra-
lizing uniform background of opposite charges, in-
teracting via the Coulomb potential (t)(r), is given by

e'
Ne =—

C

(
dr dr' 6 r-r& -n 6 r'-r& -n —5 r-r' 5 r-r, r-r'

d(r -r') fdr'[f (r -r', r') —1]P(~r -r'~), (3.1)

where n denotes the number density, ( ) the statis-
tical average, and

e'f (r, )=2( g 5(r+r'-P)5(r'-rr) . (2.2)
igg

Introducing the pair correlation function h(r) by

2

e =—(22))
e

C

8(2 —d)) (d 22 2)
x dk Q Sk —1+

(2 d=2

(3.9)

(r)k=(f dr d;(r;P')'

we have

n
e,= d r h(r)y(r) .

The structure factor S(k) defined by

(3.3)

(3.4)

Note the difference in the integrand for d & 2, d = 2,
and d 42.

IV. GENERALIZATION OF MERMIN'S LOYfER BOUND

FOR THE STRUCTURE FACTOR

For three-dimensional classical QCP's, Mermin'
has shown an exact inequality for the structure
factor:

(3.6) 8(k) ~ S„Pd((k) = k'/(lP + kL)), (4. 1)

p„-=Q exp(-ik r, ), (3.6) where the right-hand side is the random-phase-
approximation (RPA) value of the structure factor,
and the Debye wave number kD is defined by

is related to the pair-correlation function h(r) by
k'D —4wne /T,

nk(r) = (2m) ' dk[S(k) —1]e"' . (3.7)

Fundamental relations (3.4) and (3.7) are also
valid when system is in the crystalline state, a,s
in the case of 4= 1 with the free- (impenetrable-
wall) boundary condition. '

Substituting (2. 6) into (3.4) and using (3.7) and
the relation

where T denotes the temperature in energy units.
It is ea.sy to generalize the proof to the cases of
d-dimensional OCP's with d-dimensional Coulomb
interaction where d= 1, 2, and 3. We finaj. ly ob-
tain Eq. (4. 1), where the Debye wave number is
defined by

n drh r =-1, (3.6)
lP = 2m" ~'I'( 'd) 'ne'/T— (4.2)

we can rewrite Eq (3.4) as. Substituting Eq. (4. 1) into Eq. (3.9), we have an
exa, ct lower bound
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/T) eRPA/T

= -2' '1(-'d) 2e dxx '[(x'+1) ' —2 ' 'I'(-,' d)(k tx)' ' '7 /, ,(k tx)]
0

1
~

—-' e [2y + ln(-,' e) + ln(vnl')]

1
2

(d= 1)

(d= 2)

(d=3).
(4. 3)

Here e denotes the plasma parameter defined by

e(2nT) '/ (d= 1)

E=e k /T= e T (d=2)
(4~n)l/2e3T-3 /2 (d 3)

and y the Euler's constant y = 0.57721... .

(4.4)

V. LOWER BOUNDS FOR THE CORRELATION ENERGY

Rewriting (t)(k) in Eq. (3.9) as

tt(k) fdtf(k, t)==( f + f )dtf(k, t),

with an arbitra, ry pa, rameter G & 0, we have

(5. 1)

t.='—(st) 'f dtt f d /(k, t)t(s( ),tt, )+"' f dt

where f(r, t) is the Fourier transform of f(k, t) and

dt f(r s t)[h(r) + 1]+B,[f,G], (5.2)

e2 ( k' e(2 -d)
s,[f,s]=-—(2tt)' f dk f dtt(kt), ;—tt, (k) d:, — f dtf(k=0, t) (5.3)

Noting the inequalities (4.1) and

h(r)) -1,
and assuming

f(k, t) ) 0 and f(r, t) ) 0,

(5.4)

(5.5)

we have an exact lower bound for the correlation
energy

e, ) B,[f,G]. (5. 8)

The best lower bound within our method is given
by the maximum of the right-hand side at 6= G,.
When 6= ~, this lower bound reduces to the RPA
value given by Eq. (4.3).

The lower bound B,[f, Go] depends on the function
f(k, t). In the case of d=3, we have found that the
lower bound given by the function'

f,(k, t) =28 "r( 'd)-'e " "' /2t' -(5.7)

is effective among ones given by several simple
functions" which satisfy the conditions (5.5). The
lower bound thus obtained nearly reproduces ex-
perimental values. This indicates that the RPA
approximation in the long-range domain and the
approximation h(r) = -1 in the short-range domain

are very useful zeroth approximations when we
divide the calculation of the correla, tion energy into
two domains by the function fo.

For one-dimensional classical OCP's, IBaxter'
and Kunz' have given exact values of thermodynam-
ic quantities. In order to show the effectiveness
of our lower bounds, we compare in Fig. 1 exa.ct
values of the correlation energy" with our effective
lower bounds, "Eq. (4. 3) for e (1, and

B,[f., G]/T

= ' e+ —,
' e [2v '/'x —1+e" erfc(x)] —-,'x', (5.8)

where x= kp/2G and

-t2erfc(x)=22 '/' dte '

for & & 1. When &»1 and 1» & —1 & 0 the latter
lower bound is given approximately by

B,[f„G,]/T= 0/2m+ —' (e»1),
=— ' e+ —' 2(e —1) (1» e —1 & 0) .

(5.9)

We also plot the lower bound" derived from On-
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FIG. 1. Correlation en-
,ergy of the one-dimensional
classical one-component
plasma. Exact values by
Baxter (Refs. 3 and 4) and
Kunz (Ref. 5) a.re repre-
sented by the solid line,
the lower bounds, Eqs. (4.3)
and (5.8), by the solid (or
broken when not effective)
lines, and that (Ref. 10) due

to Onsager's idea (Ref. 14)
by the dotted line.

c=e/(2nT) 1/2

sager's idea, "
/P ~

Our lower bounds, Eqs. (4. 3) and (5.8), improve
upon the lower bound (5. 10) in the domain e ( 8. 11
and give values closer to exact ones.

In the case of d = 2, fo(k, t) gives'2 an effective
lower bound,

~&[f0 G]/~

/T+ —f [y+21Hx —8:El(—x )] —
2

x

(5. 11)

where x= kD/2G and

In this case the lower bound" suggested by On-
sager" is given as

eRPA/Z+ x &[2 3 +1 (x )] (5.12)

I show in Fig. 2 and Table I the lower bounds given
by Egs. (4.3), (5.11), and (5.12). It is shown that
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my lower bound, Eq. (5.11), greatly improves
upon the known lower bound, Eq. (5.12), in the
domain «25.0.

When c»1 and E «1, the lower bound given by
Eg. (5.11) reduces to

&i[fo Go)&T

' e [y+1+]n(xnan)]+ —,
'

=e,"~"/T+ ' e[y 1+in(-.' e)j+-,' (e»1),
(5.13)

0.5

/T+(e/4)kn(ink )
2

C

(d=2)

0. 0

-0. 5

—1.0

c=e /T

FIG. 2. Correlation en-
ergy of the two-dimensiona'l
one-component plasma.

5 The lower bounds, Eqs.
(4.3) and, (5.11), are repre-
sented by the solid (or
broken when not effective)
lines, and the lower bound
(Ref. 10) due to Onsager's
idea (Ref. 14) by the dot-
ted line, and also approx-
imate values (Ref. 15) by the
solid l ine.

-10
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TABLE I. Various exact lower bounds and an approximate value (Ref. 15) for the cor'rela-
tion energy of the two-dimensional classical one-component plasma. Values of e /71 2 ~

C
+ && In(7tnl ) are given.

Plasma
par am. etc r

e = e'/T

Lower bounds
Present paper

Eg. (5.11) Eq. (4.3)
Sari and Merlini

Eq. (5.12)

Approximate
values b

0
0.1
0.2
0.5
1.0
2.0
5.0

10.0
20.0
25.0
30.0

Reference 1p.
b B,eference 15.

0
4.603 x 10-'
5.741 x 10 ~

3.031 x 10-~

-9.300 x 10
—4.224 x 10 i

-1.543
-3.484
-7.408
-9.376
-1.134 x 10

0
4.603 x 10 '
5.741 x10 ~

2.898 x 10-~

-1.153 x 10
-5.772 x 10-'
-2.588
-6.910
-1.729 x 10
-2.300 x 10
-2.897 x 10

0
-3.75
-7.5
-1.875
-3.75
-7.5
-1.875
-3.75
-7.5
-9.375
-1.125

x 10-2

x10 2

x 10-&

x 10-'
x1p ~

x 1p

0
4.725 x 10 ~

6.217 x ]p-2
5.688 x lp 2

1.395 x 10 2

-2.306 x 10-~

-1.022
-2.430
-5.296
-6.734
-8.174

B,[f,G, ]/~= eR'"/&+—-,'-e /'-~(«& 1), (5.14) solution satisfies both lower bound conditions, Eqs.
(5.11) and (5.12).

respectively.
Recently, Calinon et ajt."have obtained the solu-

tion of the two-dimensional version of the approxi-
mate integral equation for the structure fsctor of
strongly coupled three-dimensional OCP's due to
Singwi et al." Their result for the correlation
energy is also plotted in Fig. 2. We see that their
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