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Stark-profile calculations for Lyman-series hnes of one-electron ions in dense plasmas
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The frequency distributions of the first six Lyman lines of hydrogenlike carbon, oxygen, neon, magnesium,
aluminum, and silicon ions broadened by the local fields of both ions and electrons are calculated for dense

plasmas. The electron collisions are treated by an impact theory allowing (approximately) for level splittings
caused by the ion fields, finite duration of the collisions, and screening of the electron fields. These
calculations are fully quantum mechanical and include the full Coulomb interaction. Ion effects are
calculated in the quasistatic, linear-Stark-effect approximation, using distribution functions of Hooper and

Tighe which include correlation and shielding effects. Theoretical uncertainties from the various

approximations are estimated, and the scaling of the profiles with density, temperature, and nuclear charge
is discussed. A correction for the effects caused by low-frequency field fluctuations is suggested.

I. INTRODUCTION

Interest in Stark-broadened spectral lines
emitted or absorbed by dense high-temperature
plasmas arises mainly from three classes of
problems. In conjunction with a reliable theory
of the broadening, measured profiles can first be
used to determine one of the most important pa-
rameters of the plasma, namely, its density.
The theory applied in the present work actually
yields profiles of absorption and emission coef-
ficients (or cross sections) for plasmas in which
Stark broadening due to thermal fluctuations of
t;he electric microfield dominates all other line-
broadening mechanisms, including Stark effects
arising from plasma waves and microinstabilities.
The corresponding restrictions must be kept in
mind when applying this method of density diag-
nostics, e.g., to plasmas used in laser or parti-
cle-beam fusion research (imploding pellets).

A second major class is the calculation of ra-
diative transfer in stellar interiors and, again,
imploding pellet plasmas. For such appl. ications,
one is mainly interested in the behavior of ab-
sorption coefficients at large frequency separa-
tions, compared to the halfwidth, from line cen-
ter. Also, since Stark profiles follow approxi-
mately an inverse 2.0-2.5 power taw as function
of this separation, Stark broadening may be
dominant in this context even in circumstances
where the corresponding halfwidth is smaller
than the Doppler width. This can happen because
thermal Doppler profiles are Gaussian, i.e.,
decay exponentially on the wings of the lines.

The third class of problems is concerned with
turbulent plasmas, in which fields from strongly
excited collective modes may have a substantial

p- i/3E (3)

Except for very highly charged ions, typical
fields produced by the two kinds of charged
particles are therefore about the same, and we
may use, say, 5EO for estimating Stark effects
in thermal plasmas.

To the extent that the actual time dependence of
the perturbing fields can be neglected (quasi-
static approximation, see Sec. II), linear Stark
shifts are therefore of the order' (in angular fre-
quencies)

inf1uence on spectral 1.ine shapes. Appropriate
measurements and analysis enable one to de-
termine electrical energy densities and dominant
frequencies in such cases. We shall assume,
however, that wave-produced fields are of minor
importance in comparison with particle-pro-
duced fields, and merely refer the reader to an
introduction'-to this rapidly developing method
of plasma diagnostics.

Particle-produced fields are, on the average,
a factor -3 larger than the Holtsmark normal
fie1.d strength'2

Ep = 2.603peh'p 3.

This is very near1y equal to the field produced by
an ion of charge p which is at a mean ion-ion
distance r~ = (4m'~/3) ~' from the perturbed ion.
Since in a neutral plasma containing, e.g., only
a single ion species, the electron density is
related to the ion density by A' =pA~, the

,e1ectronic Holtsmark field

ED = 2.603' 3

is typically related to that produced by ions by
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n2 e n2A
= 5 —a -I =13 N~~

z 'a ' zm (4)

where a, =h /me is the Bohr radius and n the
principal quantum number of the upper state of
the radiating ion with nuclear charge z. For the
Stark effect to be linear rather than quadratic,
&(d~ must be much larger than the fine-structure
spread' of the upper states, i.e.,

mc' (uz)4
A&oz »2 &uz"- —— . (n-1).

2S n
(5)'

(Here zz. = 1/137 is the fine-structure constant. )
We may define a critical. electron density 6& by
the corresponding equality. This density is

N~ = 8 x10 '(n /a, )'(z/n)" '(1- 1/n)~' (8)

PIC

n (8+1

Near equality of this separation with 4+~ from
Eq. (4) corresponds to the Inglis-Teller limit, ~

in our case

= 2 x 10 'a 's' '/n" ~' = 1.5 x 1023x'~'/nz5 ~' cm '.
(10)

and must be well exceeded for our calculations
to be valid.

Another characteristic density AD is obtained
by compar ing &~& with the thermal Doppler
width, which is for typical. temperatures
kT = amc'(zz-. z)' and ion masses m, = 2am„
estimated by

a(uD = (mc'/8Iz)(m jzm„)z~'(a. z)'. (7)

For density measurements based on our cal.cula-
tions, a second lower limit is therefore given by

z, =(roon) "'( ) '(—)'*—,
"

=5x10 '
Qo) n

again expressed in terms of (e/ao)'=3 x 10'8

cm '. We also note Nv/Nz=(n2/z) ~, which in-
dicates that fine structure is more important
than Doppler broadening for n' sr. (Natural
broadening need not be considered because it
is always less than the fine-structure splitting. )

High-density l.imits for the validity or useful-
ness of the present calculations might be expected
from a number of sources. First of all, for the
lines of different principal quantum numbers not
to overlap and the linear-Stark-effect approxima-
tion to remain valid, Stark shifts should certain-
ly be smaller than separations between the upper
level in question and the next level,

As can be seen from Nzz /ND= 10'z 'n ' ' and
Nzz /Nz = 10 z ', there is a considerable range
(by factors 10' to 10') between the lowest den-
sities of interest and the Inglis-Teller limit for
the l.ines and ions considered in this paper. How-
ever, it is not obvious that this entire range can
be explored with the usual approximations of
Stark-broadening theory, which will be discussed
next. Limitations. imposed by the various approx-
imations are further discussed in Sec. III and in
Sec. IV, where we present quantum-theoretical
results for the broadening by el.ectrons via the
complete Coulomb interaction rather than the
usual semiclassical. calcul. ations of dipole inter-
actions. Stark profiles and linewidths are given
and discussed in Sec. V.

II. THEORY

As in many previous calculations of Stark
broadening, 'we use the following expression for
the spectral line shape:

L(«u) =- ——Re Tr dE W(FgD[i4&@ —i CF + os] ') .
S p

Here &u is the frequency separation from the
unperturbed line, Re indicates the real part, and
Tr the trace over unperturbed states of the ra-
diating ion for which the principal quantum num-
ber equal. s that of the upper state of the line in
question. The integral is over the field strength
E produced by the perturbing ions, with W(E)
being the corresponding distribution function. s

The dipole operator D generates appropriate
products of matrix elements between states of
principal quantum number n and the ground state,
and C is an operator whose matrix elements (in
terms of parabolic wave functions) are the linear
Stark coefficients for the components of the line.
Finally, Q is an operator describing the effects
of electron collisions on the line shape whose
fully quantum-mechanical calculation to all con-
tributing orders in the multipole expansion of
the Coulomb interaction will be discussed in Sec.
IV.

To the leading orders in both the perturbation
(Dyson series) expansion for the (perturbing)
electron- (radiating) ion system and the multi-
pole expansion for the interaction Hamiltonian,
this collision operator is"

P =-(4zz/3v)N(h/m)'8 ~ R ln(p /p - ),
where v is the velocity of the perturbing elec-
trons, and R is the (radiator) electron position
operator (in atomic units) operating in the sub-
space of prjncipal quantum number n. The quan-
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p = (n'/z)a, .
Corrections and errors associated with this

choice mill be discussed in Sec. III, and we now

proceed with the determination of the maximum
impact parameter p . Three physical effects"
were ignored in arriving at the divergent expres-
sion for the col.lision operator: correlations be-
tween perturbing electrons, splitting of the levels
by quasistatic fields, and the finite duration of
the collisions. The equivalent cutoff accounting
for electron-electron correlations is close to the
(electron) Debye radius,

pv = (kT/4vlVe')'~' = v /&o~,

where e~ =(4vNe /m)" is the electron plasma
frequency, The quasistatic spJ. itting may be al-
lowed for by p,„=v/«u~ with &mz estimated by
Eq. (4), while the finite duration of the collisions
requires p,„Sv/~«o[. The combined effects are
accounted for by choosing

(14)

p,„=v((cP~+AHz+AuP) '~2, (15)

and the corresponding theoretical uncertainties
will again be discussed in Sec. III. (Since devia-

tities p and p correspond to the limits of the
integral. over impact parameters, which arises
in the straight classical path approximation (for
the perturbing electrons) used in Ref. 6. (The
impact parameters p were of course assumed to
be larger than the radial coordinate of the ra-
diating electron. )

At small impact parameters, curvature of the
classical path due to the strong Coulomb inter-
action with the radiating ion may be important.
Because the dipole-monopole interaction can now

change sign, a hyperbolic classical path calcula-
tion' actually gives a convergent result from
which an equivalent (Coulomb) cutoff follows as
p, = (z —l)e'/mv'. However, since this is smaller
than the excited-state Bohr radius, p„=n'a, /z,
by a factor ™(ze'/n'Nv)' s 1, other than dipole
terms in the multipole expansion (and penetrating
orbits) will be very important for p= p, . Higher-
order terms in the perturbation expansion must
be considered as well, giving rise to an equivalent
(strong collision) cutoff p, =n'k/zmv in the straight
classical path calculations, to be supplemented
by a quantum-mechanical cutoff p, = k/mv corre-
sponding to the de Broglie wavelength of the per-
turbing eiectron. Because of p, /p„= e'/kv & 1 for
our high-temperature plasmas and, even, p, /p„
=ze' n/'hv a1 we conclude that p„ is always the
largest minimum impact parameter for typical
electron velocities in plasmas emitting the lines
under consideration. We therefore provisionally
choose

tions from straight paths are not important nearp, we may neglect them for p,„.)
F'rom Eqs. (12), (13), and (15) the Maxwell

average of the collision operator is as in Eq.
(29) of Ref. 6,

8 H e"—

with

(16)

mv';„An3 cue + +(&Ps ++
2kT 2z SHAT

determined from the requirement p,„&p;„.
(We use Es = e'/2ao, i.e., the ionization energy of
hydrogen, to combine the various atomic con-
stants. ) The fraction of electrons excluded by
this requirement is estimated' by —, m "y ' and
must be small. for our calculations of the broad-'
ening by electrons to be reasonably accurate.

The most important quantity that remains to be
determined is the ion field strength distribution
function W(E) in Eq. (11)for the line shape. We
have used distribution functions calculated by
Tighe and Hooper, ' which depend on electron and
ion densities and on the ion charges. It is con-
venient to use reduced fieM strengths defined by

with Eo according to Eq. (2). The P distribution,
besides on ionic charges and ion density ratios,
depends on the dimensionless parameter

This parameter is primarily a measure of how

strongly coupled singly charged particles are.
(Note that —,a' = e'/xPT is the ratio of character-
istic potential and kinetic energies. ) The param-
eter a is also a measure of the relative (frequen-
cy-dependent) contributions of wave- and particle-
produced fields, their ratio being estimated by'
0.1Va"PP'', if p is the mean charge of perturbing
ions. Since only static correlations are allowed
for in the calculated field strength distribution
functions, me must certainly restrict our calcula-
tions to a'~/P'3 ~ 1. However, since for fixed
electron density the ion Debye radius scales
as (P) ' ' and since the mean ion-ion separation
is P"r„ the generalized parameter corresponding
to a is a factor p' ' larger than the value given
by Eq. (19). For the modified cluster expansion
used in the calculation of the distribution function
to converge rapidly one would, a priori, there-
fore expect the more severe constraint' ap' '& &.
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III. ERRORS AND RESTRICTIONS

The two parameters in our problem that should
be small are the quantities y for the electron
broadening and, at least, a'~'/P'~' for the ion
broadening. They are both increasing functions
of density and decreasing functions of tempera-
ture. For any given ion, the temperature range
is relatively small, and we shall simply use
&T = &z'EH in this section. Also, the Inglis-Teller
estimate should give a reasonable upper density
limit for the lines to remain discrete, provided
0.17a"/P'' is indeed small. To verify this con-
dition, we substitute A» from Eq. (10) into Eq.
(19) and obtain

Before proceeding to the electron broadening,
we wish to suggest that errors introduced by the
quasistatic approximation per se are small as
well. The corresponding ion-dynamical correc-
tions' are likely to occur only near &a= co~&

from line center, where ~~~ is the ion plasma
frequency. For the plasmas to which our calcula-
tions might apply, we have e&~= 10 'co&, and by
comparing this with the average Stark shift from
Eq. (4), we find that the quasistatic approximation
is reasonably valid for al.l densities fulfilling

n &3/4
1Vo&10 '—— =2 x10 ' Nn" a,

The omitted wave contributions to the microfield
are therefore for P=z of order 0.2/P"~" or less,
and we may conjecture that corresponding theo-
retical uncertainties in the ion-broadening calcula-
tions are %10% for the Lyman-n lines (and the
highest densities) and &5/p for the other lines.
Should the wave fields exceed their appropriate
thermal levels or act mostly on a small portion
of the line profile, e.g. , near the center of
Lyman-o. (see also Sec. V),"'"their omission
here would cause proportionally larger errors.
Equally or more serious appears, especially for
the a lines, the possible violation of the constraint
ap' '& 1 although comparison with Monte Carlo
calculations" suggests that the calculated distribu-
tion functions remain accurate to better than 10/o

up to &P' '= 2. The corresponding l.imit on the
density is often more restrictive than that imposed
by approximations in the electron broadening.

Other errors in the ion-broadening calculations
are connected with the use of the linear Stark
effect, dipole interaction approximations. While
quadratic Stark effects should be small, except
near the Inglis-Tel. ler limit, quadrupole inter-
actions are important already at lower densities,
as emphasized by Demura and Sholin. " These
interactions cause asymmetries in the line
shapes of order

n o ~ ~04

if the Inglis-Teller limit is used for an upper
bound. Especially for the Lyman-n lines, one

might therefore expect substantial asymmetries
from this source. However, detailed calcula-
tions" of the ion-produced asymmetry yield addi-
tional. factors &0.3 so that omission of the higher-
order effects discussed in this paragraph should
generally be less serious than other uncertain-
ties in our calculations.

a criterion which is therefore well met for all
densities exceeding the low-density limits for the
utility of our calculations as estimated by Eqs.
(6) and (8).

A corresponding criterion for the electrons,
obtained by using the electron plasma frequency,
might suggest that the quasistatic approximation
is reasonably valid for them as well, in spite
of an additional factor 10' in the condition on the
density. However, most contributions to the
field are characterized by frequencies higher
that cu&, and a more quantitative criterion is
called for or, conversely, an examination of the
high-density limit for the validity of the impact
approximation used in this work. This limit
must be imposed to meet the requirement y ~1
discussed below Eq. (17). Since we are not
interested in frequencies which exceed the inher-
ent level splittings, Eqs. (9) and (17) can be used
to find that y values of interest fulfill

y &s2Eg/n kT %1,

unity actually being approached only for the
Lyman-e lines and near the Inglis-Teller limit.
(Note that &us &&to~ is always true near the Inglis-
Teller limit so that &vz is indeed the character-
istic frequency in this regime. )

It is clear from Eq. (16) that the colLision op-
erator becomes sensitive to the actual value of y
as this parameter approaches unity. We there-
fore restricted our calculations by imposing the
requirement y ~0.1, in which case a factor 2
uncertainty in y corresponds to -+ 30% error in
the approximate collision operator while the ex-
cluded fraction of electrons is entirely negligible.
This restriction alone prevents our reaching the
Inglis-Teller limit by factors & 10, a gap that
could be narrowed by a (much more involved)
unified theory calculation. "~'" [See also the
remarks following Eqs. (24) and (25).]
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Comparison of Eqs. (12) and (16) allows the
identification

Pmax/Pmin y Lmax /Lmin

using

(20)

and replacing impact parameters by (dimension-
less) angular momenta, L=mpv/I. According
to Eq. (13), we have

n' Av mv' t '~'
L = ——=n',

~

= 0.5n'.
e 2zEHj (21).

Given the restriction y &0.1, we therefore need
to consider only cases with L &1.5' and
should expect the largest total error from am-
biguities in p if L is near this limit. (Errors
connected with p will be almost eliminated by
the modification in the electron-broadening op-
erator discussed next. )

L,„=20 in both cases and L according to Eq.
(21) for the semiclassical cross section. The
last column contains a modified semiclassical
cross section, in which a strong-collision term"
is added to the logarithm. [1n( ~ ~ ~ ) is replaced
by C„+ln( ~ ~ ~ ), C, =1.5, Ca=0.V5.] After this mod-
ification the distorted-wave result is represented
by Eq. (22) to within ™10'fo,except for the high-
energy values for 2P. -The distorted-wave calcula-
tions as such shouM be almost exact, since all
partial-wave contributions to the cross section
stay well below the unitarity limit and since ex-
change, which is neglected, is not likely to be
important for total cross sections. (Correspond-
ing calculations for n =3 and 5 give C, =1.0 and

C, =0.5.)
To account for strong (close) collisions, the

Maxwell-averaged collision operator estimated
by Eq. (16) can therefore be replaced by

IV. ELECTRON BROADENING

Since the diagonal matrix elements of the col-
lision operator equal 3 of the total rate coeffi-
cients for electron-ion (non-Coulomb) collisions,
the approximate collision operator in Sec. II
corresponds to total cross sections'

(22)

if the ion is in the n, 1 level. This semiclassical
cross section for the 2P and 4P levels of OVm
and A1XIII is compared in Table I with distorted-
wave (quantum-mechanical) calculations, "with

(23)

and at least the diagonal matrix elements for the

p states may, for y&0.1, be expected to have an
accuracy of -20%. Comparisons with close-
coupling calculations"'" for 2p states of H I and
He II support this estimated accuracy for the
I yman-a lines, for which these states are most
important. It also seems reasonable to assume
that Eq. (23) can be used for all levels involved in
our calculations, both for diagonal and off-diag-
onal matrix elements (in the parabolic quantum-
number representation). While we suspect that
the strong-collision terms adopted here may
lead to an overestimate for these off-diagonal

TABLE I, Cross sections for electron scattering on np levels of oxygen vier and aluminum Mu.

Elastic"
2P

Inelastic Total Semicl. Elastic b
4p

Inelastic' Total Semicl.

10
20
40

1.09
1.03
0.94

0.40 d

0.51
0.64

1.49
1.54
1.58

Qmu

1.51
1.38
1.25

Al xnan

28.6
23.2
17.2

7,9
7.0
5.7

36.4
30.2
22.9

37.1
30.3
23.6

20
50

100

0.42
0.39
0.36

0.15"
0.19
0.24

0.57
0.58
0.60

0.59
0.53
0.48

11.6
9.0
6.7

3.0
2.7
2.2

14.6
11.7
8.9

15.1
11.7
9,1

In units of ~ao and multiplied by the incoming electron energy E in rydberg units. Only partial waves to I.= 20 are
included.

"For the monopole interaction contribution, the difference of np and 1s scattering amplitudes was used.
For the An= 2, 3, etc. , 4p cross sections, including ionization, a correction corresponding to 6E„/hE was added

which is consistent with estimates of ionization cross sections. (Here 6E is the energy gap between levels 4 and 6.)
This correction is 2.7 for Q van and 1.0 for Al xnr.

Near-threshold values for the n= 2 to 3 transitions.
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dipole-interaction matrix elements, one must
remember that the corresponding error in the
calculated profiles may be counteracted by con-
tributions from off-diagonal quadrupole-inter-
action, etc. , matrix elements which were
neglected.

The reader may also wonder whether the use
of a Maxwell distribution for Eqs. (16) and (23)
is indeed appropriate for the very dense plasmas
in which Lyman-n lines, e.g., of Si XIV show.
significant Stark broadening. To address this
question, we estimate the Fermi energy for
densities corresponding to the Inglis-Teller limit
in Eq. (10) and obtain

Z~ = (P/2m)(3w'cV)'~' & z'E„/n'. (24)

This characteristic energy is therefore consid-
erably smaller than typical thermal energies,
kT=z'E„/4, except for the Lyman-n lines, for
which the restriction on the parameter y pre-
vents us from calculating profiles for densities
close to this limit. Extensions of our calculations
based on the unified theory to these densities,
should, however, account for the degeneracy of
the electron gas and be based on a fully quantum-
mechanical treatment of all multipole interactions.
A corresponding calculation ' for the HI Lyman-n
line wings now exists but would have to be gen-
eralized to allow for inelastic collisions, quasi-
static splitting, and degeneracy. We also note
that an approximate version" of the unified theory
suggests corrections to the impact approximation
of the order 10 'z ' for ys0. 1. An application"
of the unified theory to ion lines gives corrections
of order 10 n'/z(z —1)', both smaller than those
corresponding to our choice of the maximum
impact parameter. (Note that these semiclassical
calculations '" are based on the dipole approx-
imation. They would have to be supplemented by
an impact-parameter cutoff near the excited-state
Bohr radius and by a quantum calculation for
small L.)

Lastly, there is the question of the accuracy
of the semiclassical cross section of ions in p

states for partial waves L&20. We therefore
compare in Table II the L =20 partial-wave con-
tribution to the cross section corresponding to
Eq. (22), namely,

2E„I n l'(n'-P-I- )
~~'] E~ j (25)

V. RESULTS AND DISCUSSION

Using Eqs. (11), (17), and (23) line profiles
L(6&@) were calculated for electron tempera-
tures corresponding to near maximum abundance
of the ion in question and, except for aluminum,
also for half and twice these temperatures.
Electron densities were varied by factors of 10
over ranges determined as discussed in Secs. I,
III, and IV. Instead of the angular frequency
displacement from line center, we used the re-
duced wavelength separation,

~=I&&l/&. =(l»l&'i2vcz. )10 ', (26)

with the Holtsmark normal field strength given
by Eq. (2). (The factor 10 ' is connected with
our use of angstrom units. ) This choice ensures

with our distorted-wave quantum-mechanical
calculations. Except for the Q vaiues at inter-
mediate energies, the agreement is well within
the 20% overall theoretical error expected for
our calculations, which are presented in Sec. V.
(For L=40, deviations were found to be &5%.)
For n =2 and 3, the requirement L ~ 20 im-
poses, according to Eqs. (20) and (21), an addi-
tional restriction (y & 0.01 and y & 0.05) on the
parameter y to ensure I,„values large enough
for a quasiclassical treatment of Debye shield-
ing, finite duration of collisions, and quasistatic
level splittings. For the Lyman-e lines we must
therefore keep the density below the Inglis-Teller
limit by factors &50 or treat inelastic collisions
in more detail. (Inelastic collisions are respon-
sible for the rather large deviations between
semiclassical partial cross sections and dis-
torted-wave results for, say, L= 10.)

TABLE II. L=20 partial-wave contributions to the cross sections for electron scattering
on np levels of Ov&&& and Al xaam. Semiclassical values are given in the last row.

Ovid
2p (x10~) E/E

Al xm

2p (x 103) 4p (x 10)

10
20
40

2.02
1.83
2.15
1.88

1.13
1.24
0.99
0.98

20
50

100

7.6
6.9
7.9
7.1

4,1
4.7
3.9
3.7

In units of 7tao and multiplied by E/E„and the factors following the np designations.
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that the reduced profiles

S(n) = &(»)l«~/«I (27)

have a relatively weak dependence on electron
density. From Eqs. (4), (26), and the Bohr
(Balmer) formula for A. follow typical n-values

nz= I.V && 10' (aso/e)(n'/g')=6 x 10 'n'/z' (28)

for a given line (with principal quantum number
n of the upper state) and radiating ion (of nuclear
charge z).

From the calculated S(n) profiles, which were
tabulated and graphed, "we determined Stark half,
quarter, and eighth intensity widths defined by

—,'S(n,„)=S(n,g,), (29a)

4S(nm, „)=S(n,)4), (29b)

,'S(n —)=S(n,g,), (29c)

where n,„corresponds to the maximum of S(n).
For even-n values S(n) is like a triplet, i.e., has
a sharp central peak (n,„=0)and two symmetri-
cally placed secondary maxima or shoulders;
for odd-n values S (n) is a doublet with a central
minimum and two symmetrically located maxima
(n ., 40). Table III contains values of n,„, nz,
n,~» a,~~, and a,~,. It should be sufficient for
many applications of our numerical results" and
will serve as a basis for the concluding discus-
sion of the dependence of Stark profil. es on den-
sity, temperature, and nuclear charge.

Also given in Table III is a quantity n~ calcu-
lated from

n = -'(-'a)~'n (30)

where a is the parameter defined by Eq. (19)
and n& the estimated Stark broadening from Eq.
(28). The factor & corresponds to the estimated
ratio between Holtsmark normal field strength
and effective mean field strength used in Eq. (5)
and the factor (~a)'~' is from Eq. (13) of Ref. 11,
generalized by replacing the dipole matrix ele-
ment for Lyman-n (3 in atomic units) with n'.

According to Ref. 11, 0.~ is a measure of the
broadening from field fluctuations caused by elec-
trons in the Debye shielding clouds of ions. In
the case of the hydrogen Lyman-o. line, a sub-
stantial theory-experiment" discrepancy (factor

2 in halfwidth) was removed" by assuming a
statistically independent Gaussian br oadening
with 1/e width given by nc. We therefore suggest
compounding e~ with the thermal Doppl. er width
a~ before convolving our calculated Stark profiles

with Gaussian profiles. The coresponding mod-
ifications will often lead to substantial modifica-
tions of central profile structures, e.g. , the
narrow peaks of e and y lines and the central
dips of P and 6 lines. For density measurements,
reliance on these central structures should there-
fore be avoided until the physical model proposed
in Ref. 11 has been verified. We note here that
alternate explanations for the HI -Lyman- a
discrepancy' have been given in terms of ion-
dynamical corrections"' which would probably
scale differently.

Our calculations were all done using micro-
field distributions calculated for the case of
equal charges on radiating and perturbing ions,
i.e., for p =z —l. As can be seen from nem cal.-
culations by Tighe and Hooper, "this results for
fixed electron density in profiles that are broader
than those one mould obtain if most of the per-
turbing ions mere of lower charge than the radiat-
ing ions. Also, we assumed equal ion and elec-
tron temperature and again refer the reader to
Ref. 25 for a discussion of distribution functions
for cases where these temperatures differ.

On the other hand, although our calculations
are strictly valid only for one-electron radiating
ions, they will often provide a good approximation
for resonance lines of helium like ions of the
element with the next-higher nuclear charge. This
will be true as soon as densities are high enough
for the profiles to be broader than the electro-
static splittings of np and ns, etc. , levels of the
unperturbed ions.

Returning to Table III, it is seen that the frac-
tional intensity widths for lines with odd n are
only weak functions of density and temperature.
The strong dependence on plasma conditions found
for lines with even n results from the tripletlike
profile structure mentioned above. (Relatively
large fractional widths correspond to n, ~„values
beyond the secondary maxima, while smaller
values lie on the sides of the central peak. )
Comparing e,~„values for analogous lines from
different elements, one finds that they seal. e
approximately as z ' for near maximum abundance

temperatures and densities corresponding to
similar fractions of the largest density for which
cal.culations mere made. This scaling is in ac-
cordance with the original Holtsmark theory' and
therefore with Eq. (28). It suggests that reduc-
tions of the quasistatic broadening by ions due to
ion-ion correlations and Debye screening by
electrons are largely balanced by electron-impact '

broadening. That electron-impact broadening
remains sufficiently important can be inferred
from Eqs. (4) and (23), which with kT-z2 and
R ~ R-z ' indicate that the ratio of electron and
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TABLE III. Calculated fractional widths &&~„ofStark profiles for Lyman lines from 1-n
transitions in one-electron ions for various temperatures and electron densities. The frac-
tional widths are in units of 10 A per cgs field strength, as are the positions &m of the off-
center maxima of the n=3, 5, and 7 lines and the quantities &c, o'D, and &s, which are de-
fined in the text.

10-6 T
(K) log&ON~ Ag(4

Carbon 1-2 o'& = 49.0

0.5
1.0
1.0
2.0
2.0
2.0

Carbon 1-3
0.5
0.5
1.0
1.0
1.0
2.0
2.0
2.0
2.0

Carbon 1-4
0.5
0.5
1.0
1.0
1,0
2.0
2.0
2.0

Carbon 1-5
0.5
0.5

' 1.0
1.0
1.0
2.0
2.0
2.0

20
20
21
20
]

22

&g ——78.0
19
20
19
20
21
19
20
21
22

&g = 120
19
20
19
20
21
19
20
21

&g =190
19
20
19
20
21
19
20
21

19.3
15.6
20.2
18.9
15.3
20.6
20.0
18.7
14.8

26.7
24.7
27.5
26.5
24.1
27.8
27.6
26.5

3.60
3.00
3.70
2.50
3.10
3.70

4.70
5.70
4.00
4.80
5.90
3.40
4.10
4.90
6.00

7.60
9.20
6.40
7.70
9.40
5.40
6.50
7.90

11.0
14.0
9.5

12.0
14.0
8.0
9.7

12.0

10.9
15.4
3.3

21.8
4.7
1.0

42.8
9.2

60.6
13,0
2.8

85.7
18.4
3.9
0.8

40.6
8.7

57.4
12.3
2.6

81.2
17.5
3.7

39.6
8.5

56.1
12.0
2.6

79.3
17..1
3.6

0.594
0.440
0.782
0.325
0.581
0.992

33.5
32.2
35.0
34.5
32.5
38.0
36.5
35.2
32.7

4.07
7.00
3.00
5.02
7.75
2.40
3.75
5.70

90.5
87.0
93.1
92.2
82.6
93.1
94.8
90.5

1.03
0.76
1.36
0.56
1.01
1.75

50.0
48.0
55.0
55.0
48.2
55.0
55.0
55.0
48.2

7.6
54.3
5.3

10,1
57.5
3.9
6.8

12.3

143.7
136.2
147.5
143.7
130.0
151.8
150.0
141.2

1.59
1.17
2.13
0.86
1.56
2.80

70.0
65.0
75.0
70.0
65.0
80.0
75.0
70.0
65.0

73.2
86.2
9.1

81.3
87.8
6.2

14.3
84.6

198.7
185.6
205.0
198.7
176.2
210.0
207.5
195.0

Carbon 1-6 nz ——260
2.0 18
2.0 19
2.0 20

Carbon 1-7 ~~=350
2.0 18 38.9
2.0 19 40.0
2.0 20 39.1

9.30
11.0
14.0

12.0
15.0
18.0

363.6
78.3
16.8

360.9
77.7
16.7

5.1
8.5

12.7

189.3
200.6
195.0

9.2
17.2

143.7

307.5
312.5
305.0

16.3
200.6
225.0

430.0
435.0
420.0

Oxygen 1-2
1.0
2.0
2.0
4.0
4.0
4.0

Oxygen 1-3
. 1,0
2.0
2.0
4.0
4.0
4.0

&g ——12.0
21
21
22
21
22
23

n~ —-18.0
21
21
22
21
22
23

3.32
4.17
3.25

4.16
3.17

0.90
0.73
0.88
0.61
0.74
0.92

1.40
1.20
1.40
0.98
1.20
1.40

1.62
2.30
0.49
3.25
0.70
0.15

1.37
1.94
0.42
2.74
0.59
0.13

0.147
0.110
0.190
0.082
0.143
0.238

7.50
8.31
7.50
9.12
8.31
7.31

0.256
0.190
0.335
0.141
0.249
0.420

12.0
14.0
12.0
16.0
14.0
12.0

0.397
0.293
0.527
0.216
0.385
0.675

16.0
18.0
16,0
20.0
18.0
16.0
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10-~ T
(K) log«N,

Oxygen 1-4 o's=29 0

TABLE III. (Continued)

(xg (4

1.0
1.0
2.0
2.0
2.0
4.0
4.0
4.0

Oxygen 1-5
1.0
1.0
1.0
2.0
2.0
2.0
4.0
4.0
4.0

20
21
20
21
22
20
21
22

+s = 44.0
19
20
21
19
20
21
19
20
21

6.55
6.45
5.80
6.54
6.56
6.40
6.54
6.59
6.62

1.80
2.20
1.50
1.90
2.60
1.30
1.60
1.$0

2.30
2.70
3.30
1.90
2.30
2.80
1.60
1.90
2.30

6.03
1.30
8.53
1.84
0.40

12.06
2.60
0.56

27.33
5.89
1.27

38.66
8.33
1.79

54.67
11.78
2.54

0.98
1.62
0.73
1.16
1.62
0.55
0.87
1.23

22.2
21.5
18.9
22.7
22.7
21.5
22.7
23.5
22.7

1.85
14.00
1.30
2.33

13.50
0.96
1.59
2.51

34.7
33.7
30.2
36.0
35.5
33.5
36.5
37.0
35.7

19.5
21.5
2.2

21.0
21.0
1.5
3.1

21.0

49.0
46.5
41.0
51.2
49.7
46.0
53.0
52.2
49.7

Oxygen 1-6 ns = 62.0
40 19
40 20

Oxygen 1-7 ~s = 83.0
4.0 19 9.6p
4P 20 9.70

2,20
2.70

3.00
3.60

53.9
11.6

53.5
11.5

1.23
1.94

49.0
49.0

2.20
3.80

77.5
76.2

3.81
48.00

120.0
120.0

Neon
1.0
2.0
2.0
4.0
4.0
4.0

Neon
1.0
1.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0

Neon
1.0
1.0
1.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0

Neon
1.0
1.0
1.0
2.0
2.0

21
21
22
21
22
23

1-3 ~s=6.0
20
21
20
21
22
20
21
22
23

19
20
21
19
20
21
22
19
20
21
22

19
20
21
19
20

1.19
0.97
1.39
1.18
0.97
1.54
1.39
1.18
0.95

2.09
2.04
1,76
2.10
2.11

0.28
0.24
0.29
0.20
0.24
0.30

0.38
0.46
0.32
0.38
0.46
0.27
0.32
0.39
0.47

0.50
0.60
0.73
0,42
0.51
0.61
0.74
0.35
0.42
0.52
0.62

0.74
0.90
1.10
0.62
0.75

0.93
1.31
0.28
1.85
0.40
0.09

3.62
0.78
5.12
1.10
0.24
7.25
1.56
0.34
0.07

15.94
3.43
0.74

22.55
4.86
1.05
0.23

31.89
6.87
1.48
0.32

15.57
3.35
0.72

22.02
4.74

0.040
0.030
0.053
0.023
0.039
0.067

2.71
2.26
3.12
2.71
2.26
3.46
3.12
2.71
2.22

0.156
0.274
0.471
0.116
0.202
0.337
0.519
0.087
0.152
0.252
0.375

6.56
6.50
5.93
6.93
6.93

0.070
0.052
0.093
0.037
0.069
0.119

3.92
3.27
4.53
3.91
3.27
5.00
4.53
3.92
3.21

0.274
0.506
3.525
0.202
0.360
0.656
3.700
0.150
0.267
0,452
0.760

11.5
10.7
9.6

12.5
11,7

0.109
0.080
0.145
0.059
0.106
0.189

5.27
4.38
6.10
5.22
4.38
6.72
6.07
5.27
4.31

0.43
4.85
5.82
0.31
0.60
5.55
5.90
0.23
0.41
0.81
5.82

16.0
14.5
12.2
17.5
16.2
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10-6 r
(K)

2.0
4.0
4 p

4.0

log«N,

21
19
20
21

2.02
2.11
2.14
2.12

TABLE IKf.

0.91
0.52
0.63
0.77

(Continued)

1.02
31.14
' 6.71
1.45

6.62
7.32
7.32
7.16

10.7
13.2
12.5
11.7

14.2
18.5
17.7
16.2

Neon 1-6 0's=20.0
4.0 19
4.0 20
4.0 21

Neon 1-7 &s ——27.0
4.0 19
4.0 20
4.0 21

3.19
3.19
3.06

Q.73
0.89
1.10

0.98
1.20
1.40

30.75
6.62
1.43

30.52
6.57
1.42

0.344
0.571
0.800

15.0
15.5
14.7

0.60
1.06

10,41

26.7
26.0
23.7

0.99
16.10
17.40

36.1
35.0
32.3

Magnesium
2.0
4.0
4.0
8.0
8.0
8.0

Magnesium
2.0
2.0
4.0
4 p

4 p

8.0
8.0
8.0

Magnesium
2.0
2.0
2.0
4.0
4.0
4.0
4.0
8.Q
8.0
8.0
8.0

Magnesium
2.0
2.0
2.0
4.0
4.0
4.0
8.0
8.0
8.0

s=
22
22
23
22
23
24

1-3 ~s=
21 0.46
22 0.36
21 0.57
22 0.46
23 0.36
21 0.62
22 0.56
23 0.45

s=39
20
21
22
20
21
22
23
20
21
22
23

s= 5.8
20 0.87
21 0.82
22 0.63
20 0.87
21 0.87
22 0.82
20 0.88
21 0.87
22 0,86

0.12
0.10
0.12
0.08
0.10
0.12

0.15
0.19
0.13
0.16
0.19
0.11
0.13
0,16

0.20
0.25
0.30
0.17
0.21
0.25
0.30
0.14
0.17
0.21
0,26

0.30
0.37
p 44
0.25
0.31
0.37
0.21
0.26
0.31

0.18
0.25
0.05
0.36
0.08
0.02

0.70
0.15
0.99
0.21
0.05
1.40
0.30
0.06

3.08
0.66
0.14
4.35
0.24
0.20
0.04
6.15
1+33
0.29
0.06

3.00
0.65
0,14
4.25
0.92
0.20
6.01
1.29
0.28

0.018
0.014
0.024
0.010
0.018
0.029

1.06
0.84
1.26
1.05
0.83
1.42
1.25
1.05

0.072
0.121
0.194
0.053
0.090
0.140
0.180
0.040
0.067
0.106
0.139

2.78
2.59
2.11
2.89
2.81
2.53
2.98
2.95
2.80

0.032
0.024
0.041
0.018
0.031
0.051

1.52
1.22
1.80
1.52
1.21
2.03
1.80
1.50

0.126
0.229
1.415
0.093
0.160
0.278
1.340
0.069
0.119
0.191
0.280

4,57
4.20
3.45
4.87
4.60
4.10
5.22
4.95
4.57

0.050
0.037
0.066
0.027
0.048
0.083

2.03
1.63
2.42
2.02
1.61
2.75
2.41
2.01

0.202
2.075
2.250
0.145
0.272
2.237
2.137
0.106
0.187
0.357
2.212

6.40
5.71
4.65
7.00
6.45
5.60
7.55
7.05
6.35

Magnesium
8.0
8.0
8.0
8.0

Magnesium
8.0
8.0
8.0

1-6 n =8.1
19
20
21
22

7 ~s=11.0
19 1.30
20 1.29
21 1.26

0.25
0.30
0.36
0.44

0.33
0.40
0.49

27.53
5.93
1.28
0.28

27.32
5.89
1.27

0.15
0.20
0.25
0.30

6.90 .

6.75
6.45

0.25
0.30
0.45
0.60

11.5
11.1
10.3

0.30
0.45
6.10
6.15

16,0
15.3
14.3
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10-~ V

(K) logqP',

Alumin~ 1-2 O.s =1.0

12.0

TABLE HI.

0.07

(Continued)

0.02 0.016 0.028 0.043

Aluminum 1-3 ns ——

12.0 22
12,0 23
12.0 24

1.6
0.40
0.32
0.26

0.08
0.10
0.12

0,30
0.06
0.01

0.890
0.740
0.539

1.28
1.08
0.78

1.74
1.45
1.05

Aluminum 1-4 es = 2.6
12.0 22
12.0 23

Aluminum 1-6 ~s =3.9
12.0 20 0.75
12.0 21 0.68
12.0 22 0.62

Aluminum 1-6 +s = 5.4
12.0 21
12.0 22

Aluminum 1-7 s =7.3
12.0 20 1.04
12.0 21 0.98
12.0 22 0.87

0.13
0.16

0.13
0.16
0.19

0.22
0.26

0.24
0.30
0.36

0.28
0.06

6.95
1.28
0.28

1.27
0.27

5.83
1.26
0.27

0.058
0.080

2.33
2.18
1.99

0.127
0.162

4.67

3.93

0,104
0.152

4.04
3.74
3 e37

0.227
0.320

7.90
7.45
6.55

0.167
1.365

5.60
5.21
4.67

0.45
3.99

11.0
10.3
9.0

Silicon 1-2
5.0

10.0
10.0
20.0
20.0

0!s=Q.7
23
23
24
23
24

0.05
0.04
0.05
0.04
0.04

0.04
0.06
0.01
0.08
0.02

0.009
0.007
0.011
0.005
0.009

0.015
0.011
O.D19
0.009
0.014

0.024
0.017
0.031
0.013
0.023

Silicon 1-3
5,0
5.0

10.0
10.0
20.0
20.0

Silicon 1-4
5.0
5.0
5.0

10.0
10.0
10.0
20.0
20.0
20.0

Silicon 1-5
5.0
5.0
5.0

10.0
10.0
10.0
.20.0
20.0
20.0 .

0's ——1.1
22
23
22
23
22
23

~s=
21
22
23
21
22
23
21
22
23

s =2.7
20
21
22
20
21
22
20
21
22

0.22
0.17
0.26
0.22
0.29
0.26

0 44
0.41
0.36
0.49
0.45
0.41
0.54
0.49
0.45

0.07
O.Q8

0.06
0.07
0.05
0.06

0.09
0.11
0.13
0.08
0.09
0.11
0.07
0,08
0.09

O.ll
0.14
0.16
0.09
0.11
0.14
0.08
0.09
0.12

0.16
0.04
0.23
0.06
0.33
0.07

0.72
0.15
0.03
1.01
0.22
0.05
1.43
0.31
0.07

3.26
0,70
0.16
4.60
0.99
0.21
6.50
1.40
0.30

0.509
0,401
0.592
0.506
D.669
0.587

0.034
0.054
0.075
0.026
0.041
0.058
0.020
0.032
0.045

1.48
1.34
1.16
1.69
1.49.
1.34
1.68
1.59
] 49

0.732
0.575
0.855
0.727
0.967
0.850

0.060
0.'104
0.580
0.044
0,073
0.111
0.034
0.055
0.081

2.51
2.26
1.96
2.73
2.51
2.25
2.91
2.73
2.50

0.979
0.762
1.155
0.967
1.300
1.145

0.096
0.955
0.980
0.069
0.122
0.985
0.062
0.087
0.137

3.53
3.15
2.71
3.84
3.52
3.12
4.08
3.84
3.51

Silicon 1-6
20.0
20.0

Silicon 1-7
20.0
20.0

~s=
20
21

~s = 5.0
20
21

0.75
0.70

0.11
0.13

0.15
0.18

6.42
1.38

6.37
1.37

0.044
0.069

3.35
3.22

0.076
0.122

5.75
5.42

0.117
0.197

7.93
7.52
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ion broadening is nearly constant along the iso-
electronic sequence if the electron density in-
creases as z'. This tends to be the case under
typical experimental conditions for Stark-
broadening experiments" "on hydrogenic-ion
lines in the Lyman series.
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