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First- and second-order phase transitions in the Dicke model: Relation to optical bistability
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The authors consider a system comprised of a collection of identical two-level atoms interacting with the

electromagnetic field in the dipole approximation and with an externally applied steady-state coherent driving

field. The atoms are considered to interact with each other only via the electromagnetic field and are

assumed to be contained within a volume much smaller than a resonance wavelength. The system is treated
as a quantum-statistical ensemble in the rotating frame, rotating at the carrier frequency of the externally

applied coherent field. The Hamiltonian in this frame is explicitly time independent and the exact analog of a

spin temperature is defined. The thermodynamic-Green's-function method is used to determine the
thermodynamic equilibrium properties of the system in the rotating frame. This results in a nonlinear relation

between the applied field and the field in the volume containing the atoms. The expression is a nonlinear

function of the effective or "spin" temperature as well, and has the form of a first-order phase transition

with the macroscopic atomic polarization as order parameter. In. the low-"spin"-temperature limit, and for
perfect tuning, the expression reduces to the exact form of the nonlinear relation for optical bistability

derived by Bonifacio and Lugiato and relating the incident and transmitted fields for atoms in a ring cavity

in the mean-field approximation. The results contain absorptive as well as dispersive contributions. These
results predict essentially different behavior as a function of off tuning compared with behavior predicted by
others using statistical steady-state models far from thermodynamic equilibrium. In the limit of zero value

for the applied field amplitude, the results reduce to the. conditions for the well-known second-order "super-
radiant" phase transition, The condition for the existence of the second-order phase transition is shown to
depend on the cavity tuning and the photon escape rate. The authors also show why, in light of the

experiments in optical bistability, this second-order phase is difficult to observe.

I. INTRODUCTION

The use of a, saturable absorber to induce optical
bistability (hereafter referred to as OB) was
suggested independently by a number of persons
in articles published some years ago. ' ' Recently,
the phenomenonwas demonstrated and studied ex-
perimentally by Gibbs, McCall, and Venkatesan'
who used a cw dyelaser to excite atoms of sodium
vapor in a cell between the plates of a Fabry Perot
interferometer. They observed a n.onlinear
dependency of the transmitted field as a function
of the dye-laser input which exhibited hysteresis,
differential gain, and bistable behavior dependent
upon certain experimental and material conditions.

Aside from the interest in OB from the practical
applications aspect as the optical analog of the
transistor, optical clipper or limiter, and optical
memory element, the recent demonstration of
the phenomenon' has generated considerable inter-
est from the fundamental standpoint as a rather
clear example of spontaneous ordering in an
open, stationary system of matter interacting
with light. This has led to much recent theoretical
activity.

The first model for OB was suggested by
McCall, ' who introduced a nonlinear susceptibility

and used the Maxwell. -Bloch representation in
the ful. l propagation treatment. His results are
necessa, rily calculational rather than analytical.
Bonifacio and Lugiato' (hereafter referred to as
BL), were the first to obtain the main features
of OB from implementation of the Maxwell-Bloch
model, which they solved analytically in cl.osed
form. They have since extended their models to
a quantum-statistical representation of a station-
ary system far from thermodynamic equilibrium,
but with the same essential assumptions, the most
crucial being the "mean-field" approximation,
which amounts to requiring that the field be suf-
ficiently uniform over the volume of active atoms.
From this model, BL obtain additional manifes-
tations of the phenomenon, such as line shape,
spectral distribution, and critical slowdown in
the region of bistable behavior. More recently,
the limits of validity of the mean-field approxima-
tion and the assumptions connected with the bound-
ary conditions associated with the cavity have
been systematically examined by Meystre, ' who
integrated the six coupled Maxwell-Bloch equa-
tions to compare the forward and backward wave
amplitudes as a function of position between the
Fabry Perot mirrors. .

Of particular note here is the work of Walls
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et al. ,"who in several papers discuss the main
features of OB which are on the whole in agree-
ment with the results of BL. They also consider

, as a model a statistical stationary system far
from thermodynamic equil. ibrium, but the main
approximation in their model is that the atoms
of the active material are contained within a vol-
ume much smaller than a resonance wavelength
of the atomic transition. In this way, they re-
move the explicit requirements for the boundary
condition imposed by a cavity. Their mean-field
condition is therefore quite different in principle
from that of BL. In this case the mean-field
approximation means a factorization of the mo-
ments for products of atomic-shift operators in-
volving different atoms. This is precisely what
we mean by the "mean-field" approximation in
the model we present in this paper.

The observation of OB and the results of the
theoretical. activity cited above are strongly
suggestive of an interpretation of the phenomenon
as a first-order phase transition in the light-
matter interaction. The quantum-theoretical
models cited previously'" can be looked upon as
extensions of Dicke's earlier model" for super-
radiance. It is well known that Dicke's model
Hamiltonian (having no externally applied field)
leads to a second-order phase transition in
thermodynamic equilibrium. The instability in
the ground state of the Dicke Hamiltonian and the
condition for the existence of the second-order
phase transition in thermodynamic equilibrium
were first discussed by Hepp and Lich, "who ob-
tained exact, closed-form results. Others later
introduced more tractable calculational methods
for studying the equilibrium thermodynamic
properties of the Dicke model. "" Since then,
many authors have analyzed the equilibrium
thermodynamics of various modifications of the
Dicke model. " In particular, Gilmore and
Bowden" discussed the effect of an externally
applied field on the second-order phase transi-
tion and the circumstances under which such a
field can induce a first-order phase transition.

It would appear that the phenomenon of optical
bistability as a first-order phase transition and
the thermodynamic equilibrium properties of the
Dicke Hamiltonian should in some way be re-
lated. The first attempt to relate the equilibrium
and nonequilibrium properties of the Dicke model
was performed by Gilmore and Narducci. " The
equilibrium conditions do not lead to bistability
in the presence of an externally applied field in
their model calculations.

Most of the theoretical effort thus far has been
directed to the description of absorptive bistabil-
ity, yet the results of the experiments of Gibbs

et al. ' indicate a drastic asymmetry in the output
for off tuning of the cavity frequency from the
fixed incident dye-laser frequency, with the dye-
laser frequency slightly detuned from the atomic
transition. This suggests the strong dominance
of dispersive contributions. Recently, , BL"and
Hassan et al,.' have examined fully quantum
mechanically the effects of dispersive contribu-
tions to OB for both homogeneously and inhomo-
geneously broadened systems in a ring-cavity
configuration far from thermodynamic equilibrium.

Because of the observed strong contribution
of dispersive as opposed to absorptive OB, the
results of the experiments suggest that a system
exhibiting OB need not necessarily be far from
thermodynamic equilibrium. Also, it appears
reasonable to us that the existence of the second-
order "super-radiant" phase transition in ther-
modynamic equilibrium and the existence of OB
as a first-order phase transition should stem
from the same basic matter-light interaction, and
wauld therefore be expected to arise as separate
limiting cases of a single model.

If these suppositions are correct, then it is
expected that the first- and second-order phase
transitions should result from the nonzero and
zero values for the externally applied field, re-
spectively, in the same basic model. However,
in order to discuss thermodynamic equilibriu~
properties in the presence of a time-dependent
external field, we must introduce a "spin"
temperature. Furthermore, we would expect
the results of such a model for OB to reduce to
the results of the nonequilibrium models in the
limit of zero effective temperature. Owing to
these considerations, we have made a fresh ex-
amination of the thermodynamic properties of the
Dicke model.

In Sec. II, the Hamiltonian for a collection of
two-level atoms in the small-volume limit,
coupled to an applied field in a coherent state, is
presented and the effective interaction which
gives rise to collective atomic behavior in a cav-
ity is discussed. Section III is used to present
the thermodynamic Green's functions and assoc-
iated correlation functions pertinent for the de-
termination of collective behavior in the system.
In Sec. III we derive the conditions for a first-
order phase transition, which is the main result
of this work, and discuss the conditions of OB
behavior in terms of system parameters and
effective, or "spin" temperature. The connec-
tion between the first- and second-order phase
transitions in the limit of zero applied field is
discussed iri Sec. IV, where we show that the
second-order phase transition in Hefs. 13-16
is actually a special case of the OB discussed
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in Sec. III. Finally, a discussion of the results
and conclusions from our model and their implica-
tions for past and future experiments is presented
in Sec. V.

II. HAMILTONIAN AND EFFECTIVE
ATOMIC INTERACTION

Vfe consider a collection of N identical. two-
level atoms with energy levels E2& &, interacting
with the electromagnetic field in the dipole approx-
imation. The electromagnetic field which inter-
acts with the atoms is comprised of an internal
field and, in addition, an applied cw field assumed
to be in a coherent state, "with field amplitude
a and carrier frequency coo. The atoms of the
material are considered to be confined to a volume
V, which is much smaller than the resonance
wavelength ~„associated with the atomic bare-
state separation. This assumption does not
critically affect our results and tends to allow
emphasis upon the nature of collective atomic
aspects in the results in an unencumbered fashion.

The Hamil. tonian H is written in the form

discuss the thermodynamics of (2.2) in the ro-
tating frame. In this frame the applied electro-
magnetic field appears as a dc field. The unitary
transformation U which we desire is explicitly

U = exp —,
'

a ~ot C2~,-C» —Cit&C„.
S=l

(2.4)

which gives'

Hr =UHU (2.5a)

after canonical frequency renormalization. If
we write (2.5a) as

Hr =Hor+Hr
&

then, explicitly

(2.5b)

H, r = g Q,a»ta» + -,
'
Q Q„Ct,.C„;, (2.6a)

N N

Hr = g P g»a„C,iC»+H. c.+ n* P C„.C„+H.c. ,
H =Ho+H

where, in units such that

k=c=1

Ho ——P (u»a»a»+ g e„C„jC„j,

(2.1)

(2.2a)

2=1 0'=0

where

Qg = kg COp ~

and

2 6 4)p

(2.6b)

(2.7)

E' = E'2 —6& ~ 62 & E'& . (2.6)
and

H' = Q Q g»a»tCitjC, j+H.c.
j=l &=0

(2.2b)

(2.3a)

and the atomic operators are Bose operators"
which satisfy

[Cjji Ci»] =5jj5»t i [Cjj»]=0. (2.3b)

In order to discuss the thermodynamic equi-
librium properties of (2.2) it is necessary to
eliminate the explicit time dependency appearing
in (2.2b). To accomplish this we canonically
transform to the frame rotating at rate ~p and

N

+ o.*e'"o' g CitjC»+H. c.
4"-1

The first and second terms in (2.2a) represent
the free-field and the free-atomic system, re-
spectively, whereas the first two terms in (2.2b)
describe the interaction of the atoms with the
internal field and the last two terms describe
their interaction with the external field. The
field creation and annihilation operators conform
to Bose commutation relations,

[»i j]=5»ji [»i l]= i

Vfe shal. l apply the thermodynamic Green's-
function method in the next section to analyze the
thermodynamic equilibrium properties of (2.6).
To this end it is necessary to adiabatically elim-
inate the field variables from the interaction
Hamiltonian (2.6b). The Heisenberg equations
of motion for the field variables must therefore
be integrated. From (2.6) we obtain for the
equations of motion in the rotating frame

~ ~~a N

t
Bt

+Q„a» =-g»* Q C,jC,j, (2.9)

where

40„(t-c ) (2.10)

Q~ = 0„+iy„
and the phenomenological damping y» (rate of
photon escape from the quantization volume V)
has been introduced to aeeount for the ref leetivity
of cavity mirrors which define the volume of
quantization. A formal integral of (2.9) yields

N

a» (t) =&g, g dt'C, j(t')C,j(t')
4"1



19 FIRST- AND SECOND-ORDER PHASE TRANSITIONS IN THE. . . 2395

The equation of motion for C,&
yields

C1' (f) C1' (t5) il & P(&- 4') (2.11)

At this point, it is expedient to take the sum
over modes k in (2.15) to an integral, i.e.,

where we have defined

Q = (Q: i~i')'", (2.12)
2 2

the renormalized energy due to the interaction
of the atoms with the total field. It is crucial at
this point to include the average Stark contribu-
tion i&i', to be self-consistently determined later.
The assumption (2.11) is consistent with the re-
quirement that the system be Markovian for times
7, T =t —t', long compared with some character-
istic relaxation time 7,. In this case, explicitly,

Contributions to the integral (2.10) are therefore
expected to be dominated by values of the integral
corresponding to times t' in the neighborhood of
the upper limit. Thus, if (2.11) is used in (2.10)
and the indicated integration is performed, we
obtain

d'k V
V

(2 ),
-—

( ), k'dkdQ,
k

(2.16)

~=- -', (Q, —Q,}. (2.18a)

From (2.12) and (2.7), (2.18a) can be written
in the form

~= [(e- )"i~i']'" (2.18b)

(

where V is the quantization volume and dQ is the
element of solid angle at the center of symmetry
of the volume V. The sum over modes in (2.15)
thus becomes an integral I, i.e.,

I=,
J

dQ diplg(&p)l'
V

7f ' 4g p

1 1
X +

co - coo - 0 +iy co - a&0 - 0- iy

(2.17)

where

a,'(t) =- ~~" g c,', (t)c,i(t),
k

where

(2.13) In (2.17),

g(co) = edip2v'2v /v'(pV, (2.19)

A(5 = Q(, +iy(, -~Z(02 —Qi) ~

If (2.13) is used in (2.6b), the result is

(2.14) where d is the matrix element of the transition
dipole moment, and we have taken

yk

15, =- P P (55('(—+ —.(c,',C„C,',c„
k

+(a g C1&C,&+H.c.), (2.15(
f

where it is understood that the self-energy terms,
i.e., those for which j =I,, are now included in the
diagonal part of the Hamiltonian, II». These
terms make only a small contribution, i.e.,
O(l/N). The first term in the above expression
is the analog of spin-spin interaction in the
Heisenberg model for ferromagnetism. It is also
formally identical with the interaction among
Cooper pairs in the Bardeen-Cooper-Schrieffer
theory of superconductivity. ' This specific
form for the interaction was shown earlier to be
responsible for the collective atomic behavior
which results in the second-order super-radiant
phase transition in thermodynamic equilibrium, '
and is formally identical to the retarded dipole-
dipole interaction which has been shown to be
responsible for the collective and individual atom
radiation reaction and radiative frequency shifts
in the dynamic process of superfluorescent re-
laxation. ""

S((u) =2(u'/(2w)3. (2.20)

If we use this as an analogy, then (2.17) can be
written in the form

I = 2m&2 d2V dm dQ
0 43 (d

X
1 1

+
4lo O +2y 47 (00 0 Zy

If we assume that all the cavity modes are
well separated, then

(2.21)

VS(pi) =sp6(~- &p,), (2.22)

where m, is the center frequency of a principal
cavity mode which interacts with the atomic sys-
tem and so is the total number of cavity modes in
the neighborhood of e,. Thus

for all modes k. It is emphasized that the integral
(2.17) cannot be evaluated rigorously owing to the
approximations in this model. We can, however,
obtain a plausible approximate evaluation as fol-
lows in the next paragraph.

The density of modes in free space is given by
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where

K= s,/V

(2.23a)

(2.23b)

polarization in thermodynamic equilibrium in
the rotating frame are defined and the condition
for bistable behavior is derived.

III. FIRST-ORDER PHASE TRANSITION AND OPTICAL
BISTABILITY

is the. dens ity of cavity modes in the neighbor-
hood of the principal cavity mode. If (2.23) is
used in (2.21), the result is

I =(g',/fi)(~. —~, —o)/[(~. —~, — )o'+r'],

For the purpose of calculating the macro-
scopic transverse polarization in thermodynamic
equilibrium, the following set of singl. e-particle
Green's functions is defined'4'27:

g', = [(4v)'d'E/~, ] p

p =N/&„', A.„=2x/e .

(2.24)

(2.25)

(2.26)

6„;(t —t ') = -i 6(t —t')([C„;(t ), Ct; (t')]),
E, )(t —t') = ie(-t —t')([C2;(t), C|;(t')j),
E, ; (t —t') = i. B(t —-t')([C, , (t), C2t;(t')]),

where 6 is the unit step function, i.e.,

(3.1)

(3.2)

(3.3)

(3.4)
The "density" p is the number of atoms within a
cubic wavelength ~„at atomic resonance.

The expression (2.24) is sensitive to detuning
of the laser frequency ~, from the atomic bare-
transition frequency e [(2.18b)] as well as de-
tuning of the cavity frequency ~, from the laser
frequency. It should be emphasized that (2.24)
is derived from a simple model. For example,
in the case of perfect tuning, (d, = ao, + 0, other
cavity modes should contribute, and I is not
zero. Also, the atoms are assumed to be fixed
in position. This expression, which contains
both absorptive and dispersive contributions,
will be discussed in later sections.

%e can now define an effective atomic dipole-
dipole coupling g which arises entirely from
the atom-atom interaction via the radiation field:

g =XI. (2.27)

If we use (2.16) and the definition (2.27) in (2.15),
we obtain the effective atomic interaction Hamil-
tonian

1V.i. i=& J=l

(2.28)

Equation (2.28) is the main result of this section,
and will be the working interaction Hamil. tonian in
the calculations which follow. It is to be noted
thatg is a function of the internal field via (2.11),
(2.12), (2.18b), and (2.24). This is not surprising,
since, as pointed out above, it arises entirely
from the atom-atom interaction via the internal
radiation field.

In Sec. III the thermodynamic Green's functions
and associated correlation functions pertinen't
to the determination of the macroscopic atomic

E, ; =(C, ;(t)C, ;(t)),
E, ; =(C~t;(t)C, ;(t)) .

(3 5)

(3.6)

In expressions (3.1)-(3.6) and in what follows,
() is the thermal average. These averages are
with respect to the rotating frame. Thus the
density operator p in this representation is as-
sumed to be an exponential of the form

PQ8 (3.7)

where

P, = I/AT, (3.8)

and T, is an effective temperature, commonly
referred to as the "spin temperature" in the ro-
tating frame. Therefore, for any operator A.

referred to the rotating frame, its thermal
average is explicitly

(A) =tr(A e ~~ "r)/Z,
c%

g tr e-&s~r
(3.ga)

(3.9b)

where

H~ =II+ - PN (3.10)

and p. is the chemical potential.
If the effective atomic interaction Hamiltonian

(2.28), together with (2.6a), is used to calculate
the Heisenberg equations of motion for the C„z,
and if the decoupling scheme

([,() ., (), (), ", (')j)
= (C, (t)C, (t))([C, ;(t), C, ;(t')]) (3.11)

and n in (3.1) is either 1 or 2. It is also expedient
to define the time-independent correla, tion func-
tions
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is employed, the coupled equations of motion for
the Green's functions (3.1) (n =1), and (3.2) are

i ——gQ~ Q~ t —t' = 5 t - t' —gE2 —n* E~ t -t',
(3.12)

i ———,'0 E t -t' =- gE —n G, t-t' 3.13

where the single-particle index has been dropped
consistent with the assumption that all the atoms
are identical.

The decoupling approximation (3.11) amounts
to ignoring combinations of atomic operators
which lead to non-energy-conserving averages,
and to the assumption that operator products
involving different atoms can be factorized. The
latter assumption is explicitly what we mean by
the "mean-field" approximation. The mean-field
approximation is certainly justified in our model,
which assumes that all of the atoms are contained
in a volume much. smaller than an atom resonance
wavelength. It should be noted that our mean-field
approximation is quite different in principle to
that of Befs. 7 and 8, but identical to that of
Hefs. 10 and 19.

The coupled partial differential equations (3.12)
and (3.13) form a closed set and can be easily
solved algebraically by Fourier-transforming
the equations. The transformed equations are

The spectral theorem for thermodynamic
Green's functions" is now used to calculate the
macroscopic transverse polarization W:

5' = (CtC,),
F=E, =E,*.

(3.21a)

(3.21b)

We have, from the spectral relation, "
"E(v+i5) —E(&u —i5)F =i lim — - dm.1 („„) (3.22)

9, +9, =1,
where

9„—:(C„C„),

(3.24a)

(S.24b)

and 8„ is obtained from G„by a relation identical
to (3.22), we obtain the additional condition

elglk [(el'+/2 ~ e Pg+/2)] (3.25)

where o' is given by (2.18b), and from (3.20)

Consistent with the assumption in the model that
the wave functions of the atoms do not overlap,
the quantum statistics reduce to classical statis-
tics under the assumption that the chemical po-
tential g and P, satisfy"

(3.23)

in the rotating frame. From the condition for
conservation of particle number,

((u ——,'Q, }G((o)= 1/2w —&E(&u),

(e- ~Q, )E(&u) =-&*G(&u),

where

(3.15)

(3.16)

(3.26)

It should be noted at this point that l&l appearing
in (2.18b) is now determined by (3.16).

Thus, using (3.18) and (3.25) in (3.22), together
with the condition (3.23), we can evaluate the
integral in a straightforward manner, finding

We have now dropped the subscripts on the
Green's functions E, and G„since Eqs. (3.12)
and (3.13) form a closed set. A similar set of
.equations is obtained for E, and G,.

The expressions (3.14) and (3.15) can be
combi. 'ned to give

[(~—-'il, )(~ —-'fI, ) —
I &I']E(~) = -&*/2v

5 = 2&*tanh(;"P, ~)/~.

It is useful to make the identification

for the internal field, and

(3.27)

(3.28a)

(3.28b)

(s.17}

This last equation can-be written more tractably
in the form

for the applied field amplitude. Then, after mul-
tiplying both sides of (3.27) by g, we have, using
(3.28),

(3.18) E/ —E~ ——2gEI tanh .2P~o'/o'. (s.29)

where I', and 1 are the roots of

(~- r~, )(~--'~,)-l&l'=0.
Explicitly,

r =+2[(e-~0) + I&l ]

(3.19)

(3.20)

Equation (3.29) is the main result of this section,
and may or may not l.ead to OB, depending upon
the sign and magnitude of g, (2.27) and (2.24),
and the magnitude of the argument of the hyper-
bolic tangent. It is emphasized that P, corre-
sponds to an effective temperature which is the
exact analog of a spin temperature in, the rotating
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frame. " The relationship between T, and T is
discussed in Ref. 28.

It is useful to define dimensionless quantities 60

x=Z,/y, v=Z„/y,
~ =(~.—~.)/y, v =(&- ~.)/y,

C =g'./y',

(3.30a)

(3.30b)

(3.30c)

where g, is given by (2.25). With the substitutions
(3.30), (3.29) has the form

where

(5 —o')x tanh-, P,yo'
(5- o')'+1 a' (3.31) 30

gt + (v2 +x2)1/2 (3.32)

2C(5 —o')x
[(5 —o')'+ ].]o' ' (3.33)

If the cavity and laser are perfectly tuned, i.e.,
5=v=0

In the low-spin-temperature regime, which is
implicitly assumed in the models presented in
Refs. 5-10,

tanh-,'P,yo' = 1,
T ~pS

and (3.31) becomes
60

FIG. 1. Effect of cavity and laser detuning on optical
bistability. Input field y vs internal field x from (3.33).
Curve a: C=40, 6=v=0. curve b: C=40, 6=p=2;
curve c: C=40, 6=v=4.

then (3.33) reduces to

y =x+2Cx/(1+x') . (3.34)

This relation is identical in form with the corre-
sponding relation obtained by BL in Ref. V for
the relation between the input and output fields of
a ring cavity loaded with a saturable absorber
far from thermodynamic equilibrium. We would,
in fact, expect to get reasonable agreement be-
tween the two models in the low-temperature
limit.

It is well known that OB exists" for the field
y as a function of the field x in (3.34), if C&4.
For values of the system constant C for which
C & 4, x is a monotonic function of y and there is
no OB.

Equation (3.33) shows the effect of cavity de-
tuning 5 and laser detuning v [Eq. (3.30b)j. This
expression contains dispersive as well as ab-
sorptive contributions. Figure 1 shows the equi-
librium values for the input y as a function of the
cavity field x, according to (3.33) for various
equal values of 5 and v and for C =40. It is seen
that absorption, i.e., 5=v=0 results in the max-
imum value for the initial turning point and largest
bistable effect, whereas for larger values for 5
and v the turning point occurs at smaller input
y and the OB effect becomes smaller.

30

30

FIG. 2. Asymmetric effect of cavity detuning on op-
tical bistability. Input field y vs internal field x from
(3.33). Curve a: C=60, 6=@=10;curve b: same para-
meters as for curve a, except 5=—9; curve c: same
parameters as for curve a, except 6= 9; curve d: same
parameters as for curve a, except 6=8.
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Figure, 2 shows the asymmetric behavior of
cavity detuning 5 for a fixed laser detuning v from
the atomic frequency, according to (3.33). For
the four curves in this figure C = 60 and v = 10.
The curves labeled c and b have the same values
for the parameters, except that 6 =9 for c and
-9 for b. Curve'a corresponds to the maximum
turning point and largest OB, and has 5= v. As
5 decreases in value and remains positive, the
input value of the first turning point decreases
as well as the OB effect. Curve c represents ap-
proximately the condition for infinite differential
gain (threshold) whereas for smaller values of 5
(curve d), there is no GB. The asymmetric be-
havior with cavity detuning for fixed laser off
tuning from the atomic transition depicted in
Fig. 2 appears to be consistent with the experi-
mental results of Gibbs, McCall, and Venkatesan. '

The decrease in the value of the input y for the
first turning point with off tuning, shown in Figs.
1 and 2, is not in agreement with the results of
the absorption-dispersion madel of BL"and
Hassan et al." The opposite effect occurs in the
results of their models. We do not at present
have an explanation for this discrepancy. Our
model, owing to the physical assumptions made,
is, however, physically different than that of
Hefs. 18 and 19. In the case of the latter, the
atomic system is treated as always far from ther-
modynamic equilibrium, whereas in our model, the
system is characterized by a spin temperature
and is well below laser threshold. Where disper-
sive effects are dominant, it may be bettertorep-
resent the system as in a state near thermodynamic
equilibrium rather than far removed from equilib-
rium.

The expression (3.31) describes the conditions
for OB and has the form of a first-order phase
transition. The phase transition corresponds to
spontaneous ordering of the atomic dipoles,
coupled via the light field, to produce a macro-
scopic dipole moment. This stems from the par-
ticular form for the effective atomic interaction
(2.28), (2.27), and (2.24). In Sec. IV we shall
discuss the connection between the first-order
phase transition described by (3.31) and the
second-order or "super-radiant" phase transition
in the limit of zero. appl. ied field.

IV. PHASE TRANSITIONS IN THE ABSENCE OF
APPLIED FIELD

This section will be used to discuss the second-
order "super-radiant" phase transition" " in
the zero-applied-field limit of (3.31).

Up to this point, the thermodynamics which
we employed have been relative to the coordinate
system rotating at the applied-field carrier fre-

For these conditions, (3.8) becomes

T,-T =(kP) ", (4.3)

where T is the temperature of the surroundings
with which our system is in temperature equi-
librium under new conditions (4.1) and (4.2).

For these circumstances, (3.31) can be written
in the form

2g*„(~.-eg) tanh-,'Peg)
(v, —eq)'+y' q

Here,

(4.5)

and the order parameter & (macroscopic trans-
verse polarization) is given by (3.16) with n* set
equal to zero. Expression (4.4) is satisfied for
all values of the temperature T if either

&*=0 (disordered phase) (4.8)

or

tanh-,'Peg c (&u, - eq '+y'
(ordered phase) .

(4.7)

If the last equation can be satisfied in the limit
~- 0, then, in this limit, it defines a critical
temperature T, below which & 40 (ordered phase)
and above which & =0 (disordered phase).

In the limit &-0, i.e., q- 1, (4.7) becomes

hx & (~c- ~) +)
2g 0 (d~

(4.8)

Immediately, it is seen that this expression
differs markedly from the conditions for the ex-
istence of the super-radiant phase transition dis-
cussed in earlier works. " '~ In particular, (4.8)
depends upon the cavity detuning ~, —&, which
does not appear in the earlier works. This dis-
crepancy stems explicitly from the particular
form for the effective coupling g, (2.27) and
(2.24), which arises because of the specific con-
ditions imposed in this model. In the present
case, g is specialized according to specific
characteristics of the cavity, i.e., ~, and y,
and the form which it takes under these cavity
conditions, arises because of the integration
over all modes [(2.17)].

In summary, the condition that (4.8) be satis-
fied, and a critical temperature defined, is that

quency ~0. Here, we wish to examine the proper-
ties of (3.31) in the limit

(4.1)
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(4.9)

If (v, -e) e 0, (4.8) determines a finite critical
temperature T„and (4.7) determines values of
the order parameter q for temperatures T &T,.
If y 0 0 in (3.31), there is no second-order phase
transition.

Our work has brought OB of Eq. (3.31) and the
super-radiant phase transition Eq. (4.4) to the
same footing. Equation (4.9) can be written as

(4.10)

If the observation of OB suggests the order of
magnitude of C and (~, —e)/r, i.e., C & 1 and
(&u, —e)/r= 1, then (4.10) shows that e/r must
be of the same order as (e, —e)/r for observation
of the second-order phase transition. This is a
condition not satisfied experimentally. Thus OB
and the lack of experimental evidence of the
super-radiant phase transition are consistent
with the results of our model.

V. CONCLUSIONS

The results of this work contain, for the first
time, all of the qualitative features of optical bi-
stability' from a purely thermodynamic point of
view [Eq. (3.31) and Figs. 1 and 2]. Equation
(3.31) provides a description of OB as a first-
order phase transition in the light-matter inter-
action (2.2b), where it was shown that the order-
ing process stems explicitly from dipole-dipole
pair correlation (2.28) via the mutual internal
radiation field. The form for the dipole-dipole
interaction (2.28) is identical to the retarded
dipole-dipole interaction that gives rise to co-
operative radiation reaction and frequency shifts
in superfluorescence, "'"and is the same effective
interaction responsible for the existence of the
"super-radiant" phase transition in thermodynamic
equilibrium. " ' '4 The interaction is also identi-
cal in form to the interaction coupling Cooper
pairs in the Bardeen-Cooper-Schrieffer theory of
superconductivity. " '4

Our results not only give the conditions for OB
in terms of characteristic material and cavity
parameters, but also incorporate the effects
of dispersion as well as absorption [(3.31)]. The
effects of cavity and laser detuning arise ex-
plicitly from the effective coupling (2.27) and
(2.24) in the atom-field interaction. These re-
sults, (3.31), qualitatively predict the observed'
asymmetry in OB with respect to cavity detuning
which arises because of dispersive contributions
(Fig. 2). Our results agree with the results of
other models for OB' ' ' ' in the low-tempera-
ture, absorption limit. The results we derived

differ from the results of other models in the
dispersive contributions'8'" and also from the
fact that our results are characterized by the
exact analog (3.31) of a "spin" temperature. "

In addition to the establishment of OB as a
first-order phase transition [(3.31)] in the
presence of an external field, we have shown
the relationship, using the same model, to the
super-radiant second-order phase transition in
the absence of the applied field [(4.7) and (4.8)].
The condition for the super-radiant phase tran-
sition is characterized by a critical temperature
(4.8) and an order parameter (4.5), which cor-
responds to the existence of a nonzero macro-
scopic transverse polarization in the material
for q&1. The existence of the second-order
phase transition [(4.8)] and the behavior of the
order parameter at temperatures near the critical
temperature [(4.7)] is governed not only by the
material parameters, but also by the cavity
frequency co„and mirror ref lectivity contained
in the photon escape rate r [(4.9)]. As discussed
in Sec. IV, introduction of an external laser field
removes the conditions [(4.7) and (4.8)] for a
second-order phase transition and replaces them
with a condition for a first-order GB phase tran-
sition, (3.31).

The free energy as a function of temperature
and order parameter for zero and nonzero values
of the applied field and its behavior in the neigh-
borhood of instabilities, together with the photon
statistics, will be dealt with in another publica-
tion." The photon statistics in our model in the
presence of an applied field are expected to be
quite different from those of earlier models. ' '
In regard to the l.atter, the "upper" state of bi-
stability is the chaotic state, i.e., the system is
near laser threshol. d, and therefore large quantum
fluctuations and resonance-fluorescence-like
line shapes are expected. ' Our model assumes
that the system is always well below laser
threshold and predicts a more ordered state for
the "upper" bistability state than for the lower,
i.e., bistability behavior is characterized by the
onset of large macroscopic polarization. The
photon statistics, line shapes and behavior in the
critical region are expected to be markedly dif-
ferent.

Finally, it should be noted that the first-order
phase transition in the presence of an external
field discussed in Sec. III, has been studied ex-
perimentally (OB).' No such studies have been
reported in connection with the phase transition
in the absence of an external. field discussed in
Sec. IV. This fact seems to be consistent within

the framework of our model. as discussed at the
end of the last section.
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