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High-accuracy Compton profile of molecular hydrogen
from explicitly correlated Gaussian wave function
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The electron momentum distribution for molecular hydrogen is calculated from an explicitly correlated
Gaussian wave function corresponding to the total energy of —1.17442 a.u. and accounting for 99.9% of the
correlation energy. The high-accuracy Compton profile obtained confirms the results. of recent high-energy
electron-impact spectroscopy measurements of Lee, but disagrees in the region of very small momentum with
earlier x-ray Compton-scattering data.

I. INTRODUCTION

It has been known for a. long time'' tha, t the
spectrum of the Compton-scattered photons is
closely related to the distribution of the electronic
momentum in atoms, molecules, or solids. How-
ever, it was not until 1970 that Eisenberger and
Platzman' showed rigorously that for k'»2E~
(where k is the momentum transfer and EB is the
binding energy of the scattering electron') the
shape of the shifted Compton line (the Compton
profile) is independent of the momentum transfer
and scattering angle, and, for randomly oriented
systems is determined solely by the radial mo-
mentum distribution function I (p)

1.
~(~) = —, (I)

Iql

Hughes and Mann' showed that the Compton profile
J(q) can also be measured by electron scattering.
The validity of Eq. (I), i.e. , the validity of the so-
called impulse approximation (IA), is in this case
also limited to large values of the momentum
transfer k.

The first quantitative test of Eq. (I) has been
made by Eisenberger' who measured the He and H,
Compton profiles applying the x- ray scattering
technique and compared them with the theoretical
profiles calculated by Henneker' using the Hartree-
Fock self-consistent-field (HFSCF) or the multi-
configuration self-consistent-field (MCSCF) wave
functions. 'Phile the agreement between the theory
and the experiment was excellent for helium, the
theoretical profiles for H, were at small q substan-
tiaU. y higher than the experimental. one. This dis-
agreement was somewhat disturbing, since, due to
the weaker binding of electrons, Eq. (I) should be
more accurate for H, than for He. Moreover, it
has been found' that the vibrational correction to
the theoretical Compton profile raises it by ap-
proximately I/z in the low-momentum region and

thereby increases the disagreement between theory
and experiment. To clear up the reason for the
observed discrepancy, Brown and Smith' calcu-
lated the Compton profile of H2 using the Liu" 39-
term configuration interaction (CI) function ac-
counting for 98%%uo of the correlation energy. It
turned out that the resulting profile is lower than
the HFSCF one but still gives for j(0) an error of
about 2% (including the vibrational correction),
which is greater than the experimental error of
+0.7%%uo. Brown and Smith' conclude that the ex-
pected corrections to the theoretical profile with
more correlation shouM largely remove this dis-
crepancy.

Very recently, however, Lee' has determined
the H, and D, Compton profiles by means of the
high-energy electron impact spectroscopy (HEEIS)
and has found them to be about 2%%u~ higher than the
x-ray profile of Eisenberger. Thus, the Lee value
of J(0) has been very close to the theoretical result
of Brown and Smith corrected for the vibrational
effect but not corrected for the lacking correlation
correction. The main purpose of our paper is to
find whether the latter correction is large enough
to confirm the x-ray scattering data or is negligi-
ble and thereby corroborates the recent electron
scattering measurements.

Vfith this end in view, a high-accuracy Gaussian
wave function containing explicitly the interelec-
tronic distance r» and giving 99.9%%uo of the correla-
tion energy is transformed into momentum space
and the radial momentum distribution I(p) is cal-
culated from it without recourse to any numerical
quadrature. The Compton profile of H„resulting
from I(p) via single numerical integration, turns
out to be very close to the theoretical profile of
Brown and Smith and thereby confirms the HEEIS
data of Lee. In particular, the height of our theo-
retical profile amounting to 1.5465 a.u. (including
the vibrational correction) is in excellent agree-
ment with the HEEIS value of 1.540+0.010 a.u.
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The other purpose of our paper is to present a
high-accuracy radial momentum distribution for
H, that could be used to test the various scattering
techniques employed to study the electron density
of molecules or solids.

II. METHOD

$(F„r,) =-,'(1+P„)(1+I) c,X (r, r ),
=1

(2)

l k+B Yk+ 1 (3)

where the operator P» interchanges the electronic
coordinates, the operator I inverts the wave func-
tion through the midpoint of the internuclear axis,

A1 A2 Bl 82 12 are distances between
the electrons (1 or 2) and nuclei (A or B) specified
by the respective subscripts. The linear c~ and

nonlinear &k, pk, nk, tik', yk parameters have been
determined in the following way. For the first 42
of N = 101 terms in Eq. (2), we have set yk =0 and

Among many ground-state wave functions for H,
available in the literature, the most accurate one
is that of Kofos and Wolniewicz. " Unfortunately,
owing to the presence of the odd powers of the in-
terelectronic distance r», this wave function seems
to be extremely difficult to transform into momen-
tum space. Since the explicit dependence of a wave
function upon the intereleetronic distance is es-
sential to obtain the correlation energy with a very
high accuracy, we decided to apply in our calcula-
tions the basis set of explicitly correlated Gaussian
functions (CGF). We shall show that this basis
set, employed for the first time by Longstaff and

Singer, "enables one to obtain very. accurate values
of the correlation energy and permits the Fourier
transformation to be carried out analytically. The
explicit form of our wave function is

the parameters e„p„irk',and pk' have been ob-
tained by expanding the HFSCF function of Schwartz
and Schaad'4 according to Eqs. (2) and (3). All the
linear and remaining nonlinear parameters have
been determined by minimizing the total energy c
=((~II))/((~P). The resulting total and correlation
energies are shown in Table I, where they are also
compared with the results of other accurate calcu-
lations for H, . It is seen that our wave function is
almost as accurate as that of Kogos and Wolniewicz
and predicts the correlation energy of H, with an
error of two orders of magnitude smaller than the
previous best CGF function of Handy. "

The Fourier transformation of p(r„r2)can be
written in the following way:

where

(5)

and I is the Fourier transform of the operator I
Iy(p p )=e" " ~' k'y( —p„—p ) (~)

The vectors A and B specify here the positions of
nuclei A and P, respectively. The sixfold integral
in Eq. (5) can be solved analytically and after some
tedious algebra one gets

X (p p, ) = C, exp -i(p, S,+p,T,)

/ 2 2ITkP1+ kP24Pa

where

TABLE I. Comparison of total energies of H2 obtained by using various basis sets.

Basis &var %Ecorr '

Longstaff and Singer (Ref. 13)

Das and Wahl (Ref. 16)

Handy (Ref. 15)

Liu (Ref. 11)

This work

Kogos and Wolniewicz (Ref. 12)

CGF

STO

CGF

STO

CGF

-1.168 1

-1.1698

-1.170 0

-1.17363

-1.17442

-1.17447

84.4

88.6

89.1

97.9

99.9

100.0

Energies in a.u. ; internucle'ar separation is 1.4 a.u.
Specification of basis set: CGF—correlated Gaussian functions; STO—Slater-. type orbit-

als; KWB—the Kokos and Wolniewicz basis of functions in eiiptic coordinates.
%Ecorr = 100%x(Evar —E$cF) f(@exact E$CF), where $cF 13363 a.u. (Ref. 17) and Eexact

=-1.17447 a.u. (Ref. 12).
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exp
k 0 + 0 0 p B 2

hyk (p q )2 (Ba)

and the following notation is used:

~(( +( +~» 7(( + I(+P( 9 a 7((7( + y(((7&+ ~(( } ~

(+a~ +~a H)I7a @a (+(IA+l «B)I~(I

S = [7' (r('+ y(, )P, +7~y, Q, j/g, ,

Ta= f~,(&, + ya)Q. +&ayaP. ]&I a

The momentum-space wave function p(p„p,) can
now be used to calculate the diagonal element of
the first-order density matrix. This is given by

(Bb)

(Bc)

(Bd)

~(i) &f l(=$, i&'(I*di&'=g~, c, ~„(ii),

where

P(((P }=
B ]t [(1+P2)(1+I))iy(P, P')]*(1+&„)

(1+I)X,(p, P') dP'. (10)

» ev»uattng Eq. (10), one. obviously cannot, make
use of the Hermiticity of I'» and I; hence all the 16
integrals resulting from (10) are different. Thus
the result of the integration over p' can be written

16
2p„(p)= d„exp(ipva, —e», p ),

III. RESULTS AND DISCUSSION

The high-accuracy radial momentum distribution
function for H, obtained by using Eq. (12) is tabu-
lated in Table II, whereas in Table III are pre-
sented: the Compton profile calculated from our
I(p), Eq. (12), the HFSCF and MCSCF profiles of
Henneker, ' the CI profile of Brown and Smith, ' the
CI profile of Smith ef gE. ,

" this same profile cor-
rected for the vibration-rotation motion of nuclei"
and the experimental profiles obtained by using the
x- ray7 and the electron scattering techniques. In
Table IV we report the values of p(0}, ( po), ( p'),
(p'), (p'), and (p) calculated from our I(p). The
numerical integrations were carried out using a
suitable 271-point Simpson quadrature. We have
checked that, to the number of digits quoted, the
errors of these integrations have no effect on our
results. Since our radial momentum density dies
out as p exp(-cp') while the correct" behavior is
p ', it might be expected that our values of g((I}
are inaccurate at large q. However, we have veri-
fied that the exponential decay of I(p} manifests
itself only for p &60 a.u. This fact is, of course,
due to the high quality of our basis set. Compari-
son of our Compton profile with that of Brown and
Smith'o (the latter dies out like 4( ') shows also
that the improper large-(I behavior of our J((I) is
not relevant at physically interesting values of q.

In order to illustrate the high effectiveness of
our basis set, it is worthwhile to report here some
position-space properties of 8, calculated. recently

where d„,v», and e» are constants that can
easily be obtained from Eqs. (7)-(10). The explicit
expressions for these constants are somewhat too
involved to be reported here. The radial momen-
tum distribution function to be used in Eq. (1) is
obtained by averaging p(p) over all orientations of
the vector p. The integration resulting from the
averaging procedure is elementary and its result
1s

18
I ( P) = 4' g g c,c, " sin(v» p)

VA

~ exp( &((mp (12)

where v» = tv~, ~. We see that for the wave func-
tion of Eqs. (2) and (2) the radial momentum distri-
bution I(p) can simply be expressed via elementary
functions. This makes the basis set of the corre-
lated Gaussian functions to be especially useful for
the calculation of high-accuracy Compton profiles.
When the numerical values of I(p) are calculated,
the single integral in Eq. (1) can easily be carried
out numerically by using, e.g. , Simpson quadra-
ture.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.75
0.80
0.85
0.90
0.95
l.00

0.000 00
0.018 22
0.071 17
0.153 99
0.259 32
0.378 33
0.501 75
0.620 96
0.728 70
0.81962
0.890 38
0.939 61
0.967 57
0.942 89
0.907 62
0.863 70
0.813 80
0.760 28
0.705 08

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
4 0
5.0
6.0

10.0

0.595 66
0.494 13
0.404 67
0.328 45
0.264 96
0.212 83
0.17046
0.13625
0.108 80
0.086 84
0.055 46
0.035 72
0.023 34
0.015 55
0.010 61
0.002 36
0.000 82
0.000 31
0.000 015

1(p) is normalized to unity.

TABLE II. Electron momentum density of, H2. Inter-
nuclear separation is 1.4 a.u. All values in a.u.
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TABLE III. Comparis'on of theoretical and experimental Compton profiles of H~.

HFSCF MCSCF CI1 CI2 CIV CGF ~ X-ray I HEEIS "

0.0
0.1
0.2
0.3
p 4
0.5
0.6
0.7
0.,8
0.9
1.0
1.2

1.6
1.8
2.0

1.558
1.520
1.413
1.257
1.074
0.887
0.713
0.560
0.433
0.331
0.250
0.142
0.080
0.045
0.026
0.015

1.573
1.532
1.416
1.249
1.060
0.871
0.699
0.55i
0.429
0.330
0.253
0.147
0.085
0.049
0.029
0.017

1.529
1.493
1.393
1.245
1.069
0.888
0.717
0.566
p 44p
0.337
0.257
0.147
0.084
0.049
0.029
0.017

1.5322
1.4962
1.3946
1.2444
1.0677
0.8858
0.7149
0.5646
0.4388
0.3372
0.2571
0.1478
0.0849
0.0491
0.0289
0.0173

1.5467
1.5096
1.4050
1.2508
1.0702
0.8850
0.7118
0.5603
0.4340
0.3324
0.2528
0.1447
0.0828
0.0479
0.0281
0.0169

1.5319
1.4958
1.3939
1.2'435

1.0670
0.8855
0.7151
0.5651
0.4394
0.3377
0.2575
0.1481
0.0850
0.0492
0.0289
0.0173

1.513
1.475
1.378
1.240
1.065
0.887
0.712
0.561
0.435
0.334'
0.255
0.150
0.089
0.051
0.030
0.015

1.540
1.501
1.392
1.233
1.051
0.868
0.699
0.553
0.431
0.333
0.255
0.149
0.087
0.051
0.030
0.018

All values reported here are in a.u. Theoretical profiles have been calculated at the equi-
librium separation of nuclei, & =1.4 a.u.

Henneker results reported by Eisenberger (Ref. 7); SCF function of Cade (unpublished),
and MCSCF function of Das and Wahl (Bef. 16).

Brown and Smith (Ref. 10) results; CI function of Liu (unpublished).
Smith et al. (Ref. 18) results, CI function of Liu (Ref. 19).
Profile CI2 corrected for the vibration-rotation motion of nuclei (Ref. 18).
This work.

g Eisenberger (Bef. 7) experimental results. Experimental errors are +0.7%, +1%, +3%,
and +10% atq=p. p, 0.6, 1.2, and 1.8, respectively.

"Lee (Ref. 6) experimental results obtained by HEEIS. Displayed numbers are evaluated
using Eq. (10) of Bef. 6 with coefficients from Table VII of Bef. 6. The experimental error is
reported by Lee only at q = 0.0. It amounts to +0.7%.

by using our CGF wave function. The calculated
value of the parallel component of H, polarizability
is 6.372 a.u. ,

"whereas the exact result amounts
to 6.380 a.u. ' The quotient V/2E (the virial theo-
rem) calculated at R =1.4 a.u. turns out to be equal
to 1.00026 while the exact value is 1.00024." For
the dispersion energy of H, at the distance of the
Van der Waals minimum (R =8 a.u. }we obtained
the value of -3.659 &10 ' a.u. ,

"whereas the pre-
vious best result of Ko)os" is -3.658&10 ' a, .u.
The above results demonstrate the high accuracy
of our wave function and are supplementary to the
information contained in Table I.

Table IV shows that our values of p(0}, (Po),
(p'), (p'), (p'), and (p') are in good agreement
with values obtained by I ee,' lying well within the
experimental error limits. In the case of (p '),
(P ), and (P') our results are very close to those
obtained from the CI STQ calculations' but for
higher powers of momentum we have obtained sig-
nificant improvement. For (p2) we have obtained
'excellent agreement with the exact result of Kofos
and Wolniewicz. " Qn the other hand our value of
(p4), though closer to the exact onem' than any
other result quoted in Table IV, is still by about

0.5 a.u. too small. The reason for this is the
above-mentioned too-fast decay of our I(p} for
large p. This is clearly seen if we note that the
contribution to (p~) from the high-momentum re-
gion p &60 a.u. [i.e. , from that area, where our
I(p} dies out too fastj, estimated by using the hy-
drogen atom density amounts to about 0.4 a.u. The
same effect can also enter (P') and (p') but at the
last digit quoted in Table IV.

Comparison of the fourth and seventh columns of
Table III shows that, in spite of using a much bet-
ter wave function, giving 99.9%%u~ of the correlation
energy, our Compton profile is very close to that
of Brown and Smith, obtained with the wave func-
tion giving only 98%%u& of the correlation energy.
Thus, our values of J(q} cannot be expected to
change when the remaining O. l%%uo of the electron
correlation is allowed for. Vfe can conclude then,
that the Compton profile calculated by us is the
ultimate nonrelativistic IA Compton profile for H, .
It is worthwhile to add here that our value of j(0},
contrary to what one might intuitively expect, is
slightly higher than the value obtained by Brown
and Smith. However, in later papers' ~ Smith
et al. quote a different value for J'(0) obtained with
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a slightly different Liu CI function" and equal to
1.5322. This value as well as the whole profile of
Ref. 18 (cf. Table III) are almost identical with

ours, thereby confirming the high, limiting accur-
acy of our Compton profile.

Comparison of the second and seventh columns
of Table III clearly shows that the electron corre-
lation correction to the Hartree-Fock profile is
small, ranging from —1.7% for q=0 to +3% for q=l
and +13%%u, for q = 2. It is difficult to say whether the
correlation contribution to J(q) behaves similarily
for other molecules. For H, O for instance, this
contribution has been found" to be positive at @=0.
However, it should be noted that while for q&1
even a moderately correlated wave function can
describe adequately the correlation correction to
J'(q), a high-accuracy wave function is required to
predict a correct sign of this correction at small
values of q. For example, the MCSCF wave func-
tion of Das and Wahl" accounting for 89%%uz of the
correlation energy of H, predicts a wrong (positive)
sign for the correlation contribution to g(0).

To compare the theoretical profile with an ex-
periment one should add the correction for the vi-
bration-rotation motion of nuclei. "' Owing to the
slight anharmonicity of this motion the average in-
ternuclear distance (R) is somewhat larger than
the equilibrium separation R, = 1.4 a.u. Thus the
vibrationally averaged profile should be more sim-
ilar to the profile of two H atoms, i.e., should be
slightly higher and more contracted than that cal-
culated at R =1.4 a.u. It has been found, ""that the
vibrational correction to J'(0) is really positive and

increases J(0}by about 1/~. The corrected value
equal to 1.546 is in excellent agreement with the
experimental value of Lee obtained by using high-
energy electron scattering but disagrees with the
earlier x-ray Compton scattering data of Eisen-
berger. '

It should be noted, however, that our profile
cannot be in a complete agreement with I ee's pro-
file for the whole range of the variable q. The
reason for this is that the latter profile is normal-
ized to 0.9965 rather than to unity. Lee argues
that his profile should not be renormalized and

that his method of normalizing the experimental
data leads to very accurate values of J(q) near the
peak of the profile. Therefore, his values of J(q)
must be smaller than curs at some larger values
of q. This is clearly observed at 0.3 &q&0.8. In
this region, however, our profile corrected ac-
cording to Ref. 18 lies well within the error limits
of the x-ray experiment. The same would occur
for the HEEIS profile provided that the experimen-
tal error limits were in that case about twice as
large as the x-ray profile error limits. Unfortun-

ately, experimental error is reported by Lee only
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at q=o.
The low-momentum disagreement between the

x-ray Compton profile on the one hand and the
HEEIS and theoretical ones on the other is much
larger than the experimental error bounds. Unless
the multiple- scattering effects' are considerably-
stronger for H, than for helium, this disagreement
is difficult to explain at the moment.

ACKNOW( LEDGMENTS

The authors would like to thank Professor W.
&egos for stimulating discussions and Dr. L. Ada-
mowicz for his help in computing the wave function
for H, . This work was supported in part by the
Polish Academy of Sciences within project MR-I.9.

'J. W. M. Dumond, Phys. Rev. 33, 643 (1929).
2J. W. M. Dumond, Rev. Mod. Phys. 5, 1 (1933).
3P. Eisenberger and P. M. Platzman, Phys. Rev. A 2,

415 (1970).
We will use units in which the Plane& constant h, the
electron mass m, and the electron charge 8 are equal
to .unity.

5A. L.Hughes and M. M. Mann, Phys. Rev. 53, 50
(1937); 54, 189 (1938).

6J. S. Lee, J. Chem. Phys. 66, 4906 (1977).
YP. Eisenberger, Phys. Rev. A 2, 1678 (1970).
W. H. Henneker, quoted in Ref. 7.

9R. C. Ulsh, R. A. Bonham and L. S. Bartell, Chem.
Phys. Lett. 13, 6 (1972).
R. E. Brown and V. H. Smith, Jr. , Phys. Rev. A 5,
140 (1972).

'~B. Liu, quoted in Ref. 10.
2W. KoPos and L. Wolniewicz, J. Chem. Phys. 43, 2429
(1965).

3J. V. L. Longstaff and K. Singer, Proc. R. Soc. Lond.
A 258, 421 (1960).

~4M. E. Schwartz and L. J. Schaad, J. Chem. Phys. 46,
4112 (1967).

' ¹C. Handy, Mol. Phys. 26, 169 (1973).
G. Das and A. C. Wahl, J. Chem. Phys. 44, 87 (1966).

'~W. Kofos and C. C. J. Boothaan, Hev. Mod. Phys. 32,
219 (1960).

~ V. H. Smith, Jr., A. J. Thakkar, W. H. Henneker,
J. W. Liu, B. Liu, and R. E. Brown, J. Chem. Phys.
67, 3676 (1977).

~%. Liu, J. Chem. Phys. 58, 1925 (1973).
2 R. Benesch and V. H. Smith, Jr. , in S'ave Mechanics-

the Fi~st Fifty Years, edited by W. C. Price, S. S.
Chissick, and T. Ravensdale (Butterworths, London,
1973).

~~K. Szalewicz, L. Adamowicz, and A. J. Sadlej, Chem.
Phys. Lett. (to be publ. ished).

2 W. KoPbs and L. Wolniewicz, J. Chem. Phys. 46,
1426 (1967).
B. Jeziorski and K. Szalewicz (unpublished).

t4W. Koios, Int. J. Quantum Chem. 88, 241 (1974).
W. Kofos and L. Wolniewicz, J. Chem. Phys. 41, 3663
(1964).

26M. H. Whangbo, V. H. Smith, Jr. , E. Clementi, 0, H.
Diercksen, and W. von Niessen, J. Phys. B 7, L427
(1974).
V. H. Smith, Jr., G. H. F. Diercksen, and W. P.
Kraemer, Phys. Lett. A 54, 319 (1975).

2 J. Felsteiner, P. Pattison, and M. Cooper, Philos. .

Mag. 30, 537 (1974).


