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Ab initio treatment of final-state spin-orbit interactions:
Photoionization of the 6s electron in cesium
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Ab initio theoretical calculations are presented for the cross section, photoelectron angular distribution,
and photoelectron spin polarization resulting from photoionization of the 6s electron of cesium. Starting from
an initial basis of nonrelativistic Hartree-Fock wave functions, the effect of final-state spin-orbit interaction
in the Breit-Pauli approximation is treated exactly. The effect of core relaxation is also examined. Our
calculated results agree with recent experimental measurements of the photoionization cross section and the
photoelectron spin polarization. Comparison is made with other theoretical calculations, Finally, the length
form of the electric dipole interaction operator is shown to be consistent with gauge invariance when one
solves for the exact eigenstates of a Hamiltonian containing spin-orbit interactions.

I. INTRODUCTION

The importance of the spin-orbit interaction to
the theoretical description of optical transitions
in the alkali meta, ls has been known since Fermi's
explanation' in 1930 of the anomalous doublet line
strength ratio for higher members of the principal
series of cesium. Fermi used perturbation theory
to show that the spin-orbit interaction is repulsive
in the J =-,' state and attractive in the 4=2 state,
thus leading to differences between the P,~, and

p, ~, radial wave functions for the excited electron.
These differences are sufficient to explain the ob-
served anomalies. Nore recently, these same
differences between the 4 =2 and ~ =2 radial wave
functions of the excited electron have been used
to explain and predict a number of interesting ef-
fects that may be observed upon photoionization of
cesium: The observed' ' occurrence of a nomen
minimum in the photoionization cross section was
explained thusly by Seaton. 4 The occurrence of a
large photoelectron spin polarization near the
minimum in the photoionization cross section was
predicted by Fano' and later observed experi-
mentally. ' ' Finally, the prediction of energy-
dependent photoelectron angular distributions was
made by Jacobsp' by Walker and Waber, "and by
Marr, "but has not yet been verified experiment-
ally.

Despite the intrinsic theoretical interest of the
alkali metals generally —in particular of cesium,
since it has the largest spin-orbit interaction-
all of the theoretical calculations mentioned above
and nearly all of the theoretical work on cesium
subsequently has been semiempirical. "" The
best of the semiempirical calculations are those
of Weisheit" and of Norcross, "who achieve very
close agreement with experiment within a few eV
of the first ionization threshold. Each of these

two calculations incorporates both spin-orbit and
polarization potential terms in the semiempirical
model potentia, l.

Only three ab initio calculations on cesium are
known to us: Chang and Kelly" have used Dirac-
Fock wave functions to compute the photoioniza-
tion cross section and the amount of spin polariza-
tion; Amusia and Cherepkov'9 have reported ran-
dom-phase approximation (RPA) calculations for
the cesium photoionization cross section in which
they account for intershell correlation between
the 6s subshell and lower-lying ones; and very
recently, Gng and Manson" used Dirac-Fock wave
functions to calculate the photoelectron angular
distribution near threshold. Of these three cal-
culations, the RPA one neglects spin-orbit inter-
actions altogether and gives poor agreement with

experiment near the ionization threshold. The
Dirac-Fock calculations take into account the
spin-orbit interaction of the photoelectron in the
field of the screened nucleus, but neglect the spin-
other-orbit interaction arising from the Breit in-
teraction. " The Dirac-Fock calculations do,
however, give qualitative agreement with experi-
ment near the ionization threshold.

In this paper, we present ab initio calculations
of the cesium photoionization cross section,
photoelectron angular distribution, and photoelec-
tron spin polarization taking proper account of the
final-state spin-orbit interaction. That is, in
addition to the spin-orbit interaction of the photo-
electron in the field of the nucleus, we have eval-
uated exactly the matrix elements of the mutual
spin-orbit operator. " This mutual spin-orbit
operator arises from the relativistic Breit-Pauli
correction" to the nonrelativistic Hartree-Fock
Hamiltonian. The final-state perturbation matrix
elements were then used to obtain improved final-
state wave functions in the 4 =-,' and 4 =2 photoelec-
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tron channels by means of the K-matrix meth-
od."'" In addition, unlike other calculations,
ours are carried out using both frozen and relaxed
ionic core wave functions in order to demonstrate
the effect of core relaxation. In common with all
other ab initio calculations, we have neglected
polarization effects. In common with the Dirac-
Foek calculations mentioned above, we have ne-
glected intershell correlations since the 5P sub-
shell lies more than 8 eV below the 6s subshell. "
Our results are in qualitative agreement with pre-
vious Dirac-Fock calculationS, but agree more
closely with experiment near threshold than all
previous ab initio calculations.

In Sec. II we discuss the mutual spin-orbit inter-
action operator and present our results for its
matrix elements. In See. III we review briefly the
E-matrix method for obtaining improved electric-
dipole matrix elements. In Sec.. IV we summarize
formulas for the photoionization cross section,
photoelectron angular distribution, and photo-
electron spin polarization. In Sec. V we present
our results, compare them with experiment and
with other calculations, and discuss our conclus-
ions. Finally, in the Appendix we show that it is
the length form of the electric-dipole interaction
which is consistent with gauge invariance of a
model Hamiltonian containing the spin-orbit inter-
action.

is a single electron outside closed shells, the mu-
tual spin-orbit interaction may be reduced to an
effective one-particle spin-orbit interaction. "
One may describe the mutual spin-orbit interac-
tion in this ease as consisting, firstly, of the
direct and exchange contributions to both the spin-
self-orbit and the spin-other-orbit interactions of
the outer electron in the field of the closed shells,
and, secondly, the direct and exchange contribu-
tions to both the spin-self-orbit and spin-other-
orbit interactions of the closed-shell electrons in
the field of the outer electron. "

Matrix elements of the spin-orbit operator in

Eq. (1) may be evaluated by using graphical meth-
ods."'" In this paper we are concerned with
photoionization of the es subshell of cesium in the
electric-dipole approximation:

Cs1s' ~ 5P'6s ('S, g, )

= Cs ls'" 5p"p(P„, „,).
PhatO&OnlZatloq

II. SPIN-ORBIT MATRIX ELEMENTS The spin-orbit matrix elements of interest to us
are thus

The quantum electrodynamic interaction between
electrons can be approximated, to the lowest or-
der in the fine-structure constant n, by the Breit
interaction, "'"

, which in the Pauli approximation
gives rise to the mutual spin-orbit interaction (as
well as others which are less important). " Con-
sequently, the total spin-orbit interaction for
many-electron atoms can be written in atomic
units as"

(Cs'1s' ~ ~ ~ 5P'e'P ('P, ~, )~

&&V' ~Cs ls' ..5p'cp('P, ~, )) =- &, ~,~, (4a)

N N

V =-Za'Z —T s + ~ V.So
2. ~3

ss j (Cs' 1s' '5'' ('PP, i, )i

where the mutual spin-orbit operator is

'(o"ir', ,) (r„xp, ) ~ (s-, +2s,.) .

x V' ~Cs'1s' ~ 5P'~P('P
~ )) =+-,'&,i~,~, (4b)

In the case of atomic configurations in which there where
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g, ~,~—= —,Za'(1/r'), ~,~ + g [-4N (e'pns; cpns) —4K '(e'pns; nscp)

+ 2N'(nsc'p; epns) +2VO(e'pns; nscp]

5

+ g [-12¹(e'pnp; cpnp ) ——", ¹(e'pnp; npop) + & ¹(npe'p; epnp }- ~&
¹ (~'pnp; np op )

8 —2

+'-,' ¹(np&'p &pnp)+~5 V'(e'pnp; npep)]

4

+ g [- 20& (e'pnd; epnd)- 2X '(e'pnd;ndcp) —6N '(nd ep; Epnd) —-'~'(e'pnd; ndep)
6 —3

++P( ndh' p epnd) —~&~N'(e'pnd;ndep)+'— 'g'(n de' p epnd)

—2V (e'pnd; ndhp) +-"V'(e'pnd; ndep)]. (5)

In Eq. (5} the radial integrals are defined as follows.

(6}

2 00 oo gk
(&&; cd) =— r,'dr, r22drp, (r, )R, (r, ) ~', , e(r, —r, )R, (r, )R„(r,);

V'(ab; cd) =— r', dr, r2dr, R,(r, )R, (r, ) & r r R (r )R (r ) (8)

In the above equations, R,(r, ) is the radial wave
function for the electron state a, and the 8 func-
tion is defined by

For the diagonal matrix elements we were able to
verify that our result in Eq. (5) agrees with that of
previous calculations. "'~ As a practical consider-
ation, we note that in Eq. (5) the direct ¹ inte-
grals are generally much larger than the other N'

and V' integrals.

III. K-MATRIX CALCULATION OF IMPROVED DIPOLE
MATRIX ELEMENTS

Our zero-order Hamiltonian is the V" ' Har-
tree-Fock (HF) Hamiltonian" in which the occupied
ionic orbitals are taken to be either the HF or-
bitals of the neutral atom (i.e., the frozen-ionic-
core approximation) or the HF orbitals of the ion

(i.e., the relaxed-ionic-core approximation}.
This Hamiltonian is used to generate the continuum
P orbitals for the photoelectron. Since in our zero-
order approximation the J =—' and 4 =—-' states for
the photoelectron are degenerate, we denote a
member of the zero-order set of final-state Slater
determinants simply by the energy index of the
photoelectron:

i c) —=
i
Cs' Is' ~ ~ ~ 5p'ep('P))

The perturbation Hamiltonian is the spin-orbit
operator, given by Eq. (1), which splits the de-
generacy between the J = 2 and J = 2 states in Eq.
(10). Matrix elements of the spin-orbit operator
between states of the form (10) are given by Eq.
(4}.

Our aim is to calculate the exact energy eigen-
states of the Hamiltonian given by

within the subspace of states of the form (10). In
Eq. (11) the subscript J on the spin-orbit operator
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indicates explicitly that the spin-orbit interaction
is J dependent. The energy eigenstates of Eq. (11)
may be written in terms of the reaction matrix
Kz(E) of scattering theory as follows"' '4:

d, l~&&~l&, (&)i&&

) ms= t'drR„(r) —R,~(r) . (18)

Eq. (12) with (Oi g; &, to obtain an equation identi-
cal in form to Eq. (16) for the improved radial
dipole-velocity matrix element, M~~, in terms of
the zero-order HF radial dipole-velocity matrix
elements,

xcosq~ exp(- i)Iz —f6) .

In Eq. (12) the symbol 6' indicates that the Cauchy
principal part is to be taken when integrating over
the singularity in the denominator and the integra-
tion over the photoelectron energy & implies also
a summation over discrete states. The reaction
matrix is obtained as the solution of the following
integral equation:

The procedure, then, for obtaining improved
radial dipole matrix elements is as follows. First
one solves the integral equation (12) by reduction
to a set of linear algebraic equations, '4 using
matrix elements of V~ calculated as in Sec. II.
Then one calculates the zero-order HF radial
dipole matrix elements according to either the
length form in Eq. (17) or the velocity form in
Eq. (18). Improved radial dipole matrix elements,
normalized according to the incoming-wave bound-
ary condition, are obtained then by transforming
the zero-order dipole matrix elements according
to Eq. (16).

The phase shift g~ in the normalization factor
cosy~ is defined in terms of the on-the-energy
shell reaction matrix as follows:

(14)

Lastly, in Eq. (12) the factor exp( —i)I~ —i6)(where
& is the HF phase shift of the photoelectron with
respect to Coulomb waves") is needed to convert
the standing-wave normalization to the incoming-
wave normalization as required for photoioniza-
tion processes. "'"

One may obtain an equation for the improved
radial dipole matrix elements by operating on both
sides of Eq. (12) with the operator (Oig, r„where
Q,. r, is the length form of the electric-dipole
operator and where (Oi denotes the ground state,

(Oi
—=(Cs 1s' ~ 5P'Gs('S)i .

After dropping common angular factors from both
sides of the resulting equation, one gets

x cos)I~ exp( —i@~ —i6),

IV. FORMULAS FOR EXPERIMENTALLY MEASURABLE
QUANTITIES

All experimentally measurable quantities re-
lated to photoionization of cesium near its first
ionization threshold may be expressed theoreti-
cally in terms of the improved radial dipole ma-
trix elements M~s defined by Eq. (16). Formulas
for the photoionization cross section, photoelec-
tron angular distribution, and photoelectron spin
polarization are discussed in turn below.

A. Photoionization cross section

The cross section for the photoionization pro-
cess (3) is given by

o((u) =(4))'/3c)(ui msi'

in the zero-order HF approximation, and by

(19)

(20)((u) = (4))'/3c) (u(-',
i M, (, (

'+,
(
~,(,s t

')

in the improved calculation including final-state
spin-orbit interaction. In Eqs. (19) and (20) &u is
the photon energy in atomic units (1 a.u. =27.2108
eV) and 4v'/3c =2.68909XIO " cm'. The photo-
electron energy E is fixed by the photon energy v
according to

where the zero-order HF radial dipole-length
matrix elements are defined by

m, = r'drR, r R,~
r

Alternatively one may operate on both sides of

where I~ is the theoretical HF binding energy for
the Gs electron (in the frozen-core approximation
X~ =0.123668 a.u. , and in the relaxed-core approx-
imation Ir =0.123 348 a.u. ). The form of Eqs. (19)
and (20) is based on our normalization" of HF
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B. Photoelectron angular distribution

For linearly pola. rized light incident on an un-
polarized target the photoelectron differential
cross section (in the electric-dipole approxima-
tion) may be written

—
=4
—[1 + PP, (cos 8}].Ag 0'

(21)

Here o is the total photoionization cross section,
8 is measured with respect to the axis of linear
polarization, and P is the asymmetry parameter,
which characterizes the energy dependence of. the
angular distribution. (For unpolarized or circu-
l'arly polarized incident light P is replaced by

continuum wave functions: we have required the
radial wave function for a photoelectron having
kinetic energy e (a.u. ) to have an asymptotic am-
plitude [2/m(ae)'/']'/'. Note that if the velocity
form for the matrix elements is used, then ~ in
Eqs. (19) and (20} is replaced by ~ ' and the ma-
trix elements M~E are replaced by M~. All other
theoretical formulas presented below have the
same form in both the dipole-length and dipole-
velocity approximations.

—P/2 and 0 is measured from the direction of the
incident light. )

The asymmetry parameter P is determined by
the improved radial dipole matrix elements':

p(E)
I R12//I + ( 1/2lP 3/2E+ 1/2E 9/2z) (aaa)

)IVI, /
'I +21M, /, t

or equivalently

(E)
2IM, /, I'+4IM, /, I IM, /, Icos(r/, /, —q, /, )

IMi/2s I'+ 2IMs/281'

(aab)

Note that in the absence of spin-orbit interaction
the two dipole amplitudes become equal and P
assumes the energy-independent value of 2. In the
presence of spin-orbit interaction, P =+1 when

I M, /»I =o and p =o when I M. /»I =o.

C. Photoelectron spin polarization

The spin polarization of photoelectrons ejected
by circularly polarized light incident on unpolar-
ized cesium atoms has been shown by Fano' to be
given by:

3/2E + 0 3/ZE &/2EI 9 3/2E+ X/2E
2 2 2 1 2

~ M3/2El + 9 ~ M3/2E I]/2E ~ + 9 ~ M3/2E+ ~y/2E~
(23a)

or equivalently,

s IM, /, s I
' —

I M, /, //I
' —4 I M„»IIlvl», zi cos(q„, —r/„, )

61M3/»l + 3.l ~,/»I

One sees that in the absence of spin-orbit interac-
tion the equality between M3/» and M, /» gives
P =0. In the presence of spin-orbit interaction,
one sees that P =& whenMy/2E 0and P =- 3 when

JI/I3/2E =0

X(E)= (2 fM3/~sf + fM~/2st)/()M3/2EI fM1/2Ef).

Thus the asymmetry parameter in Eq. (22) may
be written as"

D. Fano parameter I
P(E) =2[X(E)' —1]/[X(E)'+2] (25)

In the limit that the phase shift difference p3/2
—q, /, is very small, one may approximate
cos(q, /, —q, /, ) by unity. In this case both the
angular distribution asymmetry parameter P(E)
and the spin-polarization parameter P(E) may be
expressed in terms of the Fano parameter X(E)
(Ref. S}:

and the polarization parameter in Eq. (23) may be
written'

P(E) =[2X(E)+1]/[X(E)'+ 2].
I

A similar formula for the photoelectron spin-pol-
arization resulting from unpolarized light incident
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TABLE I. Photoionization data for Cs 6s&g2 Ep3g2, &y2 using frozen ion core.

{a.u.) (eV)

Photoelectron
energy Photoionization

cross section ' ~ "
a (Mb)

Asymmetry
parameter"

P

Polarization
parameter b

P

Pano
parameter b

0.000
0.020
0.030
0.070
0.090
0.120
0.160

0.000
0.544
0.816
1.905
2.449
3.265
4.354

0.1546 (0.0386)
0.0212 (0.0204)
0.0147 (0.0275)
0.0 171(0.0566)
0.0199(0.06 72)
0.0254 (0.0760)
o.o295(o.ov49)

+1.592 (+ 0.437)
-0.472 (-:0.302)
-O.994(+ O.532)
+0.306 (+ 1.527)
+0.639(+ 1.629)
+1.119(+1.735)
+1.351(+1.775)

+O.552 (+ O.96V)
+O.948 (- O.214)
+0.458 (- 0.462)
—OA19( —0.434)
—o.4vv(- 0 401)
-O 496 (-O.353)
—0.472 (-0.330)

+3.572 (+ 1.355)
+0.651(-0.778)
-0.040 (- 1.446)
-1.242(- 3.285)
-1.554(-3.790)
-2.220 (-4.587)
-2.VO3(- 5.O25)

Calculated using theoretical binding energy of 3.3651 eV; experimental binding energy
is 3.8938 eV.

Results given using dipole-length {dipole-velocity) formula.

on polarized cesium atoms has been given by Baum
et al.''

V. RESULTS AND DISCUSSION

Our results for the photoionization cross sec-
tion, photoelectron angular distribution, photoelec-
tron spin polarization, and Fano parameter X as-
sociated with Gs photoionization are presented in
Figs. 1-6 together with the results of experiment
and other theoretical calculations. For the con-
venience of other researchers, we also present
our frozen-core and relaxed-core results numeri-
cally at a few energies in Tables I and II, re-
spectively. Before we discuss each of our results
in detail, three general comments are in order.
Firstly, our calculations indicate that the factor
cos(q, ~, —g, ~,) in Eqs. (22b) and (23b) varies only
between 0.996 and 6.998 within the first few eV
of the ionization threshold. Hence, we have found
that Eqs. (25) and (26) are very good approxima-
tions for P(E) and P(E), respectively, although all
our results use the exact express ions in Eqs.

(22b) and (23b). Secondly, as shown in the Appen-
dix, which is an extension of previous work, "only
the dipole-length matrix elements are consistent
with gauge invariance of the Hamiltonian in Eq. (11)
and in that sense are to be preferred. However,
we have also calculated the dipole-velocity matrix
elements since the Dirac-Fock calculations use the
relativistic form of the dipole-velocity approxima-
tion. Interestingly, our dipole-length results are
the ones that agree most closely with the Dirac-
Fock dipole-velocity results. Lastly, since the
semi empirical calculations of Weisheit" and
Norcross" agree very well with recent experi-
mental results, we only compare our results to
the semiempirical calculations at energies for
which there are no experimental results.

A. Photoionization cross section

Our theoretical results for the 6s photoioniza-
tion cross section are presented in Figs. 1 and 2.
In Fig. 1 we demonstrate the effect of spin-orbit
interactions by comparing the zero-order HF cal-

TABLE II. Photoionization data for Cs 6s&y2 eP F2, &g2 using relaxed ion core.

(a.u.) (eV)

Photoelectron
energy

E'

Photoionization
cross section

0 (Mb)

Asymmetry
parameter b

Polarization
parameter "

P

Pano
parameter

X

0.000
0.025
0.035
0.070
0.120

0.000
0.680
0.952
1.905
3.265

0.1124(0.0253)
0.023 1(0.0208)
0.0137(0.0302)
0.0151(0.056 7)
0.0274 (0.0716)

+1.552 (+ 0.112)
+0.325(+ 0.315)
-O.538(+ O.946)
+O.294 (+ 1.6O4)
+1.3].8 (+ 1.773)

+o.5vs (+ o.99v)
+0.981(-0.421)
+0.932(- 0..499)
-O 416 (—O.41O)
-o 4vs(- o.333)

+3.382(+ 1.084)
+1.257(- 1.250)
+0.601(-1.924)
-1.232(-3.644)
-2.610(-4.985)

Calculated using theoretical binding energy of 3.3564 eV; experimental binding energy
is 3.8938 eV.

Results given using dipole-length (dipole-velocity) formula.
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O.IS-

O.IO-

S
I/2

E'0
0/2e I/2

FIG. 1. Cross section
for photoionization of the
6s electron in cesium vs
photoelectron energy (eV):
---, HF results; —,re-
sul.ts including effect of
spin-orbit interactions.
Besults are presented in
both the frozen-core ap-
proximation (F) and the re-
).axed-core approximation
(R). For clarity, only di-
pole-length results are
shown.

0.0',
0.0 0.5 I.O l.5
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r
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X

Flo. 2. Cross section
for photoionization of the
6s electron in cesium vs
photoelectron energy (eV):
—,present relaxed-core
results in dipole-length
(L) and dipole-velocity (V)
approximation; — —,pre-
sent frozen-core results in
dipole-length (L) and di-
pole-velocity (V) approxi-
mation; ——,experimental
results of Marr and Creek
(Bef. 36); 8, experimental.
results of Cook et al. (Bef.
35); 0, semiempirical. cal-
culations of Norcross {Bef.
16); ~, semiempirical cal-
culation of Weisheit (Ref.
15); i, Dirac-Fock calcu-
lation of Chang and Kelly
(Ref. 18);long dashed line,
BPA calculation of Amusia
and Cherepkov (Ref 19)

o.o
O.o

I

0.5 I.O l.5 2.0 2.5

PHOTOELECTRON ENERGY ( V)
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culations with the calculations including spin-or-
bit interactions. The calculations have been car-
ried out in both the frozen-core and relaxed-core
approximations. The major effect of final-state
spin-orbit interactions is to remove the zero min-
imum appearing in the HF calculations. This ef-
fect is caused by different spin-orbit shifts of the
cross-section minima in the 4 = 2 and J = & photo-
electron channels [cf. Eq. (20}].

Our calculations including spin-orbit interac-
tion are compared with experiment in Fig. 2. For
photoelectron energies in the range 0 «& 0.7 eV,
our dipole-length relaxed-core results are in ex-
cellent agreement with the recent experimental
measurements of Cook et a/, "who used a laser to
ionize an atomic beam of cesium atoms and detect-
ed the resulting ions. In this energy region, our
relaxed-core results agree also with the relative
cross-section measurement of Mohler and Boeck-
ner, ' who photoionized a low-pressure gas of ces-
ium atoms and detected the ions photoelectrically.
We have not plotted the results of Mohler and
Boeckner, ' however, since if we normalize them
to our relaxed-core result at threshold they fall
within the error bars of Cook et al." %e agree
only qualitatively in this energy region with the
photographic absorption measurements of Marr and

Creek, "whose results are higher than ours by a
factor of about 2. For photoelectron energies in
the range 0.7 «& 2.5 eV our dipole-length results
do not rise significantly, as do the experimental
results, although curiously our velocity results do
show such a rise.

In comparison with other, theoretical results,

Fig. 2 shows that our dipole-length calculations
agree qualitatively with the Dirac-Fock calcula-
tions of Chang and Kelly. " Our results, however,
are closer to the recent experimental measure-
ments" than the Dirac-Fock results in the energy
range 0 & E & 0.7 eV, after which our results con-
verge on the Dirac-Fock results. The RPA results
of Amusia and Cherepkov" are qualitatively differ-
ent from both our dipole-length results and from
experiment since they rise above threshold rather
than fall. It should be noted that the RPA calcula-
tions do not include spin-orbit interactions, but
do include intershell correlations. However,
since a minimum in the photoionization cross sec-
tion occurs in the zero-order HF calculations,
as shown in Fig. 1, the neglect of spin-orbit inter-
actions in the HPA calculation is certainly not the
reason for the absence of a minimum in the RPA
cross section. At higher energies the rising BPA
cross section is qualitatively similar to, but much
larger than, both the experimental results"'"
and the semiempirical calculations. "'"

B. Angular distribution asymmetry parameter

Our relaxed-core and frozen-core results for
the photoelectron angular distribution asymmetry
parameter are shown in Figs. 3 and 4, respect-
ively. Our results are obtained using the exact
formula in Eq. (22). However, our calculations
indicate that the phase shift difference q3/2 g] /2
is very small: it starts at -0.075 rad at threshold
and rises to -0.086 rad at 0.4 a.u. kinetic energy.
Thus the angular distribution asymmetry parame-

I.O-

-I.O ——

O.O I.O 5.0 gO 5;0

FIG. 3. Angular distri-
bution asymmetry param-
eter P(E) vs photoe1ectron.
energy (eV): —,present
relaxed-core results in
dipole-length (1.) and dt. —

pole-velocity (V) approxi-
mation; shaded band, in-
ferred experimental. re-
sults obtained from data of
Baum et el. (Ref. 9) for
X(E); ---, Dirac-Fock cal-
culation of Ong and Man-
son (Ref. 20).

PHOTOELECTRON ENERGY (eV)
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2.0
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I.O 3.0 QO

PHOTOELECTRON ENERGY {eV)

~e~ '

~
~'

gt

I 0
l
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i'
l

00-~ =In
/

3/2, I/2

-i.o I I

00 2.0 5.0

I"IG O' Angular distri-
bution asymmetry param-
eter P(E) vs photoelectron
energy (eV); — —,pre-
sent frozen-core results
in dipole-length (I ) and di-
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ter P(Z) is to a very good approximation deter
mined b'y the Fano parameter X(Z}def' d b E
(24}. Since there are no direct experimental mea-
surements of p(Z), in Figs. 3 and 4 we have plot-
ted an inferred experimental result obtained by
substituting in Eq. (25) the experimentally derived
values for X(Z) of Baum et al.' Figures 3 and 4
show that our dipole-length and dipole-velocity
results lie on either side of the inferred experi-
mental results. Furthermore, the figures show
that our relaxed-core dipole-length results are
the ones in closest agreement with the Dirae-Pock

dipole-velocity results of Ong and Manson" %e
note also that the Dirac-Fock calculations of Ong
and Manson' are consistent with those of Chang
and Kelly": if Chang and Kelly' s result f

( ) are substituted in Eq. (25) they give results
for P(Z) that are nearly the same as the results
of Ong and Manson using Eq. (22).

C. Photoelectron spin-polarization parameter

The spin polarization of photoelectrons resulting
from ionization of unpolarized cesium atoms by

IOO.O '—
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0.0 "
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FIG. 5. I'hotoelectron
spin polarization parameter
I'(E) vs photoelectron ener-

(eV): —,present re-
laxed-core results in di-
pole-length (L) and dipole-
velocity (V) approximation;

—,present frozen-core
results in dipol. e-length
(I) and dipole-velocity (V)
approximation; crosses,
experimental results of
Heinzmann et +l. {Hef. 8);
k Dirac-Fock calculation
of Chang and Kelly (Ref.
S8).
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circularly polarized light has been measured
directly by Heizmann gt a/. ' whose results are
shown in Fig. 5. Also shown are our relaxed-core
and frozen-core results obtained using the exact
Eq. (23). Results obtained using the approximate
Eq. (26) are within 1% of those obtained using the
exact Eq. (23) due to the smallness of the phase
shift difference, as noted above. The figure shows
that the dipole-length and dipole™velocity results
bound the experimental results and that the frozen-
core dipole-length results are closer to experi-
ment than the relaxed-core dipole-length results.
Also, our relaxed-core dipole-length results are
the ones that agree best with the Dirac-Fock
dipole-velocity results of Chang and Kelly. "

D. Fano parameter X

Due to the smallness of the phase shift differ-.
ence q, ~, —q, ~„ the information contained in our
calculated results for P(E) and P(E) may be con-
veniently summarized by the Fano parameter
X(E) defined by Eq. (24). Figure 6 presents our
results for the parameter X(E) in both the frozen-
core and the relaxed-core approximations. As
expected from our calculations for P(E) and P(E),
the dipole-length and dipole-velocity results
bound both the experimentally derived values for
X(E) of Baum et al.' and the semiempirical re-
sults of Weisheit" and Norcross. " Whereas our
relaxed-core results for the photoionization cross

section agree best with experiment, in the case
of the parameter X(E) our frozen-core calcula-
tions are closer to experiment that the relaxed-
core calculations in the energy region within 2 eV
above threshold. As in the calculations of o, P,
and I', our relaxed-core dipole-length results for
X(E) are the ones that are closest to the Dirac-
Fock dipole-velocity results of Chang and Kelly."

E. Conclusions

In our ab initio calculations we have examined
the effects of core relaxation and spin-orbit inter-
action on experimentally measurable quantities
associated with 6s photoionization in cesium. The
final-state spin-orbit interactions have been treat-
ed in the Breit-Pauli approximation as a perturba-
tion on the nonrelativistic HF Hamiltonian. Our
results are in better agreement with experiment
near the ionization threshold than relativistic
Dirac-Fock calculations that ignore the Breit
correction to the single-particle Hamiltonian.
The effect of core relaxation is threefold: it
reduces the Gs electron binding energy, it shifts
the zero in the HF radial dipole matrix elements,
and it reduces the magnitude of the spin-orbit
matrix elements. A merit of the present approach
is the disentangling of various effects on experi-
mentally measurable quantities. 1nter shell cor-
relation effects can easily be incorporated in our
approach, and are presently under investigation. '~
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of Norcross (Ref. 16)', ~,
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Chang and Ke11y (Ref. 18).
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We demonstrate here that the length form of the
electric-dipole interaction operator is the one
which is consistent with gauge invariance of the
Schrodinger equation corresponding to a Hamil-
tonian containing the spin-orbit interaction in Eq.
(1). We consider explicitly the model Hamiltonian
in Eq. (11). Gauge invariance requires that in the
presence of electromagnetic radiation the mo-
mentum operators in Eq. (11), including those in
the spin-orbit interaction, are replaced by

where V" is defined by Eqs. (1) and (2). Combin-
ing Eqs. (AS) and (A5) we find

N

(A6)
4=a

Matrix elements of Eq. (A6) between exact eigen-
states of the Hamiltonian H„F+V thus have the
length form of the electric-dipole interaction. We
emphasize that this result is not dependent on
using H„F for the zero-order Hamiltonian; instead,
we might have used the exact spin-independent
Hamiltonian to obtain the same result.

In fact, in this paper we did not solve II„F+V"
exactly, but rather solved the following model
Hamiltonian exactly:

II,d
=H„F +I'~ V Pf .

p,. -p,. +X(r,)/c. (Al)

[Note that for this purpose l, in Eq. (1) should be
written as r, xp, .] In the electric-dipole approx-
imation, the electromagnetic field is constant over
atomic distances, so that A(r,.) =A. To first order
in A/c the interaction operator describing the
coupling with the electromagnetic radiation fieM
is thus

HF
Bint I int ++1111

where

HF i~
+1flf g ' HF &

N

s-+2s. xr. . (A4)

A

f=l & C
(A5)

Equation (AS), which gives the interaction opera-
tor for the coupling of electrons described by a
HF Hamiltonian with the electromagnetic field,
has been derived in Ref, 34. A simple calculation
shows that Eq. (A4) may be written in the alterna-
tive form,

In Eq. (A7), Pz is a projection operator for the
set of all final states having only one electron ex-
cited. In coordinate-space representation
I'& V I'& has the form:

&r„.. . , r~l Pg V Py I r,', . . . , r „'&

Note that in Eq. (AB) &r, , .. . , r~li& is the N elec-
tron wave function for state i and & i

I V 13& is a
number and not an operator. Since the set I'z is
incomplete, Eq. (A8) shows that PzV"P& is a non-
local operator. As shown in Ref. 34, since we
solve Eq. (AV) exactly in this paper, the coupling
of electrons to the electromagnetic field is des-
cribed by the length form of the electric-dipole
operator.

In summary, then, we have shown that if a Ham-
iltonian containing V is solved exactly, then the
momentum-dependence of V leads to the length
form of the electric-dipole wave function. On the
other hand, if only a part of V is included in
one's model Hamiltonian (such as by restricting
V" to act within a particular subspace) one is led
to a nonlocal potential, which according to Ref.
34 again leads to the length form for the electric-
dipole interaction.

*Present address: Dept. of Physics, University of
Notre Dame, Notre Dame, Ind. 46556.
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