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Diffnsion heating and cooling of positrons in constrained media
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Thermalized positrons in media with spatial constraints can be trapped by sinks, and annihilate with
electrons into y quanta with characteristics that are discernibly different from those of positrons annihilating
in the bulk. The dependence of the cross sections for scattering in the medium on positron velocity
determines whether the fastest or the slowest particles in the velocity distribution disappear preferentially
from the volume. This causes the cooling or heating of the positrons remaining in the medium. The diffusion
equation is solved to derive the annihilation characteristics of positrons, with the result that diffusion heating
and cooling always reduce the effective diffusion coefficient pertinent for trapping relative to that in the
infinite medium. The effects on the annihilation characteristics are those of a reduced trapping rate and of an
apparent initial positron population in sinks, as it is recorded by an instrument with finite time resolution.
The results pertain to positronium diffusion in small gas cells, to the escape of positrons or positronium from
small solids, and to the trapping of positrons by vacancies or voids in solids, They are compared with
experimental results.

I. INTRODUCTION

When positrons from an external source are im-
planted in a dense medium, they thermalize before
they annihilate with electrons into y quanta. ' '
I.et the medium be constrained in the sense that
the spatial positron distribution must comply with
boundary conditions. Such conditions might be
imposed by the confining walls of a small gas
chamber, ' the absorbing surface of small solids, '
or the inner and outer boundaries of domains cen-
tered on positron sinks like vacancies or voids in
solids. "

In such situations, three rates must be con-
sidered. First, the positron annihilation rate y~
(lifetime ra =—yz') in the bulk of the medium; second,
the relaxation rate of thermal positron-energy
fluctuations y~ (relaxation time 7'~—= yz'), through
interactions with the medium of temperature T;
third, the capture rate v of positrons by sinks,
i.e., the positron escape rate from the medium.

In general, positrons reach thermal equi. librium
before annihilation, i.e., y~7~&1. Their annihila-
tion characteristics, such as their lifetime, the
angular correlation between the two 0. 511-MeV
annihila, tion y quanta, or the Doppler-shifted en-
ergies of these y quanta are indicative of the
properties of the medium. ' If yv ~ «1, the con-
straints have a negligible influence on the posi-
trons, and the annihilation characteristics ap-
proach those found in the bulk. If ~7~&1, a
significant fraction of the positrons is absorb-
ed by sinks which constitute, in general terms,
the confining walls of the medium. Once ab-
sorbed, positrons can annihilate with discernibly
different rates y~=—7t'. Thus the annihilation char-
acteristics can yield information about inhomo-

geneities in the medium. It is normal. ly assumed
that thermal relaxation is complete during the
trapping process, vs~ «1, and that the dynamics
of the positrons is that of an ensemble of particles
with the Maxwell-Boltzmann distribution of vel-
ocities v appropriate for the temperature T of the
medium. Positron diffusion is then governed by
the usual ensemble -average diffusion constant

Dr= —,
' (Z(v)v)r,

where X(v) = [N„o(v)] ' is the mean free path in
terms of the scattering cross section o(v) in a
medium containing scatterers at the density N„

When the constraints become so closely spaced
that K~~z 1, conditions change. The positrons
cannot exchange energy rapidly enough with the
medium to reach thermal equilibrium before being
trapped at a sink. In consequence, trapping is no
longer governed by the ensemble-average diffusion
constant D~, but by different diffusion coefficients,
D(v) = —,

'
A. (v)v, for particles in different parts of

the velocity distribution. For example, if c'(v)

were to vary with v as o'=Av~, where A and m are
constants, D(v) would be proportional to vl ™.
Values m & 1 imply that the slowest particles es-
cape preferentially from the medium, and that the
mean kinetic energy of the remaining particles
corresponds to an effective temperature T* that
is higher than T. Conversely, if m &1, the
fastest particles become trapped preferentially,
and T* is lower than T. Such processes are
called "diffusion heating" and "diffusion cooling"
in the context of electron transport in gases. ' "
Only if m=1 does 7.'* remain equal to T irrespec-
tive of any spatial constraints in the medium.

It is the purpose of this paper to study diffusion
heating and cooling of positrons in constrained
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media, to discuss experimental situations in which
these effects can influence positron annihilation
characteristics, and to develop means for ex-
tracting information about the dynamics of posi-
trons and the nature of the sinks in different
media. " In Sec. II solutions of the diffusion equa-
tion for positrons in constrained media are de-
veloped and, in Sec.III, areappliedtotherepre-
sentative model 0=Av for the scattering cross
section. Section IV presents adaptations suitable
for the analysis of experiments and discusses re-
cent measurements of positronium diffusion in
small gas samples' and of the annihilation char-
acteristics of positrons in metals containing va-
cancies. "'" The general implications of our
work are summarized in Sec. V. Appendix A

delineates the parametric dependence of the dif-
fusion modes on the spatial constraints in the
medium, and Appendix 8 gives the trapping rates
in the limit of receding constraints.

By standard separation of variables, f,
=A(p)E(u)T(r), we obtain

V22R(p)= -q'E(p), (7)

dT(r)
( )d7'

-/ g. /3 2
dI'

du cpu

is equal to Dr, Eq. (1), for the case m = 1 where
(0 = (doE//2T.

Inasmuch as the positron annihilation rate y~ is
independent of E, " we can set fo=foexp(-yat)
and write, in terms of the reduced quantities

p =- r/Ae, 7 = t/re-, u = E//2-T,

Eq. (2) as

u (u* —u or* fo+ — +uvyfo= &u* —.- Z/2 9 2/2 dfo 2 ~fO

au (' au ~' ar'

~So= re —+ &ufo, (2)
gt

where u&*= &a/~o is a reduced scattering-collision
frequency in terms of a temperature-dependent
reference frequency w„and k is the Boltzmann
constant. The particle -energy relaxation length
A~ and the corresponding relaxation time v~ con-
tain the information about the scattering and en-
ergy-exchange processes between the diffusing
particles and the medium. Specifically, if elastic
scattering dominates, one has

A, = (M/2T/sm', ~',) '/',

r, =Af/(2m, ~,) = (M/2m, )r... ,

where M is the effective mass of the scatterers
inthe medium, "m, the effective positron mass,
and 7„,= co,

' the collision time. We note that the
ratio

Ae/re = -', /2T/m, o)o (4)

II. DIFFUSION EQUATION

Consider the distribution f(E, r, t) of particles
with kinetic energy E in the position r at time t
in a medium of temperature T where they annihil-
ate with rate y~. The distribution is determined
by a Boltzmann equation, subject to boundary con-
ditions due to spatial constraints in the medium.
We expand f in Legendre polynomials in velocity
space and, on retaining the first two terms in the
usual way, "obtain for the isotropic part f, the
equation

~/2 E2/2 g f + yT ~fo + Z V2fL
a - p~ E A'

3E pE kT ~*

+ (gru* —q'u)E= 0, (9)

—
~

Z(u) —+ [eS(u)+ q(u, q)] G=O,df dG
du E

with the abbreviations

P(u) -=u'/'cu*e ",
q(u, q) =- -q'(u' "/(u*)e ",
S(u) =-u'/'e ".

(12)

(I&)

(14)

(15)

It is instructive to recast Eq. (12) into a Schro-
dinger -like equation

where q' and 8 are separation constants. As
shown in Appendix A, the eigenvalues of Eq. (7),
q oo Ae/L, are proportional to the ratio of the pos-
itron-thermalization length A~ and a characteris-
tic dimension I of the medium. The eigenvalues

q incorporate the spatial boundary conditions on

R(p) into the secular equation, Eq. (9), for the
particle-energy distribution function E(u). The
eigenvalues of Eq. (9), then, determinethe reduced
rates 6) for the trapping of the positrons at the
boundaries, yielding by Eq. (8), for each rate 8,
a component of the time spectrum describing the
positron disappearance from the medium,

ye-gent e- g+8r@) e- (wg+ )t (lo)

where e =-, 0y~ is the trapping rate.
It is convenient to separate out the Boltzmann

factor e "by setting

E(u) =e "G(u),

which transforms Eq. (9) into the Sturm-Liouville
equation for the function G(u),
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d'0
, +[8, -V(x, q)]e=O

through the substitutions
l/2

2I2—= (PS) "i'G, x =— du P

(16) p (t) Q c, n (e-2'((rt e- (rs+)(„()t)

vf

with the abbreviation

vf 2 t/( '2 (: ys y)()

The positron fraction

(26)

(26)

The potential-energy-like term V(x, q) has the
for Q1

E~= y~P~(t)dt=1-Es= Q "' "' s (27)

1 I' S

annihilates in the wall.
The observable lifetime spectrum becomes

p(t)=p, (t)+p (t)

f,= e ' ' g A„,R,(p)E„,(u)e "~&'
2 (20)

where the coefficients A.„~ are fixed by the initial
conditions.

To obtain the positron-lifetime spectrum, we in-
tegrate Eq. (20) term by term over the particle
energies and over the volume 0 of the medium, to
calculate the strength of the decay mode (v, f},

n„~=- A„& f ))„(p) fduu' 'F„&(u). (2()

The fraction ps(t) of positrons surviving in the

bulk, of the medium at time t becomes

in terms of P'= dP/d-x, etc.
The spatial boundary conditions on f, epitomized

by q, appear in V(x, q} through the dependence on

Q(q). For a given eigenvalue of Eq. ('I), q,',
where v= 1, 2. . . , Eq. (16) has, in general, a
series of positive eigenvalues which we denote as
~, &=- ~„&, f = 1,2, . .. , so constituting a spectrum
of increasing trapping rates. The corresponding
eigenstates 2I„(,(x) of Eq. (16) determine the energy
distribution of the diffusing pa, rticles through

E„(u)=e "G„,(u) = e "(PS) "'@„,.
The distribution function becomes, with p„~ = 8„~y~,

(1 c, )e-()'3+2 ( )2

+ Q n„(@„(,e (28)

Equation (28) has a distinctly new content when
compared with the results given in Refs. 19 and
20. The index g enumerates lifetime components
indicative of the distribution in particle energies
which in the presence of sinks differs from the
Boltzmann distribution e ".

In the limit q„-0, that is, in weakly constrained
media where 0» Az, E(u) approaches e ". In this
limit only A„, in Eq. (20) is populated and 8„,
~q'„, as shown in Appendix B. Only the summation
over v in Eq. (28) remains, and we retrieve Eq.
(9) of Ref. 19 exactly.

III. MODELS

For the sake of definiteness in what follows, we
assun1e that the reduced collision frequency u*
—= &o/(d, in Eq. (2) has the form

(29)

where u = Z/kT, anndis a model parameter inde-
pendent of E. Consequently, since co=N, ,va, the
scattering cross section a varies with v as

p (t) = g n y- "s'" (:)2 .
vC

If all positrons are deposited initially in the
bulk one has P„(.n„(.=1. The fraction

(22) o=Av

where A is a constant and m = 1+ 2o, .
In this model, Dr, Eq. (1), becomes

(so)

(23)

dpPw yp+ ~ ~ e(r
w w vC vC' 7

vC

one obtains

(24)

FB= yBPB t dt=
vC B

annihilates in the bulk.
The positron fractionp~(t) annihilates outside A in

a doma, in which we refer to as the "wall, " with
rate yw. Since"'

= [r(;—~)/r(; )]D„,

where I'(x) is the gamma function, and Dor=Asys
', kT/m, (do is giv—en by Eq. (4).
The range of + is circumscribed by physical

processes which underlie thermal-positron scat-
tering, """and are summarized in Table I.

For this model, the variable x, Eq. (17), be-
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TABLE I. Range of model parameters o. and gpss in Eqs. (29) arid (30), respectively, for
various positron scattering processes. The corresponding dependences of the characteristic
collision frequency 0 and the diffusion coefficient D„&, Eq. (31), on the medium temperature
T, are also listed.

Positron scattering partners m =1+2~

Electrons '
(0 ccrc)

Phonons b

Neutral atoms
Crystal imperfections

(0 =-na2)

1
0

2-1
2

3
1
0

-1
-2

T2

T
T3/2

To
T-i

T-1
TO

T-&/2

T
T3/2

~ References 2 and 6.
References 21 and 25.
Reference 22.
References 6 and 21; W+ =S/ppg+y.

comes

du -(2/a. )u 'i', n e0
+i+~/2—

lnu, &= 0,
(32)

l0 f I I I I I I

and, from Eq. (18), we derive

V.(x, q)=q'u- +,', [3(n+1)(o.+3)u

—4(5+ 2a)u" +4u'"]. (33)

i /2 i -I /2 0 -l/2

This function is displayed in Fig. 1 for q = 1 and
various & values (cf. Table l). The horizontal
lines in the "potentials" for &= 0 and a = -1 il-
lustratetheeigenvalues 8,&(q= 1), r = 1, 2. . . . The
requirement u ~ 0 limits the domain of x, by Eq.
(32), to x) 0 if n (0 and to x (0 if c!& 0; the var-
iable x ranges from negative to positive values
only if &=0. We shall now discuss the implica-
tions for positron trapping.

(i) n= 0: The positrons maintain the Boltzmann
distribution irrespective of constraints. Equation
(33) becomes

V(x) -o

V,(x, q) =q'+ —,', —-', e" + —,
' e'", (34)

0
X

which appears to have only one discrete eigenvalue
G„=q', corresponding to the solution of Eq. (16)

q„(x)= exp( —'x ——,
' e")=u'~'e "~'. (35)

With this result and Eqs. (13) and (15), Eq. (17)
yields G = 1 independent of q. Thus, by Eq. (11),
Ii = e ". Equation (6) reduces to the ordinary dif-
fusion equation, with a diffusion constant D»
= AEy~ which is independent of T. The positron
annihilation characteristics for n = 0, therefore,
are exactly those one predicts by neglecting en-
tirely the influence of the constraints on the par-
ticle-energy distribution, as derived for media
with external surfaces, in Ref. 19, and for media

FIG. 1. Potential-energy-like function V (x, q) &n Eq.
(16) vs the positron kinetic-energy parameter x, Eq.
(17). It is calculated according to Eq. (33) for the col-
lision-frequency model given by Eq. (29). The curves
are for the value q=l, i.e., for a medium where
tsee Eqs. (A6)-(A8)] the positron-thermalization length
is comparable to the dimensions of the constraints. The
effects of positron diffusion cooling or heating are ex-
pected to be significant for q ~l (see Fig. 2). The curve .

labels are the values of the model parameter e, rang-
ing from n &0 (diffusion cooling) to n &0 (diffusion heat-
ing) as explained in the text [Sec. III, {i)—(iii)]. The
eigenvalues e~ of Eq. (16), indicating the rate of posi-
tron trapping at the boundaries, are drawn for e = 0
and o. =-1 as horizontal lines. Only those indicated
by solid lines are physically acceptable.
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V,(x, q) = -', + —,
' (q'+ —,

' )x', (36)

with internal surfaces, in Ref. 20.
(ii) n &0: Diffusion cooling. As seen in Table I,

this n range covers most of the processes inves-
tigated. The problem can be solved exactly for
e= -1, and discussion of this case may suffice
to sketch the behavior for all + &0. Equation (33)
becomes

V —= V (x„,q)

, 1+ a, 2+ Q. e/'"+e'
= 2q 2+ Q 4aq

In the harmonic approximation,

V (x, q)= V + n(I+ o.)q'(x-x )',

the eigenvalues appropriate for q» 1 are

which is a harmonic-oscillator-type "potential"
applicable here for x~ 0, with minimum value

Acceptable solutions of Eq. (16) must vanish
at x = 0, so that only the eigenvalues (r = 1, 2, ... )

1+ ~ 2+ ~ e/2(1+e)
6,~

——2q 2+ Q 4Qq

+ 2q[~(I+ o)]"'(~ ——,
') . (48)

8„=[(2~-I)+-,']V(q) --;

appear, with state functions

(37)

+,r.
=e '"JI2c il [2P(q)~] '"], (3a)

where P(q) =(q'+ —,
' )' '; H; is the Hermitian poly-

nomial of order i. Equation (19) gives the com-
ponents of the particle-energy distribution,

(~) ~-&/2e-[8 (a)+&/21+JI ([ 2P( ) ] 1/2) (39)

This result is identical with that given by Parker"
in terms of I aguerre polynomials.

It is illuminating to display the lowest mode,
/=1,

( ) 23/2tll/2( )
-[8(q)+I/2]ll

ql (40)

T/T*= P+ —,
' = (q'+ —,

')'/'+ —' & 1.
The trapping rate

&„ya = —'-[(1+4q')'/' —I]ya

is always smaller than the limiting value

KqI = q +E) for q 0 ~

I'(-,')
I"(-,' )

(41)

(42)

(43)

appropriate when n= -1 in weakly constrained
media.

(iii) a & 0: Diffusion heating. In this parameter
range, V (x, q) extends only in the x &0 plane. In
tightly constrained media, where q' » 1, one can
approximate

(~x ' 24'
q'+

( ).,4/. (44)

with the minimum at
e /4 (I+e)

fit Q 4 Qq
of value

(46)

because it resembles a Boltzmann distribution with
effective temperature T* & T in that

Equation (48) remains useful even when o. =0+,
in that then 8,&=q' in. agreement with the exact
result of (i).

The particle energies are now bunched with u
values near the value corresponding to x, name-
ly, u„= (—2/o'x )'/ by Eq. (32). Consequently,
for q»1, the effective particle-ensemble tem-
perature T~ in the medium of temperature T is

1/& (I+e)
tlat 2 +

As in the case of diffusion cooling, the leading
trapping rate v„:—8„yz, Eq. (48), is always smal-
ler than the general limiting value

.= [I'(-', — )/I'(-', )]q'w, (60)

IV. ADAPTATIONS FOR ANALYSIS OF EXPERIMENTS

In many measurements of positron-lifetime
spectra, only one or two lifetime components can
be resolved. As discussed in Ref. 19, the evo-
lution of the posit;ron lifetime spectrum is, ex-
cept for the leading term in Eq. (28), usually
submerged in the time resolution function of
the measuring instrument. The components
(v& 1, 0& 1) appear then as if initially deposited
in the wall. We adapt Eq. (28) accordingly
by writing, with Z"„&,n„&= 1,

corresponding to weakly constrained media (q
« 1).

These examples illustrate that, except for n =0,
constraints cause diffusion heating or cooling of the
positron ensemble in restricted media. In either
case, the rate of trapping at the walls is less than
that expected for particles diffusing in thermal
equilibrium with the medium. One can express
this result by introducing an effective diffusion
coefficient D,« to which the trapping rate is pro-
portional. This D,« is, for & 40, a function of q
and smaller than the thermal average D r (Appen-
dix B).
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p(t)=n„(1 —e„)e "&'"»"

+ I.I -n&i(I -C'»)]e "'. (51)

mean lifetime v, (when I', and I; are too close to
be resolved) so that

p(t) =I,e-' '+I,e '", (52)

where now

I, = 1 —I2 ——n(y~ —I',)/(F, —I' ),
yB+ ~ I2 —yw ~

(53)

(54)

This formulation incorporates two new aspects
of positron trapping resulting from the develop-
ments presented in Secs. II and III. First, the
factor n is the experimentally resolvable leading
coefficient in the bulk lifetime spectrum Eq. (22)

Following Eq. (26), we set

c „=+=~/(~+y, -y, )
I

by abbreviating K = K and n„=n, and retrieve the
new lifetime spectrum in the familiar form'

7 = t —dt.dp
dt

(57)

In t&eory this quantity agrees, of course, with
formula (b). The symbol P in the second formula
(e) refers to a measured parameter, such as the
width or the height of a 2y angular-correlation
curve, or the S parameter in Doppler-shift mea-
surements. The limiting values P~ and P~ refer
to I' values under conditions where all positrons
annihilate, respectively, in the bulk or in the ab-
sorbing walls. The formula relates these
quantities to Ee, Eq. (23), and E&r, Eq. (27),
under the assumption that the shape of the curves
pertaining to annihilations in the bulk and in the
walls are well defined and independent of q, so
that'

p, (t) =n. (55) E«&= 1 —Fs = (P Ps)/(P~ -—Ps) .

(t) n@(e r&& f e- &r~-+&) t) + (1 n)e-r&rt (55)

The sum p(t) =ps(t)+p~(t) is equal to Eq. (52).
When q «1, n =1 and we retrieve the formulation
given earlier. ' When q -1, n begins to decline
and approaches zero as q becomes large.

Second, diffusion heating or cooling always
cause the escape rate v to be smaller than the
value appropriate for positrons with a. Boltzmann
distribution, which it in any case approaches in
the limit q-0, i..e., in weakly constrained media.
The values of v as tabulated for sinks of various
geometries in Table I of Ref. 19 may still be ap-
plied for Bll q values, if a q-dependent effective
diffusion constant D,« is introduced according to
Appendix B.

It is useful to collate a number of relations be-
tween measured quantities and the theoretical
counterparts as deduced from the lifetime spec-
trum Eqs. (51)-(54). For dense media, , in par-
ticular, experimental values of the quantities in
the first column of Table II are often reported.
The first four quantities can be culled from mea-
surements that resolve two lifetime components.
The fifth is the result of the determination of one

Although all positrons are considered to reside
initially in the medium, the fraction (1 —n) escapes
so rapidly, through higher modes of the diffusion
equation in (p, u) space as given by Eqs. (20)-
(22), that it cannot be identified as a bulk com-
ponent by an instrument with finite resolution
time. Instead, such positrons appear as if they
were residing in the wall at t = 0, so that the wall-
lifetime spectrum, Eq. (25), in practice is anal-
yzed as

In formula (f), Ee is the fraction annihilating
in the bulk as it appears in the analysis of
angular-correlation and Doppler -shift measure-
ments.

The second column of Table II gives the limiting
values for q-0, Bs they have been derived in the
past under the assumption that the particle-energy
distribution can be adequately represented by the
mean thermal energy, independent of constraints. '
The last column gives new formulas which differ
from the previous ones through the constraint-
dependent quantities n and v. We discuss these
results in relation to recent experiments in the
following.

A. Positronium diffusion in gases

In a series of experiments by Spektor and Paul, '
lifetime spectra of positrons were measured in
seven gases at room temperature as a function of
gas pressure in a multiplate gas chamber.
Changes in the lifetime spectra as a function of
gas pressure were attributed to changes in the
trapping rate «(labeled A&r in Ref. 4) of ortho pos-
itronium by the cell walls. Using diffusion theory,
a universal relation between I(. and &o, in a medi-
um of atomic density +, was found to be born out
by all data when an appropriate choice of the pos-
itronium-atom collision cross section o was made
for each gas. For He, the empirical value, o, ,
= 0.017 pa'„so determined is some three orders
of magnitude smaller than predicted by theory"
(o,„=7.7 ma', ).

If the results are corrected to account for the
effects discussed in this paper, the cross sections
become even smaller than the values quoted. Thus
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TABLE II. Experimentally accessible quantities that can be deduced from lifetime spectra
of the form Eqs. (52)-(54). The first column lists the quantities, the second gives the inter-
pretation given heretofore, and the third collates the results of this work.

Quantity
J

Previous values Present results

(a) I'=l, l", +I2I 2

(b) 7= +I I
'Va =1/ Ta

1+&p~e
~B 1+ tcp7g

yg —(1-n)(yg -yg )

1+KTg( 7g~ Tg
Tg + (1-n)

1 +K' 1+K~g

(c) I,(I', - I') Kp K+(1-n)(yg-yg)

(d) r2/I&
Kp

+8 ~lV

K 1 n

n(Va -7tIII) n

~lV(e)
P —PB Ew
Pg -P

(f) Ilg =1-Eg

Kp 7'

1
1 + KpTg

1—(KTg+1) -1
n

n
1+K&g

The trapping rate zp in the second column corresponds to the small-q limit, and is pro-
portional to q, as given by Eq. (50) for the model ~*=g + . Values of gp for different con-
straint geometries are listed in Table I of Ref. 19 in terms of the diffusion coefficient. The
trapping rate z =—Op@ in the third column is calculated for arbitrary constraints on the medium
as described in the text. It approaches ~p when q «1.

dif fusion heating or cooling phenomena cannot be
invoked to explain the discrepancy between this
experiment and theory.

B. Positron trapping by thermal vacancies in metals

I= (I' —y~) /(y, - yg ) (58)

vs T, as shown in Fig. 2. For comparison we
calculate n for the model parameters a = -1 and

Recent measurements of positron-lifetime spec-
tra in Pb (Ref. 14) and Al (Ref. 15) as a function
of T were decomposed according to Eq. (52) into
I, and I2, with disappearance rates 1, and I"» and
the activation energy E& for vacancy formation
(E„=O.62 eV for Pb, Ey=0. 66 for Al) extracted.
Contrary to expectations based on column 2 of Table
II, namely, that formula (a), I'=I,l', +I,l"„ is
equal to y~ for all vacancy concentrations, F
dropped dramatically to values 1 -I', when T ex-
ceeded 200'C for Pb and 300 C for Al. In addi-
tion, the Al data of I,(I', —I',), formula, (c), which
were expected to yield ~„proportional to the va-
cancy concentration, and, hence, to give a straight
line in an Arrhenius plot, actually fall lower when

T ~300'C.
We attribute these new trends to discernible

diffusion cooling of positrons at the highest va-
cancy concentrations investigated. For a demon-
stration we refer to formula (a) in Table II, and
replot the data of 1" in the form

Cy = Cyoexp( Ey/kT)— (6O)

Aa varies only weakly with T, Eq. (8), so that one
may set q'=qoexp( E„/kT) and tr-eat q', as a ma-
terial constant related to A~ and to the nature of
the defects. Expressions to be compared with
Eq. (58) are given in Table III. The results,
shown as curves in Fig. 2, were adjusted through
q, so that the asymptotic expressions for n = —,

'
and a=-1 cross when n=0. 5, at T=280'C for Pb
and X=400'C for Al. In this manner, our theory
accounts for the changes in 1 =I,I. , + I,l", with
temperature as observed by Sharma et al."on
Pb and Fluss et al."on Al.

One of the central objectives in performing these.
measurements is the determination of the vacancy
formation energy E~. This is usually done through
a best fit of experimental quantities given in for-
mulas (c)-(f) of Table II to an Arrhenius plot of
the form vo= v„exp( —E»/kT) as suggested by col-

n= -', remembering that for @=0, n=1 for all2'
T. The constraints in the medium appear through
the value of q. For vacancies or voids of trapping
radius x~, at the concentration C~, or density
NC~, corresponding to a mean spacing expressed
by R defined as —'mR'NC~= 1, q is given by

q' = Sx~Aa/R' = 4mryNCy Aa

according to Appendix A. Compared to the thermal
vacancy production,
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FIG. 2
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Fraction n in the first dec d fcay mo e of a posi-
tron-lifetime spectrum Eq s (52)—(tron- ', s. -(56), as a function
o q upper scales), which is a measur f th

~ ~

hermalization length in units of the dis o e istance between
vacancies in metals. It is thus related t th

y concentration in Pb and in Al at te
o e thermal

ower sc l
i a mperature T

scales). The curves are calcul ted fa cu a or sample
es in Eq. (29) corresponding to the Boltzmann

distribution {+=0) to d
' =~, an

iffusion cooling (e=-1) of the positrons in the
medium. The graphs signify that, for both

—n escapes so rapidly from the volume that it
appears. as if deposited initially at the vacancies. The
solid curve for n= —1 and the dotted line for +=0

s e asymptotic limits for q «1 and q»l. the
dashed curve is an inter

q &, e
polation between these limits.

lead R
e ata represent E . (58q. ( ) based on measurements on

ea Ref. 14) and aluminum (Ref. 15).

umn 2. According to the new results listed in
column 3, deviations from this form h lds ou occur

is e ect setsw en q~, because then v &II," Th' ff
in when n, Table III and Fig. 2 be

e ow the value 1. We have calculated formula
n in ig. and for(c) or Al with the n values shown in Fi . 2 d

a =- —,0, —,
'. The result is displayed in the form

the d
of an Arrhenius plot in Fig. 3( ) ta, ogether with

e data reported by Fluss et al " Fa . ormula (d)

was calculated in the same way and
'

with the d
way, an is compared

Cle
wy e data of McKee et al." in F' . 3(b).

early the high-temperature d t F'
lg.

aam ig. 3a)
fall below the straight +=0 l' bine y amounts con-

Fi. 3b
sistent with values n t0. The datae a as plotted in

ig. 3(b) appear to support e values betw 0
and —1.

e een 0
One should be cautious in d

clusions from thethese model comparisons about the
dominant scattering mechanism. 8 t

a i phonon-positron interaction is the diffusion-
imiting scattering mode in solids, the collision

frequency becomes

(up„—aud. "'=w u"'
0 (61)

where a is a material constarit" and u&, = a(kT)' '.

r is process, which is consistent with the
trend of the data in Fig. 3.

A pparently, the value of E~ should be deduced
from the slo e inp a vacancy-concentration range
limited so that q' «1. If in, instead, one determines
a 'best" straight line through experimental oints

er vacancy-concentration range,
a poin s

one would obtain from the upper plot in Fig. 3
according to Table II(c) an effective E~ ~E
B contry ast, the reverse is true for the lower
plot according to Table II(d) i.e. E*
the data are data are plotted according to Table II(e) one
should also find E*
&E* . In f

in E„@&~E~ and, in general E*
V (e&

act, recent analyses gave for Al the
values E~«& —0. 66+0.01 eV "E*„,—0.71 eV

e . g or 0.74+0. 01 eV,"and E+ =0.67
+0 03eV"

V (g&

while for Pb the values" E~~„&—0. 645
+ 0.028 eV and E~, &

= 0. 737 + 0.019 eV.
The relation between n and q used here wa

e wi the simplest assumption of a canon-
'cal initial distribution viz.

more comprehensive treatment would
start with an initial distribution far from the ther-
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relaxation time TE and the associated thermal re-
laxation length AE from lifetime measurements in
the context of thermal vacancy production. From
formula (e), Table II, it is clear that at the tem-
perature Tz where 7 = —,

' (Tz+ w~), one has zz
= w„exp( Ev/—kTz) = yz. At the temperature Tz where
n= 0.5 and, thus, according to formula (a), I
= —' (yz + yw) one has zz = v„exp(-E„/k T)~ yz, so
that

Io-4-
I I I I I I I I . I I

l.5 2
IO /T (oK)

l02 lo 4 2 I 0.4 0.2

10

C4

IO
I l.5

IO /T( K)

FIG. 3. Arrhenius plots of Al data according to for-
mula (c) in Table II (upper graph a, Ref. 15) and ac-
cording to formula (d) in Table II (lower graph b, Ref.
24) for the determination of the thermal vacancy forma-
tionenergy E~, Eq. ~(60). The curves are calculated
according to the corresponding formulas in the third
column of Table 11, with the n values Pven in Table III
and displayed in Fig. 2 for n=-1, 0, ~.

mal equilibrium. We have performed additional
sample calculations, for = -1, by assuming uni-
form initial distributions ranging from zero to
some maximum energy value, '" EO»QT below
which electronic excitation processes do not
dominate the slowing down of positrons. The drop
of the n values, then, depends on this additional
parameter Eo. It commences at lower values of
q than those found for the canonical distribution,
so that the q scale in Fig. 2 moves to the right
relative to the T scale.

Further analysis is required to ascertain to
what extent the scaling of q vs T can contribute
to the understanding of a problem of long stand-
ing, viz. , the approach of swift positrons to ther-
mal equilibrium in dense media.

The appearance of diffusion heating or cooling
in the positron annihilation characteristics con-
veys new information on the dynamics of positrons.
Specifically it permits an estimate of the thermal

K e -Ey/ ATB
E B

7. K
=

e EVIITE
B E

(62)

%'e estimate for Pb with TB=200'C, TE=280'C,
E~=0.62 eV, and TB =200 psec, that &E =30 psec; and
for Al with TB=345'C, YE=400'C, E~=0.66 eV,
and 7B = 166 psec, that 7E = 60 psec. For a diffusion
constant D, -0. 1 cm'/sec one obtains Az —(D,Tz)'~'
=200 A. These values appear to agree with the-
oretical estimates. '

V. DISCUSSION

Consider a positron with velocity v = v, at time
t=t„ in a medium of temperature T. The vel-
ocity probability density is then 5(v —v,). In time,
the velocity distribution broadens as prescribed by
a Fokker-Planck equation, and approaches asymp-
totically the canonical Maxwell-Boltzmann prob-
ability distribution. The characteristic time ~E
for these processes is normally short compared
to the lifetime of positrons in the bulk, 7B, that
annihilate with an electron into y quanta. When
the mean scattering time v„ is short, 7„(v)«rz,
the spatial motion of the positron is governed by a
velocity-dependent diffusion coefficient D(v)
which, over times t & rE, averages to the usual
temperature-dependent diffusion constant D~ of
an ensemble of particles in thermal equilibrium
with the medium. A parameter q ~Az/I. gauges
the mean relaxation length Az =- (Drvz)'~' relative
to the dimension L of the constraints on the medi-
um.

When the medium is constrained so tightly (q & 1)
that the positrons reach an absorbing wall in times
that are short compared with ~E, the medium is
depleted preferentially of the particles that diffuse
the most rapidly, and the positron velocities in
the medium can no longer be described by the
canonical distribution. For example, if scattering
conditions are such that D(v) ~ v ', the fastest
positrons are trapped preferentially if ~ &0. The
result is the diffusion cooling of the steady-state
positron population in the medium. If, on the
other hand, ++0, the slowest particles are
trapped first. The result is diffusion heating.
Such effects will change the Doppler shift and the
width of the angular correlation of the annihilation
y quanta emanating from the bulk of the medium.
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An important consequence of these effects is that
the tra.pping rate v becomes smaller than it would
be if the positrons could establish complete ther-
ma, l equilibrium with the medium before becoming
trapped. If one nevertheless analyzes data in
terms of the thermal-averaged D~, one extracts
values of the concentration of sinks that are too
low. It follows that the influence of diffusion hea, t-
ing or cooling on the determination of the thermal-
vacancy formation enthalpy E~ can be neglected
only a,s long as the vacancy concentration is so
low that q' «1. Otherwise, effective E~ values
are extracted which may turn out to be larger or
smaller than E~.depending on the way in which the
analysis is conducted.

Even if all positrons are deposited initially in
the bulk, diffusion effects in tightly constrained
media can cause an accumula. tion of positrons in
sinks so rapidly, compared to the instrument re-
solution time, that mea, surements identify only a,

fra, ction n(q) & 1 as having been deposited in the
medium, and the remainder I -n(q) as having
been deposited in sinks at t= 0."

In fitting the Brandeis data" on Pb to an initial
sink fraction, Warburton and Shulman" extracted
parameters labeled t, -10-20 psec and p'/p-2-5,
for which we have now provided a, theoretical
basis. Indeed, the two parameters correspond to
the therma, l relaxation time 7E and to a mean value
of the relative trapping rates z„/~„, (v, ~)»,
respectively. These rates are associated with
the higher-mode solutions of the diffusion equation
and cause the escape of positrons from the medium
in times that are short compared with the resolu-
tion time. In consequence, the mean positron
disappearance rate 1"=I,I', +I,l, as deduced from
experiment is equal to y~ only when q (1 and n(q)
~1. Conversely when I' &y~, as has now been
found for Pb (Ref. 14) and Al (Ref. 15) at high
temperatures, the constraints are so severe that

q ~l and n(q) (1. When this occurs, the experi-
mental data should be treated in terms of the the-
ory as presented in Sec. IV.

It would be desirable to extend measurements
systematically to other constrained media, be-
cause our model of positron trapping in the ex-
panded form developed in this paper gives, for the
first time, a method to extract information not
only about annihilation rates and sink concentra-
tions, but now also about the positron-energy re-
laxation time ~~ and relaxation length A~. The
magnitude of these quantities in different media
should elucidate the dominant processes governing
the dynamics of positrons in matter.

ACKNOWLEDGMENT

This work was supported in part by the Depa, rt-
'ment of Energy and the National Science Foundation.

APPENDIX A: SPATIAL CONSTRAINTS

R(p) = (qp) 'sin(qp —y), (Al)

with arbitrary phase P. The values of q and p
are determined by the boundary conditions. For
instance in the case of absorbing voids of radius
rv, distributed in a solid with density &C~= 3/
4mB~, these conditions are

R( p) = 0 for p = rv/Az, (A2)

dR '

Ry—=0 for p= —,
dp

which give, respectively,

y = q~~/A~,

qR /A =tan[q(R —y )/A ].

(A3)

(A4)

The solutions q„ to Eq. (A5) may be approximated
for ~~«R~ as follows:

q, = (3~ /vR )'v~'(A /sR~) for v = 1,

q„—'= (2v —l)(mAs/2Rv) for v=2, 3, . . . .
(A6)

(A7)

Another example of interest is that of a foil of
thickness J, bounded by absorbing surfaces, for
which

q„= wvAs/I, v = 1,2, 3, . . . . (A8)

The values of q, in other geometries as a func-
tion of A~ and the dimensions of the medium can
easily be obtained from the corresponding escape
rates z, given in Table I of Ref. 19, by using the
relation q', =Asm, /D. Applied to small solids with
absorbing surfaces, this treatment pertains to the
diffusion of positrons in metal grains" and to the
escape of positronium" or muonium" from in-
sulators.

APPENDIX 8: TRAPPING RATE IN WEAKLY
CONSTRAINED MEDIA (A~/L &&1)

Let us consider the solution of Eq. (9) for the
first mode q=q„8= 8„, F(u) =F„(u), in the
limit of receding constraints, i.e., q-0.

It is convenient to write Eq. (9) as

Q CO ++

+(eu' '-q'u' '/(u*)F=0,

and to integrate over u from 0 to ~. In situations
of physical interest the contribution from the first

In order to illustrate the pa, rametric dependence
of the diffusion equations on spatial constra, ints
through the variable q used in the text, we recall
here the solutions of Eq. (7) for spherical symme-
try,
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term vanishes, which leaves

6 duu /Eu =q du
fd*(u)

(a2)

small, the escape rate z may still be written in
the same fashion as that resulting from elementary
diffusion theory, if an effective diffusion coeffi-
cient is defined by

In the limit q -0 the positrons approach thermal
equilibrium with the medium, E(u) -=e ", and we
obtain

D,«-DoT8/q f (a6)

where 8/q' is given by Eq. (B2). For instance,

q' " e "u'"
r(-,'), (u*(u)

(S3) ff(foal) = —,D, ff y K(voids) = 3 Deff .
Y

This, exhibits the general proportionality between
the escape rate I(.

"—= 8y~ and q' for q«1. In partic-
ular, the model w*=u" gives the result

8=@'r(-,' —n)/r(-, ' ) .
The factor I"(-', —ff)/r(-,3) accounts for the ap-

propriate diffusion coefficient D T of Eq. (31).
The escape rate is proportional to D ~ when q «1
[see Eq. (50)]. In the more general situation in
which &d*(u) is not a simple power function, Eq.
(B3) incorporates into the expression for the trap-
ping rate v= ay~ the diffusion coefficient

Dr=
3

— —= Dor—

where D T Az/Tz —,
——l3T/——m, fd„Eq. {4).

Thus, in the limit of weakly constrained media
we retrieve the results of Ref. 19, provided that
in the expressions for the escape rates the ap-
propriate thermal average of the diffusion coef-
ficient, Eq. (B5), is used.

When the constraints are important and q is not

The value of D,«defined in this way depends on

q, and is always smaller than the diffusion coef-
ficient for an infinite medium, i.e., D,ff MDIV@.

For example in the model (d*=u", me 0, D ~ is
the diffusion coefficient appropriate for the in-
finite medium. It is related to D,«as

r(-,') 8
eff r(3 ~) 3 nT'

The ratio D,«/D T was shown to be &1 ifi Sec. Ill.
When q' «1, D,«approaches DT for all fd*(u).

As an illustration, we quote the exact result
for n = —1. With the 8 value given by Eq. (42),
Eq. (B8) becomes

D 1-q', for q«1,"' = [(1+4q3)'~ ' —I]/2q3-
&iT 1/q, for q»1.

. 'The parameter. q is related to the constraints of
the medium as discussed in Appendix A.
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