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The authors have extended the theory of stimulated Raman scattering to include the effects of laser
bandwidths, in both the transient and steady-state regimes. The case of two interacting laser beams, a pump
laser and a probe (Stokes) laser, is treated. Using the phase-diffusion model for laser bandwidth, the authors
demonstrate that in the absence of dispersion, the forward Raman gain is essentially independent of the laser
bandwidths in the high-gain limit, while in the low-gain limit the gain coefficient is inversely proportional to
the sum of the bandwidths. It is further shown that when the pump-laser bandwidth is much larger than the
linewidth of the Raman medium, the stimulated Stokes output assumes the same spectrum as the pump laser
in the high-gain limit. A possible interpretation of these results is discussed assuming a “phase-locking” of
the Stokes phase to the fluctuations in the pump-laser phase, due to the nonlinear interaction of the two

beams through the Raman medium.

I. INTRODUCTION

The effects of finite laser bandwidth are being
recognized as important in the study of nonlinear
optical processes. Resonance fluorescence,'"®
two-photon absorption, ”? second harmonic genera-
tion, ® multiphoton ionization, °-!* and stimulated
Raman scattering are all areas in which key ele-
ments of understanding depend on the ability to
model the laser, not as a monochromatic wave of
definite phase and amplitude, but as a multimode
broad-band wave with fluctuating phase and ampli-
tude. The problem of stimulated Raman scattering
(SRS) is especially timely in light of ongoing ef-
forts to use it as method for developing new co-
herent light sources' as well as compressing
high-energy laser pulses to achieve higher peak
powers for use in laser fusion.'® In applications
of these types a detailed understanding of all the
factors influencing the efficiencies of the process-
es is obviously desirable. However, one import-
ant factor, laser bandwidth, has not yet been fully
explored.

Recently, two groups'®!® have observed a large
forward-backward asymmetry of the Raman gain,
which they attribute to the broad-band nature of
the pump laser used. These were in the absence
of other effects, such as self-focusing or extran-
eous feedback, which are known to produce anom-
alous gains.!” These asymmetries are consistent
with several theoretical predictions’®!® that in the
backward direction (counterpropagating pump and
Stokes waves) the gain coefficient is proportional
to (T+T.)", where I’ and I'; are the spectral
widths of the Raman medium and the pump laser,
respectively; while, in the forward direction, in
‘the absence of dispersion of the Stokes wave re-
lative to the pump wave, the gain coefficient is

proportional to I'"! alone. Carman et al.'® refer
to this as “the rather startling conclusion. .. that
the Stokes gain is independent of the frequency
spectrum of the (pump) laser... even if this
spectrum is much broader than I'.”” Thus when

I'; is much larger than I' the forward gain is much
larger than the backward gain. These results go
against intuition based on the idea that gain should
depend on the number of photons per unit frequency
in the pump beam. Apparently, the concept of
photons as independent incoherent bundles is in-
adequate to describe the subtleties in the SRS
problem. ‘

The purpose of this paper is to further develop
the theory of SRS, including the effects of finite
laser bandwidths, in a way that allows explicit
calculation of the gain and spectrum of the Stokes
wave. We consider, as in Fig. 1, a medium of
three-level atoms interacting with two classical

FIG. 1. Three-level atom interacting with a pump
laser with frequency w; and a probe (Stokes) laser with
frequency wg. The cumulative detunings are Ay and Ag.
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electromagnetic waves; one a pump (laser) wave
and the other a Stokes wave, differing in frequency
by the Raman shift of the medium. Both waves
have constant amplitudes, but phases which fluc-
tuate randomly, giving rise to bandwidths I'; and
Is. This is the “phase-diffusion model,” which
has been used recently as a means to include
bandwidth effects into the calculation of light-
scattering spectra, °® as well as multiphoton
ionization.!® The calculations are performed

as statistical averages over the random phase
variables of the two waves. Previous treat-
ments'® ! of SRS attempted to accommodate both
fluctuating phases and amplitudes. We will discuss
later why the inclusion of amplitude fluctuations

in this problem is such a difficult task. Within

the stated model, we verify the independence of
the forward gain from the pump width I'; and the
Stokes width I'g, in the high-gain limit. Further
we will show that in the case that the width of the
pump laser I'; is broader than the Raman line-
width I') the amplified Stokes signal assumes the
spectral width of the pump laser, regardless of its
initial width.

Akhmanov, D’yakov and Pavlov'® have separated
the problem into four regimes of interest: (i) I',
«T', with no dispersion; (ii) I'y «I') with dis-
persion; (iii) I'; > I, with no dispersion; (iv) I',
> I'| with dispersion. Case (i) was considered
by Bloembergen and Shen, * who predicted an
enhancement of the forward gain for a multimode
laser. In this paper we treat mainly case (iii),
where the laser linewidth is broader than the
atomic linewidth. Here there is no enhancement,
but neither is there a significant suppression of
the gain, compared to that calculated in case (i)
in the limit I'; =0. Carman et al.'® have also
treated case (iii), and they reached essentially
the same conclusions by calculating numerical
solutions to the problem. Cases (ii) and (iv) treat
the effects of dispersion. There is a consensus'®
%21 that broadening of the laser in the presence
of dispersion does result in a lowering of the gain,
due to the inability of the Stokes wave to stay
correlated with the pump fluctuations as they pro-
pagate. However, Akhmanov et al.'®* have shown,
further, that there is a critical pump intensity,
above which the effects of dispersion are overcome
and the gain coefficient increases again to nearly
the narrow-band value.

Dzhotyan et al.?® have treated the problem by
assuming the pump and Stokes waves to be com-
posed of many monochromatic modes, with uniform
frequency spacings large compared to the Raman
linewidth I'. This results in significant interaction

only between certain resonant pairs of modes (one |

pump and one Stokes). This approach can be

thought of as complementary to the present ap-
proach, in which the energy in the waves is taken
to be spread continuously over a small frequency
interval. The multimode approach of Dzhotyan

et al. is a generalization of an idea developed by
Giordmaine and Kaiser® (and discussed by Byer
and Herbst??), in which the pump and Stokes waves
each consist of two modes. This treatment illus-
trates the relationship of SRS with four-wave
parametric interactions. Another related dis-
cussion is that of Harris, ? in which the threshold
for parametric oscillation with multimode lasers
is shown to depend only on the total power in the
pump laser.

In Sec. II we derive the equations of motion for
the Raman problem in a novel way by using the
“two-photon vector model” of Takatsuji** and
Grischkowsky et al.?® InSec. Illwe review the
general solutions of the equations, following
Carman et al.'® and evaluate the gain with mono-
chromatic pumping for both the transient and
steady-state limits. Then we apply the phase-
diffusion model to evaluate the gain under ar-
bitrary broad-band pumping conditions, again in
both the transient and steady-state limits. In
Sec. IV we calculate the spectrum of the amplified
Stokes wave by considering its autocorrelation
function in the steady-state limit. In Sec. V we
discuss a possible interpretation of the results
obtained, and in Sec. VI we summarize the main
results of the paper.

II. EQUATIONS OF MOTION

Here we give a novel derivation of the usual
equations of motion for the Raman problem and a
discussion of the physical model leading to them.
For simplicity, we treat the case of near-reson-
ance Raman Stokes scattering, in which only three
atomic levels need to be considered. Thus we con-
sider a vapor of atoms with energy levels shown
in Fig. 1. A pump laser is tuned near (but not on)
the 1-2 transition and a probe laser is tuned near
(but not on) the 2-3 transition. It is sufficient to
treat the pump laser as a prescribed field as long
as it is not depleted. The probe laser will ex-
perience gain in a manner dependent on both the
amplitude and phase structure of the pump laser.

Consider the fields E, (pump laser) and Eg
(Stokes, or probe laser) acting on the three-level
atom of Fig. 1. Let

E, =8 %, cos(wt—kyz+9¢;)=8,%; cosp,, (1a)

Es=8s%s cos(wstFhksz + ¢5)=85Rs cospg , (1b)
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where &, and §¢ are the (real) amplitudes of the
waves, with linear polarization vectors%; and X,
carrier frequencies w; and wg, propagation
vectors k; =k;2, ks =ks2, and slowly varying
phases ¢, and ¢5. The state of the atom can be
written

¢=a16"“’1'¢'1 +a2e-i(w1ﬂ'¢L)¢2
+a3e'““’1”°L’°S)Z,D3, (2)

where a,, a,, and a, are the slowly varying co-
efficients in a “doubly rotating frame, > and ¥,
¥,, and P, are the stationary eigenstates of the
atomic Hamiltonian, with energies Zw,, %w,, and
7iw,. Att=0 the atom is in the ground state (a,
=1, @,=a,=0) and afterwards the coefficients
evolve according to Schriodinger’s equation

ia, = -394, (32)
i&z = (AL - gbL )az —%QLax - %QS as ) (3b)
ias=(Ag - @p+@s Jas - 39 a,, (3c)

where the detunings are A, = w,, — w; and &5 = w;,
+wg = wy. The Rabi frequencies for the two
transitions are given by SZL dlzé'L/h‘ and Qg

=d, 8 s/h, whered,,=4d,, %, andd,, = d,, * ¥s are di-
pole matrix elements. The rotating-wave approxi-
mation® (RWA) has been invoked in writing Eq. (3).
This is valid when the detunings are small enough
(AL < Wa1s AS < wza)'

Several authors?!~2® have discussed the case in
which level 2 may be eliminated from the Eqgs.
(3a)=(3c). When 4, is much larger than Ag and
the fields have no appreciable Fourier components
at the atomic frequencies, we may set a,~0 in
Eq. (3b) and get (neglecting ¢;)

a,~ (3Q.a, +39.a,)/ 8. (4)

This approximation is the basis of the “two-photon
vector model” of Takatsuji** and Grischkowsky

et al.,?® and is discussed more fully in Appendix
A. Using this approximation in the Schrodinger
equation [Eq. (3)], one may obtain two equations
for a, and a,, which are identical in form to those
of a one-photon transition with effective Rabi fre-
quency Q,=32,82s/A, and effective detuning A,
=Ag +3(R.% - Q5%)/4,, which shows the effect of

ac Stark shifting. We write the resulting equations
in the convenient Bloch form, ** using U +iV = 2a,a,
and W=a,af —a,af,

O==(8,= ¢y +é5)V =TT, (52)
V=(8, =@, +Ps)U+QW~TV, (5b)
W=-Q,V. (5¢)

Here we have included the phenomenological col-

lisional dephasing rate I', -which is the halfwidth
at half maximum (HWHM) in rad sec™! for the
(Raman) transition between levels 1 and 3.
To describe Raman amplification, one must
solve the wave equation for the Stokes wave
Eg; 1 92Eg 47 8P

822 7)2 8t2 cZ 8t2 ’ (6)

where v is the velocity in the medium, and _1; is
the polarization of the medium. Considering only
Fourier components close to the carrier frequency
wg, and only the linear polarization Xg, leads to

a polarization

P=N (9|d-zs|9)=2Nd,, Re(a,a}) cos¢s
+2Nd,, Im(a,a¥) singg , (7)

where N is the atomic number density. Making
use of Eq. (7) for the polarization, Eq. (4) to again
eliminate a,, and the slowly varying envelope
approximation, 2* one can write Eq. (6) in the form

385 198
—g%—;a—»--—l(zg!‘v, (83.)
95 1 qos) dys
8s<:t az+; ET; K(g U—dlszgs(W+1),

(8b)
where k,=mNwgvd,,d,,/c*liA; and the plus and
minus signs are for copropagating and counter-
propagating pump and probe beams, respectively.
Equations (5) and (8), along with a similar one for
the pump laser & ;, completely describe the pro-
pagation and material response for the Raman
problem, including the effects of phase modulation
(¢, Ps). They have been derived by Takatsuji®*
and by Courtens® in essentially the same form and
used for considerations of optical transient
phenomena.

In contrast, we are interested in the special
case that the atoms are weakly excited and the
pump laser is a prescribed, external field. Thus
we take for the inversion W=-1, W=0 in Eq. (5).
We also assume exact resonance (4, =0). The
remaining four equations, (5a), (5b), (8a), and
(8b), can be combined into two complex equations.
Defining the quantities

E;=8,e"L; Eg=8ge's;
Q=(U+iV)evr-vs), ) 9)
we obtain directly
s 105 qu,, (oa
897 _r@*+inELEq (10b)
at

where k, =d, ,d,,/2%°A,. These two coupled equa-
tions are the starting point for many theories of
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stimulated Raman scattering. They have usually
been derived in the coupled wave approach of non-
linear optics®” for the case of molecular Raman
scattering, where @ is the normal-mode coordinate
of a molecular vibration and is often called an
optical-phonon wave. In those treatments, per-
turbation theory was used from the beginning and
the coupling constants k, and k, were given in
terms of molecular polarizabilities. Here we have
provided a connection between the “two-photon
vector model” and the standard theories of Raman
propagation. We have given the explicit relations,
Eq. (9), between the variables used in the earlier
nonlinear-optics theories and the more modern
optical resonance or Bloch vector picture, which
has been used here, and continues to give insight
into many laser-related problems.

III. EVALUATION OF RAMAN GAIN

General solutions of Eq. (10) have been obtained

in the case of copropagating waves by Carman

et al.’® In this case the prescribed undepleted
pump-laser field E; depends only on the local
time variable T=¢{-z/v. It is assumed that the
waves travel with equal velocity (&, =kg), i.e.,
there is no dispersion. Denoting by Eg(0, 7) the
Stokes field at the input of the cell (z=0), the
solution for the Stokes output field is'®

T =T (T =T )
Eq(z,7)=E5(0,7)+ (e, [ (Te)_p(T,)]l 5
X I,({4x,k,2[p(T) - p(r")]}/2)
XE (T)E}(T")Es(0,7")ar’, (11)

where I,(x) is the Bessel function of imaginary
argument, ® and

pm)= [ B @) | ar
0

is the integrated power in the pump laser up to
time 7.

A. Stokes gain for monochromatic pump and input waves

It is instructive to review the properties of the
solution (11) for the case that the pump wave and
the input Stokes wave are constant and monochro-
matic. In this case we have E;(T)=E¥(7')=8, and
Es(0,7')=8g,. This leads to

(az)l/2

Eg(2,7)=85,+8, 3

T e-I‘x
I[

by VX

where we have used x=7 - 7', p(7)=8%7T and «
=4x,k,6%. Following Wang?’ we present analytic

X

(azx)Y ?)dx , (12)

approximations and numerical evaluations of the
Stokes output, given by Eq. (12), for two different
limits.

1. Transient limit

The transient limit occurs for times much short-
er than the reciprocal of the Raman linewidth
(I'T«<1). After replacing ¢T* by 1 in Eq. (12), the
integral canbe done to give Eg (z, 7) = § gL, [ (227)* 2],
which for large enough az7 leads to the asymptotic
form for the output Stokes intensity

. 'go ez(ourr)’/2
E%(z,7) ”E‘n— Tazn)i/®

(high gain, I'T<<1). (13)

We have used the property I,(x) ~ ¢*/(2mx)!/2, for
x =0, for any ¢.?® Equation (13) is the usual re-
sult for the transient Raman effect.?” It is inter-
esting to note that, in the transient limit, the
Raman gain given by Eq. (13) does not depend on
the Raman linewidth I'.

2. Steady-state limit -

The steady-state limit occurs for times much
larger than the reciprocal of the Raman linewidth
(I'T>1). Extending the upper limit to infinity,
the integral in Eq. (12) can be done exactly®® to
give for the Stokes intensity

E%(z,7)=8%,e%* (arbitrary gain, I't>1),(14a)

where

8" AL T (14b)
The steady-state gain coefficient g is the usual
one derived for stimulated electronic Raman
scattering.®® It does depend on the Raman line-
width I'; in contrast to the transient case.

Equations (13) and (14a) for the output Stokes
intensity, along with numerical evaluation of
Eq. (12), are plotted in Fig. 2, as a function of
gz, or equivalently, pump laser intensity, for
both a transient case (I'T=10"%) and a steady-state
case (I'T=10%). Here we interpret 7 as the pulse
duration of the pump laser. Equation (13) for the
transient gain (I'T = 107%) is seen to agree well with
the exact numerical results when log,,(E%/8%,)
>1, while Eq. (14a) for the steady-state gain (I'T
=10%) agrees everywhere. Note that the values
below log,,(E%/8%,)=0 are unphysical. The other
four curves in Fig. 2 show the effects of laser
bandwidth on the gain, as described in Sec. IIIB.

B. Raman gain for broad-band pump and/or input waves

We now evaluate the Raman gain in the case that
the spectral width of either the pump laser or the
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Stokes input wave (or both) is greater than the
Raman linewidth (I'y + g > I'). This can be ac-
complished by performing an average of the -
general solution, Eq. (11), over a statistical en-
semble chosen to model the bandwidths. An
especially useful model is that of phase diffu-

sion, °® in which the field amplitude & ; is constant,
but the phase suffers abrupt changes at an average
rate 2I'; (see Appendix B). The field autocorrela-
tion functions are then

(EL(MEFT ) =82eTL!™™! (15a)
and
(Eg(0, T)EZ(0, 7)) = 85,eTs' ™!, (15b)

which lead directly to Lorentzian line shapes with
halfwidths (HWHM) equal to I'; for the pump laser
and I'g for the input Stokeswave. The brackets ( ))
indicate an ensemble average over the statistical
fluctuations of the field.?! This model describes
a stabilized laser operating far above threshold,
but it also proves to be very convenient mathe-
matically.

The intensity of the output Stokes wave is given
by {(|Es(z,7)|?). To evaluate the intensity of the
Stokes wave we first introduce some notation:

flx)=(eT*/Vx )1 [ (azx)/?], (16a)
F(r)= fo(T - r')E‘(T()gEZZ(T’) Esg(o"r')dr'.,
0 o so (16b)

Then from Eq. (11), using p(1)=8%7 in accordance
with the phase diffusion model for the pump laser,
we have

Es(z,7)=Es(0,7)+85{3[(a2)* 1 F(r),  (17a)
(|Es(z,7)]?) = 8%, +85o(az)/?
X (EE(0, T)F (1))
+85[3(ex))K[FM[).  (17b)
The second term in Eq. (17b) can be easily

evaluated using Eq. (15),

(EFO, P =8, [ fr-1)
(0]
X eTL(™gTs =M gr! (18)

where we have assumed statistical independent of
the waves at z=0; that is

(EL(T)EE(T")Es (0, 7')EE(0, 7))
=(EL(MEE(T))(Es (0, T)EZ(0, 7))

(see Ref. 32). This integral is identical to the
integral in Eq. (12), but with [’ replaced by I' + ",
+I's. Thus whenI'; + I'g »>I') this term grows
with a very small gain coefficient. This is in

)
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-2 -1 o ] 2 3 4
log (gz)

FIG. 2. Normalized Stokes output intensity as a func-
tion of gain coefficient gz (or equivalently, pump laser
intensity) under various physical conditions and differ-
ing levels of approximation. The curve labeled “NB, SS*
is the narrow-band steady-state result obtained from
Eq. (14a), or Eq. (12) with l"7'=102, where T is the
Raman linewidth and 7 is the laser pulse length. The
“NB, TR” curves are the narrow-band transient results,
obtained exactly from Eq. (12) with Dt=10"2 (solid
curve), or approximately from Eq. (13) (dashed curve).
The curves labeled “BB, SS” are the broad-band steady-
state results obtained exactly from Egs. (17b), (18),
and (20b) with I'7=10? (solid curve), or approximately
from Eq. (25) (dashed curve). The “BB, TR” curves
are the broad-band transient results obtained exactly
from Egs. (17b), (18), and (20b) with I't=10"2 (solid
curve), or approximately from Eq. (22) (dashed curve).
The broad-band curves are for a bandwidth ratio (I
+Tg)/T=10% where T, and I'g are the bandwidths of
the pump and probe (Stokes) lasers.

contrast to the third term in Eq. (17b), which, as
we will see, grows with essentially the narrowband
gain given in Eq. (14a). Thus we expect the third
term of Eq. (17b) to be dominant in the high-gain
limit. Using the correlation functions given by

Eq. (15), one can evaluate this third term as
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« ]F(T) lz>> — fT f‘rf(.r - Tl)f(T - T”) «EI(TQ’EL(T”)»((ES (07 T')Eé"(o, T”)» dT' dT”

L

T T
- f f f(T — T')f(T - Tlr)e-(I‘L-*x‘s)l'r'-'r" ] dT' dT” ,
0 0

where we used the fact that E,(T)E}¥(T) =83 is in-
dependent of the statistical averaging. To evaluate
the double integral in Eq. (19b), we note that the
exponential factor is much different from zero
only near the line 7/ =7". In the limit that f(x)
changes very slowly in a time (I', + I'g)™! (i.e.,

I') az<I';+I'g), we can replace the exponential
factor by the properly normalized 6 function

20, + gyt 6(1' =T"). We then get

«IF("’)lz»Er—L%sffz(T—T')dT' (20a)
2 T j=2T'x
=f—;r—sf0 ex P[(azx)/?]dx . (20b)

In similar fashion to the integral in Eq. (12), this
integral can be evaluated analytically as well as
numerically, in the two limits:

1. Transient limit

As before, for I'T<<1, the exponential can be
replaced by 1 and the integral done (in this case
asymptotically, using the asymptotic form for
1)) to give

1 paent/?

<<|F(T)lz»:‘rr(l‘l,l+I‘S) azT

(21)

Thus, in the high-gain limit where Eq. (17p) is
dominated by the last term, we find that the Stokes
output intensity in the transient limit is

2 ez(an')l/z

((IEs(Z,T)!Z)F—Z'ST‘,‘Qm

(high gain, I't<1). (22)

Because of the form of the exponential, this result
for the broad-band transient will be nearly indis-
tinguishable from the result, Eq. (13), for the
narrowband transient.

2. Steady-state limit
To evaluate the steady-state limit of Eq. (20b),
we extend the upper limit of the integration to
infinity, and do the integral to give®

2\ _ az 3 4. az
<<|F(°°)| >> *4F(FL+FS)2F2(2y 1’ 2, 3) 21—\)5 (23)

where , F, is the generalized hypergeometric
function, which can be evaluated asymptotically
for large argument as®

LF,6,1;2,3, %)~ 4/VT) /. (24)

8z, (19a)

(19p)

—

This leads to an asymptotic form for the Stokes
intensity under broad-band steady-state high-gain
conditions:

r es’x
2\ - £2
KEs & =) N =830 T T, Trga)
(high gain, I'T>1). (25)

It can be seen by comparing the Stokes intensities
given by Eqs. (25) and (14a) that under the condi-
tions assumed (copropagating waves, no disper-
sion), the growth of a Stokes wave, in the steady-
state high-gain limit, is virtually unaffected by
either its input bandwidth or that of the pump
laser. We can demonstrate this result by writing
the output Stokes intensity as

(| Es(2,°) |22y =8%,e°, (26)
GZGNB_ln{[(rL+FS)/F](7TGNB)1/2}'; 27)

where Gyg =gz is the narrow-band gain coefficient
from Eq. (14b). Thus for large gain the difference
between G and Gy becomes relatively insignifi-
cant. We will present a possible interpretation for
this result in Sec. V. Equation (27) is similar to
the result, conjectured by Carman et al.,'® that
G=Gyg—In[(I';/T)Gyp]. The difference between
our result and theirs (when I'g =0) may be due to
the fact that they allowed also for amplitude
fluctuations of the pump laser, whereas we have
restricted ourselves to phase modulation alone,
in order to make an explicit calculation tractible.
The calculation becomes intractible when ampli-
tude fluctuations are present because, then, p(T)
in Eq. (11) is a random variable which makes the
statistical average difficult to perform. '

As in the narrow-band case, we plot the broad-
band Stokes intensities, Eqs. (22) and (25), in
Fig. 2, along with numerical evaluation of the .
Stokes intensity from {(|Es(z,7)|?), defined by
Egs. (17b), (18), and (20b). Since Eq. (20b) is
valid only for I'; + I's > I", @z, we have plotted the
extreme case that (I' ; +I'g)/I' =10°, in order to
demonstrate the validity of the asymptotic forms
Eqs. (22) and (25). Again we have plotted the
transient and steady-state cases: I'7=10" and
10_2. Again we see agreement of the asymptotic
forms with the exact numerical results when
log(|Eg (z,7)[2)/ 83,> 1.. ‘

We may now compare the narrow-band and
broad-band results. For this extreme steady-state
case, (I';+Tg)/T'=10° we see a significant sup-
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pression of the gain in the turn-on region for both
transient and steady-state limits. However,
according to Eq. (27), at very high gains the dif-
ference between the narrow- and broad-band
stimulated outputs becomes less and less, relative
to their absolute magnitudes. It is interesting that
the broad-band output exhibits a threshold-type
behavior, in contrast to the exponential behavior
of the narrow-band output.

Although the principal interest here is in the
high-gain limit, some comments can also be made
about the low-gain steady-state limit, important
to such experimental techniques as CARS (coher-
ent anti-Stokes Raman scattering). Thus we will
find the terms in Eq. (17b) which are of lowest
order (linear) in @z. It can be shown® that the
third term, containing {|F(7)|2), is quadratic
in oz as az -0 and can thus be neglected. The
first and second terms in Eq. (17b) are evaluated,
using Eq. (18) with the upper limit 7 taken to in-
finity, to give?®

(|Es(z,) |2y =8%,(2efBB5/2 - 1), (28)
gep=0/2(C +T'; +Tg). (29)
In the limit @z -0, this reduces to

(|Es(z,*)|?) =83,(1 +ggp2)
(low gain, T't>1). (30)

We see that in the low-gain steady-state limit,
the SRS grows linearly with the (“broad-band”)
gain coefficient ggg. This is the result that would
naively be predicted on the basis of photons per
mode, as discussed in Sec. L

C. Raman gain for arbitrary bandwidths

Here we analyze, numerically, the properties
of the stimulated output when the condition I + I'g
>TI', az is not necessarily upheld, as was assumed
in Sec. IIIB. First note that if we take (I'y + I'g)/I’
=102, rather than 10° as used in Fig. 2, the analy-
sis of Sec. III Bis valid only for gz < 10%, making pre-
diction of the broad-band transient above gz = 10?
impossible by those methods. However, also note
that the solution in Eq. (19b), before approximation
to obtain Eq. (20), contains the information we are
seeking in the general case. Thus we evaluated
Eq. (19b), by a numerical method discussed in
Appendix C, and obtained the output Stokes in-
tensity ((|Es (2, 7)|?) defined by Eqgs. (17b), (18),
and (19b). These results are shown in Fig. 3,
where we have covered a large region of the in-
teresting parameters: I'7 and (I'y +I'g)/I both
vary between 1072 and 102

Beginning with Fig. 3(a), we see that the laser
bandwidth has little effect on the gain in the
transient limit (I'7 =10°2). This is not surprising,

as a short laser pulse of duration 7=10"2/T has a
spectral width of 10°I' without phase diffusion

(', =0). Thus we see no effect of additional
broadening by phase diffusion until I, + I'g > 10°T,
at which point the gain becomes slightly depressed.
Progressing in Figs. 3(b) and 3(c) to longer pulse
duration 7, we see the general result that no effect
of phase diffusion broadening is apparent until

I'; +T's=1/7. The steady-state limit occurs in
Fig. 3(d), where no difference is seen between
I'7=10 and I'T=10%

IV. SPECTRUM OF THE STOKES OUTPUT IN STEADY STATE

In Secs. I-III the input Stokes wave has been
taken to have a width I'y. But because all of the
power in the broad-band pump laser is effective
for amplifying the Stokes wave, it is interesting
to ask what becomes of the spectral distribution
of the Stokes wave after it has been amplified. In
this section we calculate the spectrum of the
Stokes wave in the steady-state high-gain limit,
in two different cases: I'y =0 and I'y > T.

(a) (b)
6 -
I'r=0.01 T'r=0.l
5k L
4} _
3 -
2k Iy+ls | L +Ts .
T T 0
| QOI,O.I.I,IO» —0401, o1, 1
100 100

STIMULATED STOKES OQUTPUT log (<<lEs|2 >>/£§ol

FIG. 3. Normalized Stokes output intensity as a func-
tion of gz (or pump-laser intensity), evaluated numeri-
ically using Eqs. (17b), (18), and (19b), for various
values of the bandwidth ratio (I'y+ I'g)/T, where T is
the Raman linewidth, and I'y and T'g are the bandwidths,
due to phase diffusion broadening, of the pump and probe
(Stokes) lasers. Four different pulse lengths 7 are
shown: (a) T'7=10"2, transient limit; (b) TT=10"1; (c)
I'r=1; (d) I'T=10 and 10, steady-state limit. In all
cases the effect of the laser bandwidths becomes rela-
tively unimportant at high gains.



For a stationary wave E(7), the definition of the
power spectrum P(w) is

P(w)zz%r'/m e “sK(s)ds , (31)

where w is the frequency as measured from the
frequency of the carrier wave and P(w) is the
Fourier transform of the electric field autocor-
relation function K (s),

K(s)=(E@E*T +s). (32)

It is easy to show from Eq. (31) that P(w) is nor-
malized as follows:
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As an example, when Eq. (31) is used to calculate
the laser spectrum P (w), from the correlation
function Eq. (15), one finds

r,/=
PL(w):wziF% %, (34)

a Lorentzian, as stated in Sec. III. We can use
the general solution, Eq. (11), to determine K(s)
for the Stokes wave

K(s)=8%,[1(aa)J(F(T)F*(T +s)), (35)

where we have again kepﬁ only the term which
dominates in the high-gain limit. In steady state
(1 ==) we expect that K (s) will depend only on s

f P(w)dw=K(0)=(|E()|?). (33) and not 7. K(s) can be evaluated as
]
az (7 A E (T)E¥(7")EX¥(T+S)E_ (7" Es(0,7")E¥(0,T"
K(S)—é’go y f dT'f dT"f(T—T')f(‘T+S " « L( ( )614( + L( )» « S( 5)2 S( )» (363.)
(4] So
- 82 az )G -I‘sls-wxl
=850 ). "ax 0 dyf(x)f(y ,y,s)e (36Db)
where !
A _iw+(2I‘L+I‘s)iiw+1“s (382)
Gx,y,s)=exp[l ([s+x|+ s =9|=|s =y +x] Tt QUL+ D) T WP+ T
- x| =ly|=1sD] (36c) we can write
Here G(x,v,s) is the four-time correlation func- £, =2ReA ¢ T Ts)I=0)
tion of the pump-laser field, assuming the phase +2ReA, e Tt cosw(y —
diffusion model, and is evaluated in Appendix B.
In deriving Eq. (36b) we have used x=7 — 7’ and ~2ImA_e2%) sinw(y — (38b)
y=T+s—-7". In steady state the upper integration £.-9 .
=2(—ReA_cos ImA_s
limits are extended to infinity and K (s) becomes 2= 2 - coswx s - Sinwx)
independent of 7. In order to simplify the absolute X g Tply+=)Tsy
values, the integral is transformed to the triangu- 9 .
-2(Red :
lar region above the y =x line by use of the pro- ( - coswy +ImA, sinwy)
perty G(y,x,s)=G(x,y,—s). Then for the Stokes X g T (w0 Tsx (38c)

spectrum we have

Lo, 0z
Ps(w)= ﬂ_é’s n
y
f f dxf(x)f(y)\ﬁ(x,y,w)’ (37a)
Y 0
where
£(x,y, w)=2 ReeTr*) f ds e~1vs
Xexp[rL([s+x[+ |s_yl
~|s-y+x|-| s —rslsl—y+x|].
(37b)

The transform £ can be calculated under the condi-
tion x <y. We write £ as the sum of two parts
£=£ +L£,. Defining

Equations (37) and (38) are now used to evaluate
the Stokes output spectrum in two different cases.

A. Stokes output spectrum for a monochromatic pump laser

Here we treat the case that the pump laser is
monochromatic (I'y =0) and the spectral width of
the input Stokes is allowed to assume two different
limits: I'g=0 or I'g »>T. The steady-state gain
for these two limits has already been given in
Eqgs. (14) and (25).

The spectrum is easily obtained by setting I'

=0 in Eq. (38). Then, because A_=0, we have
£,=0 and
£,=4[Ts/(w?*+T%)] coswly - x). (39)

Transforming back to the full x,y quadrant gives
for the spectrum of the Stokes output
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, oz 4L

1
Pslw)=g2857 irs

' X‘;’fow dy -[)“” dxf(x)f(y) cosw(y — x) (40a)

az Ig/m _
:8207 wzfrg II’Z 3 (40b)
where®
I= f el f(x) dx
0
2 gz T
"—___T(az)‘ = [exp(2 T —iw)_ 1] . (40c)

In the high-gain limit the Stokes output spectrum
is

Us/m re
P.S(‘-"):é,éo(’.)zs+ s eXp<me>. (41)

To put this result into proper form we must as-
sume one of the two above-mentioned limits.

The first limit is that of a monochromatic input
Stokes wave (I'g =0). Here we can use Eq. (14a)
for the output Stokes intensity: ((|Eg(z,«)|2)
=8%,e*. Then Eq. (41) can be rewritten, in the
limit Ty -0,

Pg (w) =8(w)(|Es (z,%)|?) - (42)

Thus we see that the output Stokes wave is mono-
chromatic when the input Stokes wave and the pump
laser are monochromatic, as expected.

The second limit is I'g > I". Here we again
consider a monochromatic pump laser (T'; =0)
and use Eq. (25) for the Stokes output { |E 4(z, *)|2)
to rewrite Eq. (41) for the Stokes output spectrum
as

T2 gz )1/2 ( w? >
= _—s 2 — —
Ps()= e (111"2 P\~ e

x| Eg (=, =) [2), (43a)

1/2
P> (Fir) e (- f o) (I I,
(43p)

where the last step is valid because the halfwidth
[(In2)I?/gz]'/2 of the exponential factor is much
less than T and T's. Note that Eq. (43b) is nor-
malized as in Eq. (33). Equation (43) describes

a Lorentzian-shaped atomic line of width I" that
has been gain narrowed. The ideal that the center

- of the line will experience more gain than the

wings is a familiar idea in laser theory. A com-
parison of the atomic tine and the gain-narrowed
Stokes line is shown in Fig. 4 for the case gz =15.

B. Stokes output spectrum for a broad-band pump laser

Here we treat the case that the pump laser
width is larger than the atomic width (', > T")
and the input Stokes width I'g is arbitrary. The
spectrum is obtained by applying several approxi-
mations to Eq. (38). First note that in the high-
gain limit, only £, will give a significant con- -
tribution to the spectrum because its exponentials
damp as (y —x), rather than (y +x). Thus along
the line y =x, £, is large, while £, becomes neg-
ligible. Second, note that because I', + I'y is
assumed large (', + I > I', @z), we may replace
the exponential factors by properly normalized
delta functions, as in the argument leading to Eq.
(20);

e~ (TL+Tg)o=x) (T,+Tg)'6(y —x), (44a)
e T2 cosw(y —x) = [T, /(w?+T2)]6(y -x),
(44b)
e T ginw(y —x) = [w/(w?+ T2)]6(y —x) .
(44c)
s— I'L=0
Ig»rl
7
) |
k 61—
»
3
a S5 (b)
s
2
'_
(&}
w
a 31—
n
v s
w
=2
(@]
a

o]
-2r -r (0] r 2r

FREQUENCY, w

FIG. 4. Comparison of the Lorentzian Raman line
shape [curve (a)] with atomic halfwidth T', and the gain-
narrowed output Stokes spectrum [curve (b)] with
halfwidth (In2T%/gz)*/? for gz =15, plotted from Eq.
(43b). This Stokes spectrum narrowing results when the
pump laser is monochromatic and the input Stokes laser
is broad band.
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Combining these results gives
£1—[4/(1"L+I‘s)][1"L/(w2+I‘i)]6(y—x). (45)

Now the spectrum of the output Stokes intensity
Py (w) is easily evaluated from Eq. (37a):

1 az 4 T
Ps@)= 5 8% T T,4T, oal2
“F2(y)d 46
Xfof(y)y,. (46a)
r,/r
Py(w)= Zo—gfff (| Es(z, =) |3, (46b)

where we used Eqgs. (17b) and (20a) to define the
output Stokes intensity ( |E¢(z,)|?). Note that
P(w) is normalized as required by Eq. (33). This
indicates that our neglect of £, is justified.

Comparing Eqgs. (46b) and (34) shows that the
Stokes wave assumes exactly the same spectrum
as the pump laser during the amplification process,
regardless of the spectral width of the input Stokes
wave.

V. DISCUSSION

In the case just treated, that the pump laser
width is greater than the atomic width ('; > T),
our interpretation is that the fluctuations in the
phase of the pump laser dominate the time be-
havior of the amplification process. Indeed,
Carman et al.'® found numerically, in the case of
a quadratic phase sweep in the pump laser, that
the Stokes phase closely followed this sweep after
a brief initial period. Our result for the Stokes
spectrum [Eq. (46)] is consistent with the conjecture
of Carman et al. that, when I';, > T, the Stokes
phase always follows the pump phase in the high-
gain limit, regardless of the phase structure of
the input Stokes wave. If correct, this effect,
which we will call “phase locking,” also explains
the fact that the gain is unaffected by the phase
flucutations which lead to the bandwidth. As Car-
man et al. pointed out, if the phases ¢g and ¢,
differ at all points by a constant |¢(z, 1) = ¢, (2, 1)
+®,], the phases drop out entirely from Eq. (11),
leading to the narrow-band gain result, Eq. (14).
Thus, the idea of “phase locking” leads to results
consistent with our results for I', > T'. When both
I'; and T'g are larger than I, we can say that the
amplified Stokes wave builds up from the broad-
band input noise in a way which automatically
satisfies ¢ g=¢, + ¢,. That is, only that part of
the noise which satisfies this relation will ex-
perience large gain.

To illustrate the idea of phase locking we have
compared, in Fig. 5, several steady-state gain
curves. We have reproduced curves from Fig.

3(d), calculated from the exact equations (labeled
“phase locked”). We have also plotted curves using
Eq. (14a) (labeled “narrow band”), and also using
Eq. (14a) with g replaced by gz of Eq. (29) (labeled
“unlocked”). We see that at low gains the exact
curve follows the “unlocked” curve, consistent
with the idea that there is no correlation between
the output Stokes and pump laser waves. This
low-gain behavior was predicted at the end of
Sec. IIIB. However, at high gains the exact curve
approaches the “narrow-band” curves, consistent
with the idea that it has become “phase locked,”
resulting in an enhanced gain. We thus see that
phase locking appears to occur only above a cer-
tain (threshold) gain. In contrast to the behavior
found in the present treatment, Dzhotyan et al.??
found in the multimode approach (see Sec. I) that
the “narrow-band” gain was appropriate even at
low gains. This is a major difference between the
two models.

Finally, we point out that we have treated only
the case of Raman amplification, and not SRS
which grows from the initial Stokes photons spon-
taneously emitted with frequencies near wg, in
the absence of an external input Stokes wave at
that frequency. Here we wish to make some con-
jectures on the outcome in the latter case. We
may consider the spontaneous photons as making
up the source term E (0, 7). Although here we
certainly cannot make the decorrelation of the
pump wave E,(7) and source term E (0, 7) that
we made in connection with Eq. (18), we still ex-
pect that, at high gains, the major results we have
obtained do apply to spontaneously generated SRS.
That is, we expect the gain to be essentially in-

(a) (b)
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3| NARROW 3 NARROW
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log (« |EsIZ »/€20)
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UNLOCKED UNLOCKED

1 | 1 ol L |
=1 o I 2 3 =i [o] ! 2 3

log (gz) log (gz)

STIMULATED STOKES OUTPUT

)

FIG. 5. Normalized Stokes output intensity, in
steady-state, as a function of gz (or pump-laser inten~
sity), for two different laser bandwidth ratios: (a)
(T + Tg)/T=1and () (T + Tg)/T=10. In both cases,
the exact results (labeled “phase locked”’) are seen to
agree, at low gains, with the results one would expect
in the absence of phase locking (labeled ‘“unlocked”),
which were obtained by replacing T by I'+ 'y + T'g in the
expression [Eq. (14b)] for the gain coefficient g. How-
ever, at higher gains, the exact results approach the
narrow-band curve [Eqs. (14a) and (14b)].
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dependent of pump-laser bandwidth, and when the
pump bandwidth is greater than the atomic width

we expect the output SRS to assume the spectrum
of the pump.

VL. SUMMARY

Using the phase diffusion model, we have ex-
tended the theory of stimulated Raman scattering,
in the case of two interacting classical waves
(pump and input Stokes), to allow for arbitrary
bandwidth of either wave. In the forward direction
if there is no dispersion, we showed that, in the
high-gain limit, the gain of the Stokes wave is
essentially independent of the input bandwidth of
either wave. In the low-gain limit the gain co-
efficient was found to be inversely proportional to
the sum of the bandwidths. We also calculated the
spectrum of the output Stokes wave, in the high-
gain limit, under various conditions. We found
that when the pump bandwidth I"; is greater than
the atomic width I', the Stokes wave assumes ex-
actly the spectrum of the pump laser, regardless
of the spectral width I'g of the input Stokes wave.
When both input waves are monochromatic
(r,, Ts=0), we found that the Stokes spectrum is
unchanged by the amplification process. Finally,
when I'; =0 and I'g> I', we found that the output
Stokes wave has a spectrum which is a gain-
narrowed atomic profile; that is, the Stokes width
becomes much narrower than the atomic width.

Note added in proof. A recent preprint by W. R.
Trutna, Y. K. Park, and R. L. Byer [to appear in
IEEE J. Quant. Electron. (July 1979)] has come to
our attention. Broad-band SRS was treated using
the coupled-wave approach (similar to that in Ref.
22) and qualitative agreement was found with our
work in the high-gain limit. At low gains, how-
ever, their treatment indicates no suppression of
the gain, in contrast to our results [Eq. (30)].
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APPENDIX A

Here we discuss more carefully the elimination
of a, from Eq. (3). We first neglect ¢, in Eq.
(3b), as A, is assumed to be much larger than
the pump laser bandwidth. The formal solution
of Eq. (3b) can then be written

¢ .
a,(t)= f eI LG (1) g (A1)
0

g@)=i[3Q,a,@)+3Qa,0)]. (A2)
Repeated integration by parts gives

gt)—e "Llg(0)  £(t) — e **L'5(0)
iA, - @A,z

2(t) = e22%5(0)
+ ——(l—A—L-)-:;——'— -, (A3)
Note that since a,(0)=1 and a,(0)=0, g(0)=i(3)Q;,.
When one assumes A, > Ag, @, Pg, 2, Ry, it can
be shown from Eq. (3) that g(f) < A, g(¢). Thus
when A; is large, one is left with

a,()=[gt) —izQ e 4Lt /ia, . (A4)
However, because A, is large, the exponential
term oscillates rapidly compared to g(f). Hence,
in the spirit of the RWA, we neglect the rapidly
oscillating part and retain only the slowly varying
part: )

a,)=g@)/ia, =(3Q,a,(1) 395 a,())/4,.  (A5)

It is interesting that the same result is obtained
by merely setting @,=0 in Eq. (3b).

a,(t) =

APPENDIX B: PHASE-DIFFUSION MODEL

The phase-diffusion model for laser bandwidth
describes, to good approximation, a cw laser
operating well above threshold, where the in-
tensity, I(¢) =I,+I’(t), is nearly constant, with
average value I, and small fluctuations I’ (¢).%®
However, well above threshold the phase ¢(¢)
fluctuates randomly, in a way reminiscent of a
diffusing Brownian particle. Simple laser theory
gives the equations for the intensity and phase
aSBG

P(6)= =)+ F (0), (B1)
P =F, (), (B2)

where F(t) and F ,(¢) are random Langevin forces
with correlation functions

(F [(t,)F (£,)) =2D08(t, — 1),

(F,(t)F, @)y =2Td(, ~t,),
and

(F [2,)F ,(t,))=0.

Here 1/X is the correlation time of the intensity
fluctuations, with mean value D/A, and T is the
bandwidth of the light. These & correlations sim-
ply imply that the forces fluctuate on a time scale
shorter than any other interesting time scale.

The phase-diffusion model is based on the as-
sumption that the intensity exhibits no fluctuations,
I'(t)=0, and that the phase fluctuates according
to Eq. (B2). The correlation function for the phase
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can be derived from Eq. (B2) as
t ty
(oot = [ at [ CargE OF @)

=F(t1+t2-—|t1-—t2\), (B3)

where we have taken ¢(0)=0, since the results
calculated later cannot depend on ¢(0) for a
stationary process. In the present context, the
aim of the model is to calculate correlation func-
tions for the field E(t) =8 e’ *’, where we are-
using the notation of Eq. (9). Here we have as-
sumed that the field amplitude § (and thus the
intensity) is a constant. So the correlation func-
tions can be written

(E(t,) -+ -E(t,)EX(t,,,) -+ ~E*(t,))
=8"(explip(t)+- - +ip(t,)
- i(p(t»ul) -t 'L(ﬂ(tn)]». (B4)

In order to calculate these correlations it is
expedient to further assume that the phase ¢(¢)
is a Gaussian stochastic quantity, that is, cor-
relation functions of any order can be expressed
in terms of the two-time correlation function of the
phase {@(t,)o(t,)). Specifically,*” we have

<<¢(t1) e q)(tzml)» =0 ’

(ot ot =3 olt; Dot ) - - -

perm

X «(P(tizn-l)(p(tizn)» ’ (B5)
where the summation is taken over all unique
permutations of £, ...,%,,. A useful relation can

be derived from Eq. (B5), which makes it easy
to calculate the correlation functions in Eq. (B4).
This is

()

1 r~ -
=exp<- s [ Car [ araenaen

x (ot ol "->>>) , (86)

where J(¢/) is an arbitrary function.®® This re-
lation can be proven, term by term, after ex-
panding the exponentials and using the property
Eq. (B5).

We can now calculate the desired correlation
functions. By letting J(¢’)=5(¢’ —¢,) in Eq. (B6)
we get i

=8 exp(-Tt,)~0, (B7)

where we have taken the stationary limit I't, -,
where the initial transients have died out. Thus
the average field is zero, as expected for a fluc-

tuating field. By letting J(¢")=8(t" —¢,) - 6(' - ¢,)
in Eq. (B6) we get
(E@JEX(E,)) = &*explip(t,) - ip(t,)])
=82exp(-T|t,=1,]). (B8)
The power spectrum of the field, given by the
Fourier transform of the two-time correlation
function in Eq. (B8), is thus a Lorentzian with

halfwidth I'. The four-time correlation function
used in Sec. IV can be calculated by letting

J(E)=0(t" =)+ 6@ = t,)
-8 —t,)-0@ -t,),

which gives
CE(t)E(t)E*(,)E*(t,))

=84exp{1"(|t1—t2| + lts_t4’ - |t1"t3]

_|t1_t4l_[tz_t3|_|t2"t4[)}' (BQ)

This result can be used to illustrate one of the
basic assumptions of the phase-diffusion model.
By letting f,=¢, and {,=¢,, and defining the in-
tensity as I(¢) = | E(¢) |2, we can see from Eq. (B9)
that the intensity correlation function is given by

(IIE)) =6%=1F, (B10)

i.e., the intensity is always perfectly correlated
with itself in the phase-diffusion model, because
it does not fluctuate.

APPENDIX C

Here we describe the numerical technique used
to evaluate the double integral in Eq. (19b). Let
r=(T=71)2 s=(r =772, and a=(az)'/2. Then,
we have

1/2

L1/2
<<IF(T)12>>=4f0 dvfo ds e 1 (ar)

Xe-l‘szll(as)e-(l"L+I‘s)|sz-72| . (Cl)
1/2 r
=8f drf ds e T’ (ar)
0 0
- “(Tr+ -2
x e TS’ (as) e TL*Ts) rPs®) (c2)

where we used the symmetry of the integrand in
Eq. (C1) with respect to interchange of » and s.
Now defining

ulx) = ¥ [ F(2)[2) (c3)

and
X
- 2 (P=Ty=T)s?
v(x) =™ (T TLsTs)x f ds e” T-FLTS ] (as)
[¢]

(c4)
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we have
u(x) :fxd'rll(av)v(r), (C5)

from which we can obtain

w(x) =1 (ax)v(x), (ce)

v'(x)==2(T+ T+ Tghxvlx) +e727[ (ax). (CT)

Thus we have transformed the double integral into
a set of two coupled ordinary differential equations,
Egs. (C6) and (C17), which can be solved readily

by standard numerical techniques.
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