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Theory of stimulated Raman scattering with broad-band lasers
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The authors have extended the theory of stimulated Raman scattering to include the effects of laser
bandwidths, in both the transient and steady-state regimes. The case of two interacting laser beams, a pump
laser and a probe (Stokes) laser, is treated. Using the phase-diffusion model for laser bandwidth, the authors
demonstrate that in the absence of dispersion, the forward Raman gain is essentially independent of the laser
bandwidths in the high-gain limit, while in the low-gain limit the gain coefficient is inversely proportional to
the sum of the bandwidths. It is further shown that when the pump-laser bandwidth is much larger than the
linewidth of the Raman medium, the stimulated Stokes output assumes the same spectrum as the pump laser
in the high-gain limit. A possible interpretation of these results is discussed assuming a "phase-locking" of
the Stokes phase to the fluctuations in the pump-laser phase, due to the nonlinear interaction of the two
beams through the Raman medium.

I. INTRODUCTION

The effects of finite laser bandwidth are being
recognized as important in the study of nonlinear
optical processes. Resonance fluorescence, ' '
two-photon absorption, ""second harmonic genera-
tion, ' multiphoton ionization, "" and stim'ulated
Raman scattering are all areas in which key ele-
ments of understanding depend on the ability to
model the laser, not as a monochromatic wave of
definite phase and amplitude, but as a multimode
broad-band wave with fluctuating phase and ampli-
tude. The problem of stimulated Raman scattering
(SRS) is especially timely in light of ongoing ef-
forts to use it as method for developing new co-
herent light sources" as well as compressing
high-energy laser pulses to achieve higher peak
powers for use in laser fusion. " In applications
of these types a detailed understanding of all the
factors influencing the efficiencies of the process-
es is obviously desirable. However, one import-
ant fa.ctor, laser bandwidth, has not yet been fully
explored.

Recently, two groups'"" have observed a large
forward-backward asymmetry of the Raman gain,
which they attribute to the broad-band nature of
the pump laser used. These were in the absence
of other effects, such as self-focusing or extran-
eous feedback, which are known to produce anom-
alous gains. " 'These asymmetries are consistent
with. several theoretical predictions'"" that in the
backward direction (counterpropagating pump and
Stokes waves) the gain coefficient is proportional
to (I'+ I'~) ', where I' and &r are the spectral
widths of the Raman medium and the pump laser,
respectively; while, in the forward direction, in
the absence of dispersion of the Stokes wave re-
lative to the pump wave, the gain coefficient is

proportional to ~ ' alone. Carman et aL" refer
to this as the rather startling conclusion. . . that
the Stokes gain is independent of the frequency
spectrum of the (pump) laser. . . even if this
spectrum is much broader than I"." Thus when

~~ is much larger than ~ the forward gain is much
larger than the backward gain. 'These results go
against intuition based on the idea that gain should
depend on the number of photons per unit frequency
in the pump beam. Apparently, the concept of
photons as independent incoherent bundles is in-
adequate to describe the subtleties in the SRS
problem.

The purpose of this paper is to further develop
the theory of SRS, including the effects of finite
laser bandwidths, in a way that allows explicit
calculation of the gain and spectrum of the Stokes
wave. %e consider, as in Fig. 1, a medium of
three-level atoms interacting with two cl.assical

3

FIG. 1. Three-level atom interacting with a pump
laser with frequency ~1 and a probe (Stokes) laser with
frequency co@. The cumulative detunings are 41 and 4z.
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electromagnetic waves; one a pump (laser) wave
and the other a Stokes wave, differing in frequency
by the Baman shift of the medium. Both waves
have constant amplitudes, but phases which fluc-
tuate randomly, giving rise to bandwidths I ~ and

This is the "phase-diffusion model, " which
has been used recently as a means to include
bandwidth effects into the calculation of light-
scattering spectra, ' ' as well as multiphoton
ionization. ' '" The calculations are performed
as statistical averages over the random phase
variables of the two waves. Previous treat-
ments'"" of SRS attempted to accommodate both
fluctuating phases and amplitudes. We will discuss
later why the inclusion of amplitude fluctuations
in this pl oblem ls such a difficult task. Within
the stated model, we verify the independence of
the forward gain from the pump width I'I, and the
Stokes width ~z, in the high-gain limit. Further
we will show that in the case that the width of the
purop laser I'~ is broader than the Baman line-
width ~, the amplified Stokes signal assumes the
spectral width of the pump laser, regardless of its
initial width.

Akhmanov, D'yakov and Pavlov" have separated
the problem into four regimes of interest: {i) I'z
«1, with no dispersion; (ii) I"z «I', with dis-
persion; (iii) I'~»1', with no dispersion; (iv) I'z
» I', with dispersion. Case (i) was considered
by Bloembergen and Shen, ' who predicted an
enhancement of the forward gain for a multimode
laser. In this paper we treat mainly case (iii),
where the laser linewidth is broader than the
atomic linewidth. Here there is no enhancement,
but neither is there a significant suppression of
the gain, compared to that calculated in case (j.)
in the limit I'~ =0. Carman et al." have also
treated case (iii), and they reached essentially
the same conclusions by calculating numerical
solutions to the problem. Cases (ii) and (iv) treat
the effects of dispersion. There is a consensus'"'"" that broadening of the laser in the presence
of dispersion does result in a lowering of the gain,
due to the inability of the Stokes wave to stay
correlated with the pump fluctuations as they pro-
pagate. However, Akhmanov et al." have shown,
further, that there is a critical pump intensity,
above which the effects of dispersion are overcome
and the gain coefficient increases again to nearly
the narrow-band value.

Dzhotyan et al."have treated the problem by
assuming the pump and Stokes waves to be corn-
posed of many monochromatic modes, with uniform
frequency spacings large compared to the Baman
linewidth ~. This results in significant interaction
only between certain resonant pairs of modes (one
pump and one Stokes). 'fhis approach can be

thought of as complementary to the present ap-
proach, in which the energy in the waves is taken
to be spread continuously over a small frequency
interval. 'The multimode approach of Dzhotyan
et al. is a generalization of an idea developed by
Giordmaine and Kaiser" (and discussed by Byer
and Herbst"), in which the pump and Stokes waves
each consist of two modes. This treatment illus-
trates the relationship of SRS with four-wave
parametric interactions. Another related dis-
cussion is that of Harris, " in which the threshold
for parametric oscillation with multimode lasers
is shown to depend only on the total power in the
pump laser.

In Sec. II we derive the equations of motion for
the Barnan problem in a novel way by using the
"two- photon vector model" of Takatsuj i'~ and
Grischkowsky et al." In Sec. IIIwe review the
general solutions of the equations, following
Carman et al."and evaluate the gain with mono-
chromatic pumping for both the transient and
steady-state limits. Then we apply the phase-
diffusion model to evaluate the gain under ar-
bitrary broad-band pumping conditions, again in
both the transient and steady-state limits. In
Sec. IV we calculate the spectrum of the amplified
Stokes wave by considering its autocorrelation
function in the steady-state limit. In Sec. V we
discuss a possible interpretation of the results
obtained, and in Sec. VI we summarize the main
results of the paper.

II. EQUATIONS OF MOTION

Here we give a novel derivation of the usual
equations of motion for the Raman problem and a
discussion of the physical model leading to them.
For simplicity, we treat the case of near-reson-
ance Baman Stokes scattering, in which only three
atomic levels need to be considered. Thus we con-
sider a vapor of atoms with energy levels shown
in Fig. 1. A pump laser is tuned near (but not on)
the 1-2 transition and a probe laser is tuned near
(but not on) the 2-3 transition. It is sufficient to
treat the pump laser as a prescribed field as long
as it is not depleted. The probe laser wiB ex-
perience gain in a manner dependent on both the
amplitude and phase structure of the pump laser.

Consider the fields Ez {pump laser) and R~
(Stokes, or probe laser) acting on the three-level
atom of Fig. 1. Let

Ez, =Spaz, cos((dzf —fzzz+ pz) = @zxz cos@z, (1a)

Kg = Ssjtg cso((deaf w)zgz+ jtzg ) =8gxg cospg, (lb)
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where bI and b$ are the (real. ) amplitudes of the
waves, with linear polarization vectorsx~ and s,
carrier frequencies ~~ and ~s, propagation
vectors kI, =k~z, ks =ksz, and slowly varying
phases p~ and ps. The state of the atom can be
written

a e-hagtg + a e t(rugt+4 z)P

y a 8- t(~yt+dlt;@$1'
3 3 (2)

where a„a„and a, are the slowly varying co-
efficients in a doubly rotating frame, ""and P„

and g, are the stationary eigenstates of the
atomic Hamiltonian, with energies IM1 N(d2 Rnd

Ntd, . At f = 0 the atom is in the ground state (a,
=1, a, =a, =0) and afterwards the coefficients
evolve according to Schrodinger's equation

1
za, = --,n~a2,

ia, = (&z —pz)a, -$Qza, ——,'Q$a, ,

~ ~ 1ta. = ( 4 —&z+ &$ )a$

(3a)

(3b)

(3c)

This approximation is the basis of the 'two-photon
vector model" of Takatsuji' an'd Grischkowsky
et al. , "and is discussed more fully in Appendix
A. Using this approximation in the Schrodinger
equation [Eq. (3}], one may obtain two equations
for a, and a„which are identical in form to those
of a one-photon transition with effective Rabi fre-
quency Q, = —,'QzQ$/&z and effective detuning &,
= &$+ —,'(Qz, ' —Q$')/&t, , which shows the effect of
ac Stark shifting. Ke write the resulting equations
in the convenient Bloch form, "using U+zV= 2a,a,*,
and 8'=- a3a3*- a,a,*,

U=-(n, -q, + j,)v rU, (5a)

where the detunings are +r, = 21 I. and +s = 31
+ ~s —co~. The Rabi frequencies for the two
transitions are given by Qz =d„8~/ff and Q$
= d»h $/ff, where d» = d» '

xz, and d» = d» ' x$ are di-
pole matrix elements. The rotating-wave approxi-
mation" (RWA) hasbeeninvokedinwriting Eq. (3).
This is valid when the detunings a,re small enough

Several authors" "have discussed the case in
which level 2 may be eliminated from the Eqs.
(3a)-(3c). When &I, is much larger than &$ and
the fields have no appreciable Fourier components
at the atomic frequencies, we may set a, = 0 in
Eq. (3b) and get (neglecting j~)

a, = (-,'Q~a, + ,'Q$a, )/&z -.

lisional dephasing rate ~, which is the halfwidth
at half maximum (HWHM) in rad sec ' for the
(~Raman) transition between levels 1 and 3.

To describe Raman amplification, one must
solve the wave equation for the Stokes wave

&'E$1 s'E$4g s'0
8 2 V2 gt2 2 gt2 (6)

+ 2Nd» lm(a, a,*)sing$, (7)

where N is the atomic number density. Making
use of Eq. (7) for the polarization, Eq. (4) to again
eliminate a„and the slowly varying envelope
approximation, "one can write Eq. (6) in the form

B~S ~ ~~S
~z v ~t (8a)

ys ] ~ps

(8b)
where tt, = ttN&d$vd»d»lc'fez and the plus and
minus signs are for copropagating and counter-
propagating pump and probe beams, respectively.
Equations (5) and (8), along with a similar one for
the pump laser S~, completely describe the pro-
pagation and material response for the Raman
problem, including the effects of phase modulation
(jz, p$). They have been derived by Takatsuji"
and by Courtens" in essentially the same form and
used for considerations of optical transient
phenomena.

In contrast, we are interested in the special
case that the atoms are weakly excited and the
pump laser is a prescribed, external field. 'Thus
we take for the inversion W= -1, W= 0 in Eq. (5).
We also assume exact resonance (&, =0). The
remaining four equations, (5a), (5b), (8a), and

(8b), can be combined into two complex equations.
Defining the quantities

q = (U+ fV)e""z-"',
we obtain directly

~E 1 ~E i',q*E~, -
~2' V

(10a)

where v is the velocity in the medium, and P is
the polarization of the medium. Considering only
Fourier components close to the carrier frequency
&os, and only the linear polarization xs, leads to
a polarization

P = N( (
~

-d ' x$
~
g) = 2Nd', Re(a,a,*)cos$$

i=(~, q, +q, )U+Q, W rV, (5b)
8

= -j."Q*+zw E~Es (10b)

O'=-0 V. (5c)

Here we have included the phenomenological col-
where tt, =d„d„/2A'&~. These two coupled equa-
tions are the starting point for many theories of
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stimulated Raman scattering. They have usually
been derived in the coupled wave approach of non-
linear optics" for the case of molecular Raman
scattering, where Q is the normal-mode coordinate
of a molecular vibration and is often called an
optical-phonon wave. In those treatments, per-
turbation theory was used from the beginning and
the coupling constants K, and K, were given in
terms of molecular polarizabilities. Here we have
provided a connection between the "two-photon
vector model" and the standard theories of Raman
propagation. %e have given the explicit relations,
Eq. (9), between the variables used in the earlier
nonlinear-optics theories and the more modern
optical resonance or Bloch vector picture, which
has been used here, and continues to give insight
into many laser- related problems.

III. EVALUATION OF RAMAN GAIN

General solutions of Eq. (10) have been obtained
in the case of copropagating waves by Carman
et al." In this case the prescribed undepleted
pump-laser field E~ depends only on the local
time variable r =I —z/e. It is assumed that the
waves travel with equal velocity (kv, = ks ), i.e. ,
there is no dispersion. Denoting by Es(0, v) the
Stokes field at the input of the cell (z = 0), the
solution for the Stokes output field is"

-I'(T -V' )

Es(z, v)=E, (0, v)+((c,z,z)'~' . . . , ,)],~,7 ~ P

x I,(f 4v, z,z[p( v) p(v')]P~')
x E~(v)Eg(v')Es (0, v') dr',

where I,(x) is the Bessel function of imaginary
argument, "and

p(')= f l~ l")~*«"
0

is the integrated power in the pump laser up to
time ~.

A. Stokes gain for monochromatic pump and input waves

It is instructive to review the properties of the
solution (ll) for the case that the pump wave and
the input Stokes wave are constant and monochro-
matic. In this case we have E~(v) =Eg(v') =b~ and
Es (0, v') = 8 s, . This leads to

(lXZ)ll 2

Es(z, v ) =@so+@so

approximations and numerical evaluations of the
Stokes output, given by Eq. (12), for two different
limits.

Transient limit

2. Steady-state limit

The steady-state limit occurs for times much
larger than the reciprocal of the Raman linewidth
(I'T » 1). Extending the upper limit to infinity,
the integral in Eq. (12) can be done exactly" to
give for the Stokes intensity

Es (z, r) = h sacs' (arbitrary gain, I"v» 1), (14a)

where

N d„d„b (14b)

The steady-state gain coefficient g is the usual
one derived for stimulated electronic Baman
scattering. " It does depend on the Raman line-
width I', in contrast to the transient case.

Equations (13) and (14a) for the output Stokes
intensity, along with numerical evaluation of
Eq. (12), are plotted in Fig. 2, as a function of
gz, or equivalently, pump laser intensity, for
both a, transient case (I'v = 10 ') and a steady-state
case (1 v = 10'). Here we interpret v as the pulse
duration of the pump laser. Equation (13) for the
transient gain (I'v = 10 ') is seen to agree well with
the exact numerical results when log„(Es/hs, )
&I, while Eq. (14a) for the steady-state gain (I'v'

=10') agrees everywhere. Note that the values
below 1 g„o( /E8ss)2s= 0 are unphysical. The other
four curves in Fig. 2 show the effects of laser
bandwidth on the gain, as described in Sec. III B.

The transient limit occurs for times much short-
er than the reciprocal of the Baman linewidth
(I"v « I). After replacing e ""by 1 in Eq. (12), the
integral canbedoneto gi ve Es(z, r) =8»IO[(azr)'~'],
which for large enough nz7 leads to the asymptotic
form for the output Stokes intensity

g 2 2(OIET)
E2 z &) so e

2s (o.zv)"'

(high gain, I'v «1). (13)

We have used the property I,(x) - e"/(2')'~', for
x ~, for any i." Equation (13) is the usual re-
sult for the transient Raman effect." It is inter-
esting to note that, in the transient limit, the
Raman gain given by Eq. (13) does not depend on
the Raman linewidth ~.

te lg
&& I,[(o.zx)'I '] dx,

0
(12) B. Raman gain for broad-band pump and/or input waves

where we have used x =& —v', p(v ) = b'av and o.
=4K K,SI.. Following %ang" we present analytic

%e no~ evaluate the Raman gain in the case that
the spectral width of either the pump laser or the
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Stokes input wave (or both) is greater than the
Baman linewidth (I'~+I'~ » I'). This can be ac-
complished by performing an average of the
general solution, Eq. (11), over a statistical en-
semble chosen to model the bandwidths. An

especially useful model is that of phase diffu-
sion, ' ' in which the field amplitude 8~ is constant,
but the phase suffers abrupt changes at an average
rate 21'~ (see Appendix B). The field autocorrela-
tion functions are then

~4—
M~

4Q

04

00
lal

v &—
V'

(&Eg(7)Eg(7')&) =&ze "&'"
((E~(0, w)Ef(0, r'))) = 8' 8- ~'-" (15b)

CL

O

which lead directly to Lorentzian line shapes with
halfwidths (HWHM) equal to 1 I, for the pump laser
and I"

~ for the input Stokes wave. The brackets (( ))
indicate an ensemble average over the statistical
fluctuations of the field. " This model describes
a stabilized laser operating far above threshold,
but it also proves to be very convenient mathe-
matica, lly.

'The intensity of the output Stokes wave is given
by ((~E~(s, 7') ~')). To evaluate the intensity of the
Stokes wave we first introduce some notation:

-2 -l t 2
log (gz)

BB,TR

f(x) = (e r"/v x )f,[(o(zx)'i'], (16a)

(
' „E~(7)E~(7') E~ (0, v')

0

Then from Eq. (11), using p(r) =hz7 in accordance
with the phase diffusion model for the pump laser,
we have

E, (~, r) =E, (0, r)+&„[.-', [(ns)'~']jz(~),

(&~E (, )~'&&=&'„+@„( )"'
x «E,*(0,7)E(~)))

+&'.[l( ~)]&& ~E( ) ~'&&.

The second term in Eq. (17b) can be east].y
evaluated using Eq. (15),

((z."(0,~((.(r(p =((„f'f(~ -~ (
0

& &-r&(7-7 ~ -r~~T 7 ~d&1e

(17a)

(17b)

where we have assumed statistical independent of
the waves a.t z = 0; that is

((Er (&)Er*(&')E~(0, r')Eg(0, r)))
= «Ez, (r)E~(7')&&&&Es (o, 7')Es (o, r)&&

(see Ref. 32). This integral is identical to the
integral in Eq. (12), but with I' replaced by I" + I ~
+~&. 'Thus when ~L, + I'~ »l, this term grows
with a very small gain coefficient. This is in

FIG. 2. Normalized Stokes output intensity as a func-
tion of gain coefficient gg {or equivalently, pump laser
intensity} under various physical conditions and differ-
ing levels of approximation. 'The curve labeled "NB, SS»
is the narrow-band steady-state result obtained from
Eq. (14a), or Eq. {12)with I'v=10, where I' is the
Raman linewidth and 7. is the laser pulse length. The
"NB, TR" curves are the narrow-band transient results,
obtained exactly from Eq. (12) with I'7 =10 2 (solid
curve), or approximately from Eq. (13) (dashed curve).
The curves labeled "BB,SS"are the broad-band steady-
state results obtained exactly from Eqs. (17b), (18),
and (20b) with I'v=10 (solid curve), or approximately
from Eq. (25) (dashed curve). The "BB,TR" curves
are the broad-band transient results obtained exactly
from Eqs. (17b), (18), and (20b) with I'v=10 2 (solid
curve), or approximately from Eq. (22) (dashed curve).
The broad-band curves are for a bandwidth ratio (I'L,
+ I'z)/I'=105, where IL and I z are the bandwidths of
the pump and probe (Stokes) lasers.

contrast to the third term in Eq. (17b), which, as
we will see, grows with essentially the narrowband
gain given in Eq. (14a). Thus we expect the third
term of Eq. (17b) to be dominant in the high-gain
limit. Using the correlation functions given by
Eq. (15), one can evaluate this third term as
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f( )f( )
(( *( ') ( ")))((E (0, ')E,"(0, "))&

0 L S0

T T

f(r r )f(r r')e-&rs+rz))2 -2'- I dridr22
0 0

(19a)

(19b)

« l2'(')I'))=~, ~ r f*( - 2)d~2'

2

2 T e-2rg
P[(~zz) ~']dz.

L+ S 0

(20a)

(20b)

In similar fashion to the integral in Eq. (12), this
integral can be evaluated analytically as well as
numerically, in the two limits:

1. Transient limh'

As before, for ~«& 1, the exponential can be

replaced by 1 and the integral done (in this case
asymptotically, using the asymptotic form for

I,) to give

e2(agT)~} 2

« ~E(r ~')) =
(p

(21)

Thus, in the high-gain limit where Eq. (17b) is
dominated by the last term, we find that the Stokes

output intensity in the transient limit is

g 2 e2(0 aT)' }"
«~E ( )~')&= "

( )

(high gain, I'«& 1) . (22}

Because of the form of the exponential, this result
for the broad-band transient will be nearly indis-

tinguishable from the result, Eq. (13), for the

nar rowband transient.

2. Steady-state limit

To evaluate the steady-state limit of Eq. (20b),

we extend the upper limit of the integration to

infinity, and do the integral to give"

« I2( ) ))= 2 2

*
2, ,2',(,1;2, 2, 22, ), (22)

41" I' I" ' ' ' ' ' '2l'

where, E, is the generalized hypergeometric
function, which can be evaluated asymptotically
for large argument as"

,&,(2, 1; 2, 3, z)-(4/Mm) e"/z'~'. (24)

where we used the fact that E~(r)Eg(r) =Bz2 is in-
dependent of the statistical averaging. 7o evaluate
the double integral in Eq. (19b), we note that the
exponential factor is much different from zero
only near the line 7' = r" In. the limit that f(z')
changes very slowly in a time (I'I + I'z) ' (i.e. ,

nz « I'~+I'z), we can replace the exponential
factor by the properly normalized 5 function
2(I"~+ I~)-' 5(v'-r"). We then get

'This leads to an asymptotic form for the Stokes
intensity under broad-band steady-state high-gain
conditions:

I' e"
((~(E, (z, }~')) =h,', ~ ~ ( )„,

(high gain, I"r» 1) . (25)

It can be seen by comparing the Stokes intensities
given by Eqs. (25) and (14a) that under the condi-
tions assumed (copropagating waves, no disper-
sion), the growth of a Stokes wave, in the steady-
state high-gain limit, is virtually unaffected by
either its input bandwidth or that of the pump

laser. We can demonstrate this result by writing
the output Stokes intensity as

«fE. (,")
]
"» =~l.",

G = G„—in[[(I + I' )/I'](7rG„, )"),
(26)

(27)

where G» =gz is the narrow-band gain coefficient
from Eq. (14b). Thus for large gain the difference
between 6 and G» becomes relatively insignifi-
cant. We will present a possible interpretation for
this result in Sec. V. Equation (27) is similar to
the result, conjectured by Carman et al. ,

"that
G = G» —in[(I'~/I')G»]. The difference between
our result and theirs (when I'z =0) may be due to
the fact that they allowed also for amplitude
fluctuations of the pump laser, whereas we have

restricted ourselves to phase modulation alone,
in order to make an explicit calculation tractible.
'The calculation becomes intractible when ampli-
tude fluctuations are present because, then, P(r)
in Eq. (11) is a, random variable which makes the

statistical average difficult to perform.
As in the narrow-band case, we plot the broad-

band Stokes intensities, Eqs. (22) and (25), in

Fig. 2, along with numerical evaluation of the,
Stokes intensity from ((~Ez(z, r) ~')), defined by
Eqs. (17b}, (18), and (20b). Since Eq. (20b) is
valid only for I'L+ I's» 1, az, we have plotted the
extreme case that (I' ~+ I'z)/I' = 10', in order to
demonstrate the validity of the asymptotic forms
Eqs. (22) and (25). Again we have plotted the
transient and steady-state cases: ~~ = 10 ' and
10'. Again we see agreement of the asymptotic
forms with the exact numerical results when

We ma, y now compare the narrow-band and

broad-band results. For this extreme steady-state
case, (I'z+I'z)/I'=10', we see a significant sup-
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For a stationary wave E(v), the definition of the
power spectrum P(&d} is

As an example, when Eq. (31) is used to calculate
the laser spectrum P~(&u), from the correlation
function Eq. (15), one finds

P(&d) =— e '"'K(s)ds,
27' = (31) I l./n.

QJ +
where ~ is the frequency as measured from the
frequency of the carrier wave and P(&d) is the
Fourier transform of the electric field autocor-
relation function K(s),

a I orentzian, as stated in Sec. III. We can use
the general solution, Eq. (11), to determine K(s)
for the Stokes wave

K(s) = «E(~)E*(~+s)&& . (32) K( )=@'.[-'( )]«P( )F*( + }» (3 5)

It is easy to show from Eq. (31}that P(&d) is nor-
malized as follows:

I'(o dcu=KO = ET

where we have again kept only the term which
dominates in the high-gain limit. In steady state
(r -~) we expect that K(s) wi.ll depend only on s
and nots. K(s) can be evaluated as

&&,
~*f „, I'*''„,,„. . . „&&z,& I,"& ')z,"& Iz, & ")))&&z,&o, 'N;&0, ")))

I

0 0 I So

+Z v T+s

=hg, dx dy f(x)f(y)G(x, y, s)e r~" "'"',
0 0

(36a)

(36b)

where

G(x y s) =exp[1'. (Is+xi+ ls-y I- Is-y+xl
—lxl —ly I

—Is I)]. (36c)

i&d+ (21't + I'~ ) iu&+ I'z
&d'+ (2l"~+I'~)' &u'+I"2~ '

we can write

(38a)

Here G(x, y, s) is the four-time correlation func-
tion of the pump-laser field, assuming the phase
diffusion model, and is evaluated in Appendix B.
In deriving Eq. (36b) we have used x=7'-&' and

y = &+ s —&". In steady state the upper integration
limits are extended to infinity and K(s) becomes
independent of &. In order to simplify the absolute
values, the integral is transformed to the triangu-
lar region above the y =x line by use of the pro-
perty G(y, x, s) =G(x, y, -s). Then for the Stokes
spectrum we have

O.ZP. (~) = 2„&s. 4

Z =2RW. -'"'"""-"'
1

+ 2 ReA+e "~'" "' cos&d(y -x)
-2 ImA e r&'" "' sin&@(y —x),

2, = 2(-ReA cos~x+ ImA sin&ox)

y e-r~t3}+g)-rsvp

-2(ReA cos&uy + ImA sinu&y)

~ e-r~(3}+x)-rSg (38c)

Equations (37) and (38) are now used to evaluate
the Stokes output spectrum in two different cases.

where

x dy dx f(x)f(y)Z(x, y, &u),
0 No

S(x,y, ~}=2Ree "I"'"'
Jt ds e '"'

mCO

x exp[I' (Is+xi+ ls -y
I

—ls -y+x
I

—
I

s I) -F~ ls

(37a)

(371)

A. Stokes output spectrum for a monochromatic pump laser

Here we treat the case that the pump laser is
monochromatic (I"~ = 0) and the spectral width of
the input Stokes is allowed to assume two different
limits: l"~ =0 or I"~ » I'. The steady-state gain
for these two limits has already been given in
Eqs. (14) and (25).

The spectrum is easily obtained by setting ~1
=0 in Eq. (38). Then, because A =0, we have
12=0 and

The transform 8 can be calculated under the condi-
tion x&y. We write 2 as the sum of two parts
Z =Z, +2,. Defining

Z, = 4[1',/(~'+ r;)] cos~(y x) . (39)

Transforming back to the full x, y quadrant gives
for the spectrum of the Stokes output
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1, ag 4I"
&s ((d) =

~
& so 4277 4 co + ~s

x — dy
2 0

dxf(x)f(y) costs(y -x) (40a)

where"

4 v +~s (40b)

e'"" x dx
0

(nx)'~' 2 I —i~ (40c)

In the high-gain limit the Stokes output spectrum
ls

B. Stokes output spectrum for a broad-band pump laser

Here we treat the case that the pump laser
width is larger than the atomic width (I'~ » I')
and the input Stokes width I'~ is arbitrary. The
spectrum is obtained by applying several approxi-
mations to Eq. (38). First note that in the high-
gain limit, only Z, will give a significant con-
tribution to the spectrum because its exponentials
damp as (y —x), rather than (y+x). Thus along
the line y =x, f., is large, while Z, becomes neg-
ligible. Second, note that because I ~+ I'~ is
assumed large (I'~ + I'~ » I', nz}, we may replace
the exponential factors by properly normalized
delta functions, as in the argument leading to Eq.
(20);

e-(rs. rs)(&-&) g + Z )-lg(y x) (44a)
(41)

e ri" "'cos(o(y —x) —[r~/((d'+r~)]i)(y -x),
To put this result into proper form we must as-
sume one of the two above-mentioned limits.

The first limit is that of a monochromatic input
Stokes wave (I'z = 0). Here we can use Eq. (14a)
for the output Stokes intensity: «~E~(x, ~) '))
=8&,e '. Then Eq. (41) can be rewritten, in the
limit I's -0,

&, ( ) =&( )«~&, (,")~')) (42)

Thus we see that the output Stokes wave is mono-
chromatic when the input Stokes wave and the pump
laser are monochromatic, as expected.

The second' limit is I"~ » 1". Here we again
consider a monochromatic pump laser (I'~ = 0)
and use Eq. (25) for the Stokes output((~E~(z, ~) ~'))

to rewrite Eq. (41) for the Stokes output spectrum
as

e r&" "'since(y —x)- [&u/((u'+ I2~)]5(y —x) .

8 — rL= 0
r, »r

(b)

(44b)

(44c)

I-
UJ
CL

(43b)

K
LLJ

W 2—
O
CL

where the last step is valid because the halfwidth
[(ln2)I'/gz]'~' of the exponential factor is much
less than I and I'~. Note that Eq. ($3b) is nor-
malized as in Eq. (33}. Equation (43) describes
a Lorentzian-shaped atomic line of width 1" that
has been gain narrowed. The ideal that the center
of the line will experience more gain than the
wings is a familiar idea in laser theory. A com-
parison of the atomic kine and the gain-narrowed
Stokes line is shown in Fig. 4 for the case go =15.

0
-2I' —I 0 T'

FREQUENCY, gy

FIG. 4. Comparison of the Lorentzian Raman line
shape [curve (a)] with atomic halfwidth F, and the gain-
narrowed output Stokes spectrum I'curve (b)] with
halfwidth gn2F /gz) 2 for gz =15, plotted from Eq.
(43b). This Stokes spectrum narrowing results when the
pump laser is monochromatic and the input Stokes laser
is broad band.
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dependent of pump-laser bandwidth, and when the

pump bandwidth is greater than the atomic width

we expect the output SRS to assume the spectrum
of the pump.

a (t)= f e' " ''g(t')d )
0

g(t) = i[-,' n~ a, (t) i-,' n~a, (t)] .
Repeated integration by parts gives

(Al)

(A2)

VI. . SUMMARY

Using the phase diffusion model, we have ex-
tended the theory of stimulated Raman scattering,
in the case of two interacting classical waves
(pump and input Stokes), to allow for arbitrary
bandwidth of either wave. In the forward direction
if there is no dispersion, we showed that, in the
high-gain limit, the gain of the Stokes wave is
essentially independent of the input bandwidth of
either wave. In the low-gain limit the gain co-
efficient was found to be inversely proportional to
the sum of the bandwidths. We also calculated the
spectrum of the output Stokes wave, in the high-
gain limit, under various conditions. %'e found
that when the pump bandwidth I'~ is greater than
the atomic width I", the Stokes wave assumes ex-
actly the spectrum of the pump laser, regardless
of the spectral width I's of the input Stokes wave.
hen both input waves are monochromatic
(I'~, I'~ =0), we found that the Stokes spectrum is
unchanged by the amplification process. Finally,
when I'~ = 0 and I' s» I', we found that the output

Stokes wave has a spectrum which is a gain-
narrowed atomic profile; that is, the Stokes width

becomes much narrower than the atomic width.

Note added jn Proof. A recent preprint by W. R.
Trutna, Y. K. Park, and R. L. Byer [to appear in

IEEE J. Quant. Electron. (July 19"l9)] has come to
our attention. Broad-band SRS was treated using
the coupled-wave approach (similar to that in Ref.
22) and qualitative agreement was found with our
work in the high-gain limit. At low gains, how-

ever, their treatment indicates no suppression of
the gain, in contrast to our results [Eq. (30)].
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APPENDIX A

Here we discuss more carefully the elimination
of a from Eq. (3). We first neglect P in Eq.
(3b), as t)~ is assumed to be much larger than
the pump laser bandwidth. The formal solution
of Eq. (3b) can then be written

g (t) —e ""g(0) g(t) —e '"'g(0)

g(t) e "«g(0)
(ia, )'

Note that since a, (0) = 1 and a, (0) = 0, g(0) = i(-,')n .
When one assumes ~z ~s~ pl, ~ps~ ~1.~ ~s~ it can
be shown from Eq. (3) that g(t) « t)~ g(t). Thus
when A~ is l.arge, one is left with

(A3)

a, (t) =—[g(t) —i-,'n, e-*'~']/tt), . (A4)

However, because ~~ is large, the exponential
term oscillates rapidly compared tog(t). Hence,
in the spirit of the RWA, we neglect the rapidly
oscillating part and retain only the slowly varying
part:

a, (t) =g(t)/it =(-,'n a, (t)-,'n a,(t))/6 (A5)

It is interesting that the same result is obtained
by merely setting a, = 0 in Eq. (3b).

APPENDIX B: PHASE-DIFFUSION MODEL

The phase-diffusion model for laser bandwidth
describes, to good approximation, a cw laser
operating well above threshold, where the in-
tensity, I(t) =I, iI'(t), is nearly constant, with
average value I, and small fluctuations Ii(t)."
However, well above threshold the phase y(t)
fluctuates randomly, in a way reminiscent of a
diffusing Brownian particle. Simple laser theory
gives the equations for the intensity and phase
as"

I'(t) = —AI'(t) +F (t), (B1)

(B2)v'(t) =F,(t),
where F,(t) and F„(t) are random Langevin forces
with correlation functions

((F,(t,)F,(t,))) = 2D&(t, t,), —

((F„(t,)F„(t,))) = 2I'|')(t, —t,),

((F (t,)F,(t,))) = 0.
Here 1/X is the correlation time of the intensity
fluctuations, with mean value D/X, and I' is the
bandwidth of the light. These 5 correlations sim-
ply imply that the forces fluctuate on a time scale
shorter than any other interesting time scale.

The phase-diffusion model is based on the as-
sumption that the intensity exhibits no fluctuations,
I'(t) =0, and that the phase fluctuates acco rding
to Eq. (B2). The correlation function for the phase
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((y(t &)y(t s)» =

= r(t„ ~ t, —It, —t, I ),

can be derived from Eq. (82) as

dt dt'((F, (t)I', (t'))&

(B3) (B6)

tuating field. By letting Z(t') = 5(t' —t,) —5(t' —t,)
in Eq. (B6) we get

((E(t„)E*(t,)&) = h'(& exp[i'&(t, ) —imp(t, )]»

= 8 ' exp( —I'
I t, —t, I

) .
where we have taken 9»(0) =0, since the results
calculated later cannot depend on &»»(0) for a
stationary process. In the present context, the
aim of the model is to calculate correlation func-
tions for the field E(t) =8 e""', where we are.
using the notation of Eq. (9). Here we have as-
sumed that the field amplitude h (and thus the
intensity) is a constant. So the correlation func-
tions can be written

The power spectrum of the field, given by the
Fourier transform of the two-time correlation
function in Eq. (B8), is thus a Lorentrian with
halfwidth F. The four-time correlation function
used in Sec. IV can be calculated by letting

J (t ) = 6(t ~ - t,) y 5(t~ - t,)

—6(t t,) 6(t —t,),

((Z(t, ) Z(t„)E*(t.„)" E*(t„)»

= 8"((exp[i@(t,)+ ~ ~ +i&p(t )

-i&»»(t „)—~ ~ —iy(t„)]». (B4)

which gives

((E(t,)E(t2)E*(t,)E*(ts)»

= ~"~]« I
t —t. I

+
I t, —t, I

—It, —t, I

(&v(t, ) . v (t,.))& = g «v(t;, )v(t;, )» ~

perm

((v(t;...)v(t;,.))&,

where the summation is taken over all unique
permutations of t„.. . , t,„. A useful relation can
be derived from Eq. (B5), which makes it easy
to calculate the correlation functions in Eq. (84).
This is

exp i, dt'J t' y t'

1
= exp —— dt

2
dt-d(t )J(t"}

(B6)x ((«»(t') y(t")» I,]
where J(t') is an arbitrary function. " This re-
lation can be proven, term by term, after ex-
panding the exponentials and using the property
Eq. (B6).

We can now calculate the desired correlation
functions. By letting J(t') = i&(t' —t, ) in Eq. (B6)
we get

«E(t, )» = & «exp[it (t, )]»

In order to calculate these correlations it is
expedient to further assume that the phase &p(t)

is a Gaussian stochastic quantity, that is, cor-
relation functions of any order can be expressed
in terms of the two-time correlation function of the
phase ((y(t, )y(t, )». Specifically, "we have

«v (t,) p(t ))) = o,

This result can be used to illustrate one of the
basic assumptions of the phase-diffusion model.
By letting t, = t, and t, = t„and defining the in-
tensity as I(t) = IE(t) I', we can see from Eq. (89)
that the intensity correlation function is given by

«i(t, )i(t,)» = 8' =I,„ (B10)

i.e., the intensity is always perfectly correlated
with itself in the phase-diffusion model, because
it does not fluctuate.

APPENDIX C

,j./2

«ls& &I'»=«J

-rs I (as) e- &rL+»'s&&s
1

,1./2

= 8 d» ds e r"'I, (a~)
0 0

ds e r"'I,(a»)

»&e s I (as)e 'rr. +rs&«'-s'&
1

. (c1)

(c2)

where we used the symmetry of the integrand in
Eq. (Cl) with respect to interchange of » and s.
Now defining

a(x) = —,'« Is (x') i')&-

Here we describe the numerical technique used
to evaluate the double integral in Eq. (19b). Let
x=(r —r')' ', s=(7 —T")' ' and a=(&»&g)'~'

we have

. = 8 exp(- rt, ) —0, (BV)
and

where we have taken the stationary limit 1"t,- ~,
where the initial transients have died out. Thus
the average field is zero, as expected for a fluc-

v(x) =e &r.rl+rs» ds e &r-rI-rs&ssi (as)
0

(c4)
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we have v'(x) = —2(r+i~~r, )xv(x)+e '""'I,(ax). (C7)

from which we can obtain

u'(x) =I,(ax)v(x),

Thus we have transformed the double integral into
a set of two coupled ordinary differential equations,
Eqs. (C6) and (CV), which can be solved readily
by star~dard numerical techniques.
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