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The long-range parts of &he A, C'X„+ and a,c'X+ excimer potentials of the He, molecule have been
accurately determined from high-resolution differential-crass-section measurements in the relative kinetic-

energy range from 18 to 140 meV. The barrier heights and internuclear distances of the intermediate
maxima of the A and the a state have been obtained with an accuracy of better than 2—5 meV and 0.1 A,
respectively. The long-range parts of the singlet potentials from the ab initio calculation by Gubermann and

Goddard are always 5-20 rneV higher than the potential determined from our experiments, but the splitting

of the potentials coincides with our results within experimental accuracy for R & 3 A. The experimental set-

up, data evaluation, and the construction of the potential are described in detail. The complicated
interference structure of the angular distribution is discussed with the help of the quantal defIection function.

Total and excitation-transfer cross sections are calculated and compared to other experimental results, and

the similarity to other exchange processes is pointed out.

I. INTRODUCTION

The helium atom has two metastable states
(1s2s, 2'S) and (1s2s, 2'S), both separated by
roughly 20 e7 from the 1s' ground state. These
states live long enough to be practically stable
for usual experimental conditions, and can be
easily detected because of their large excitation
energy. Numerous experiments have been per-
formed with atoms in these metastable states.
They play an important role in gas discharges'
and lasers'; they have been studied by optical
pumping, ' absorption and emission, ' Penning
ionization, "and by stationary and flowing after-
glows. "' They build bubbles in liquid helium, '
and their excitation energy can be used to operate
continuum vacuum-ultraviolet-light sources.
Spontaneous anti-Stokes light scattering from them
has recently been proposed by Harris to build
a tunable incoherent light source that might be 10'
times more intense than the standard He resonance
line sources.

Most of these experiments need, for a reliable
interpretation, some knowledge of the interaction
potential between a He* atom and a ground-state
He atom. The excited He, potentials have first
been calculated by Buckingham and Dalgarno'
and subsequently by many other authors. " These
potentials are very unusual. They have deep
(-2 eV) chemical minima at an internuclear dis-
tance 8 of -1 A, intermediate maxima at B= 3 A,
and very shallow (&0.001 eV') Van der Waals min-
ima at very large R(&6 A).

%'e have performed differential cross-section
measurements for the He~ -He system in the en-
ergy range from 18 to 140 meV, and have extrac-

ted from the data reliable long-range interaction
potentials for both spin states. Together with the
short-range potentials of other authors, the lowest
excimer potentials have been determined com-
pletely.

II. EXPERIMENT

A. Principle of the experiment

Two beams of ground-state helium atoms are
generated as shown in Fig. 1. Atoms in one beam
are excited by electron- impact to many electron-
ically excited states, all of which decay but the
two metastable (1s2s, 2'S) and (1s2s, 2'S) states. '

The singlet state can be quenched optically:

He(2'S)+ Itv(2059 nm)- He(2'P)
-He(2 'S)+ hv(2059 nm)

-He(1'S)+hv(58, 4 nm).

He He(2"S)+ He(2 S) He(2 S)

v(2g)

FIG. 1. Principle of the experiment. A beam of He
atoms is excited by electron impact to the two metasta-
ble states. Atoms in the He(2 S) state can be optically
quenched by the 2p radiation. The beam of excited He
atoms is scattered by a beam of ground-state He atoms,
and electronically excited particles are detected on the
detector.
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ecay modes of the three lowest excited states of the HeTABLE I. Energy, lifetimes, and deca

He state Energy (eV) Lifetime Decay mode

He(23S)
He(2 ~S)

He(2 ~p)

19.82
20.61
21.21

-103 sec
19.5 msec
2 nsec

Ml
2E1
E1

Only every thousandth atoms decays back to the
metastable state, which can therefore be depop-
ulated very efficiently. The two beams are crossed
at a right angle and electronically excited particles
are detected at some scattering angle 0. Table I
compares the energies, lifetimes, and decay
modes of the metastable states to the values of
the 2P state, which can decay via an optically
allowed transition.

B. Beam production

Interference patterns of angular distributions
can be easily washed out by insufficient resolution.
Therefore the ground-state beams are generated
by two supersonic nozzle sources operating at
very high pressures and a small nozzle that gives
beams with narrow velocity spreads. The kinetic
energy of an atomic beam leaving a supersonic
nozzle is given by &kT, where T is the tempera-
ture of the gas before the expansion. Two dif-
fererent beam sources were used, depending on the
'energy range desired. One which could be used
between 80 and 300 K is shown schematically in

Fig. 2. The other operated between 300 and 1600
K, giving an accessible energy range of 16-300
me7. The typical inlet pressure is 20 bar at the
lower temperature and 100 bar at the higher one,
The beam sources are pumped by unbaff led 10"
diffusion pumps having a 7000-1/sec pumping speed
for helium. By operating a Roots blower between
diffusion and forepump, the diffusion pump could
be operated up to 3 & 10~ Torr, giving a throughput
of 21 Torr liter/&«.

The central part of both beams passes through
Campargue-type skimmers. " The ground-state
beam is mechanically modulated and collimated
to 0.4 before the collision center. The other
beam enters a second differential pumping cham-
ber, which contains the electron gun, electromag-
net, and quench lamp.

An analysis of the excitation of a He atom by
electron impact has shown" that the good velocity
resolution can best be preserved if electron and
atomic beams move parallel or antiparallel. Fig-
ure 2 shows the parallel configuration. Electrons
are emitted by an indirectly heated sinter cathode,
which has a spherical electron emitting surface

16

He

(40-100 bor)

7x10 l s-'

3 xlQ 3Torr

~/ LQ~R

LL

e

t He
4Qbgr

7x10 l s~
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to Fo rod oy cu p o nd
time-of-flight unit
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FIG. 2. Central part of
the apparatus. The two He
beams are generated by two
supersonic nozzles of vari-
able temperature. The
electrons are emitted by a
spherical cathode and are
accelerated by a concen-
tric grid. The He beam
passes through the hole
in the cathode and is ex-
cited in the electromag-
net. Both beams are colli-
mated to 0.4', and the ex-
cited particles are detec-
ted by their electron emis-
sion on the first dynode of
an open electron multiplier.
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and a hole at its center for the passage of the
beam. The electrons are accelerated by a spher-
ical net and collide with the helium beam in the
electromagnet (-600 G), whose field compensates
the diverging, effects of the electron space charge.
The electron voltage and current are typically
200 V and 30 mA, respectively.

The quenchlamp is wound helically around the
beam. For kinetic energies above 100 meV, a
single lamp was found not to be sufficient for com-
plete (-99.5%) quenching efficiency. A second
quenchlamp installed in front of the detector was
used in this case. The quenching efficiencies
were checked by measuring the Penning electron
spectra of He*-Ar collisions. "

The He~ beam is also collimated to 0.4 ., and
has an intensity of roughly 10"He*/sec, of
which about, is in the triplet state. 'The in-
tensity of the ground-state beam is six to
seven orders of magnitude larger. 'The elec-
tron beam excites approximately only every
thousandth atom to the metastable state. But only
-10~ of the excited He atoms remain in the beam.
All others are scattered out of the beam by the
excitation process and hit some collimating dia-
phragms before entering the collision chamber. '

C. Velocity distributions

The velocity distributions of both beams can
be observed by the time-of-flight (TOF) method.
The beams are mechanically chopped at the en-
trance of two long TOF tubes, and the TOF spectra
are recorded by a very fast multiscaler. The
ground-state beam is excited by electron impact
to its metastable states directly behind the chop-
per, so that it can be detected easily without a
mass spectrometer. Figure 3 shows some velocity
distributions of the He* beam. The data show a
double-peaked structure for fl, ight times longer
than 0.5 ms. The peak at smaller flight times
is due to He* atoms of the primary excitation
process":

He+e -He*+e

The. second peak, at larger flight times, which
has exactly the velocity of the unexcited helium
beam, is due to a subsequent resonant energy
transfer

He*+ He-He+ He* .

The difference in flight times between the two
peaks is caused by the momentum transfer of the
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FIG. 3. Time-of-Qight distributions. The double-
peaked structures result from the momentum transfer
by the electron during the excitation process.

electron to the helium atom during the excitation
process. The cross section for the resonant en-
ergy transfer process is in a first approximation
proportional to the g-u splitting of the two cor-
responding excited-state potential curves of the
He, molecule. ' The Van der Waals constants for
the singlet state differ by 10%, while they are
equal for the triplet state. " This leads to a larger
splitting and therefore an increased rate of energy
transfer and a better velocity resolution of the
singlet He* beams. A more detailed analysis of
the velocity spectra has been published else-
where. " A simple calculation shows that more
than 98% of the excitation-transfer collisions occur
before the beam crosses the scattering center,
so that Fig. 3 shows the relevant velocity distri-
butions.

D. Beam detection

The metastable atoms are detected by their
electron emission on the first dynode of an elec-
tron multiplier. The probability for electron
emission has been measured absolutely by Rundel
et al. '~ The emission probability depends on the
material of the detector, its gas coverage, and its
past history. It is universally assumed that the'

emission probability is independent of the kinetic
energy of the excited atom. To check this as-
sumption, the differential cross section for scat-
tering of He(2'S) from He was measured twice
at the same center of mass energy (E=42 meV),
but under different laboratory conditions. One of
the two beams was alternatively cooled to the
temperature of liquid nitrogen, the other one left
at room temperature.

Figure 4 shows the two velocity vector or New-
ton diagrams" for the two runs. The velocity of
the He* impinging on the surface of the detector
changes by a factor of 2.2. The largest energy
(E=86 meV) is obtained for 8,~=45 . Figure 5
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FIG. 4. Velocity vector, or Newton, diagram for
He*- He scattering. e H, g and vH, are the velocities of
the excited- and ground-state beams, respectively. e~
is the velocity of the center of mass. For the diagram
with the solid-lines the ground-state beam energy is
16.5 meV, and the excited-state beam energy 62 meV.
For the dashed-lined diagram the two values are re-
versed. This gives the same c.m. energy but different
energies under some scattering angle.

shows the experimental results. They differ by
up to a factor of 4 at some angles because of the
different Jacobian transformation factors from
the center of mass (c.m. ) to lab-system conver-
sion. After converting the two differential cross
sections to the c.m. system, they should be iden-
tical, save for the velocity dependence of the de-
tection probability. Figure 6 shows the c.m. dis-
tributions. They are identical within experimen-
tal error. This implies that the emission prob-

1000 I
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I I I

I

I I I

100--

10 ——
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30' 60'
LAB. scatteI'ing angle

90'

FIG. 5. Experimental data corresponding to the two
Newton diagrams of Fig. 4. The data have been normal-
ized at small scattering angles. There is a difference
in intensity up to a factor of 4 at large scattering angles.

I i I i, I, , I, I

30' 60' 90o 120' 150'

CM scattering angle

FIG. 6. Transformation of the data of Fig. 5 to the
c.m. system. The results are identical within experi-
mental error. This implies that the detection efficiency
is independent of the kinetic energy of the He* atoms in
the 18-86-meV kinetic energy range.

ability is independent of the kinetic energy in the
17-86 meV range. The same method will be used
in future work to extend these measurements to
higher kinetic energies.

A stationary monitor detector (not shown in Fig.
2) is placed -30 out of the plane of the two beams.
It has a large viewing angle, and its high count .

rate is used to time normalize all data. The in-
tensity of the metastable beam can be monitored
by a secondary emission detector.

E. Data handling

The amplified pulses of the two detectors (move-
able and monitor) are fed into two forward-back-
ward counters, synchronized to the ground-state
beam chopper. The total count rate of the two
detectors, which is needed to calculate the He*
beam profile and the statistical error, is stored
in two other counters. A stepping motor rotates
the detector. . The digital information of its angu-
lar position if fed into a fifth counter. The timing
and read out of the five counters and the operation
of the stepping motor and of the high-voltage pow-
er supplies for the quenchlamps are controlled
by a small hard-mired controller. The data of all
five counters are punched on paper type and pro-
cessed off-line.

Figure 7 shows an example of the primary data.
Curve C gives the output of the monitor detector.
The two steps are caused by increases of the mea-
suring time to improve the signal to noise ratio.
Curve A is the angular distribution, and is ob-
tained by normalizing each data point with the
reading of the monitor detector. Due to this nor-
malization procedure, intensity drifts and fluctu-
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E =65.6 rneV

ations are compensated. Curve 8 is the He* beam
profile. The error bars of curve A are calculated
by the standard error propagation formula. The
ordinate is the same for curves A and B. All ang-
ular distributions shown in Sec. II F have been
measured twice and were only accepted if they
agreed within experimental error.

F. Photon-induced artifacts

For the scattering of He(2'S)+ He, a very nar-
row peak was always observed at 8„b=90, as
shown in Fig. 8. The ratio of the intensity at 0

~Qw I I

I

I I t I I I I

I

1J

to— I

iI

E =68meV

90%

~98%

j I'
I

I I
I

I
I i,.a

'"I

II

I
I

I( 11

I
'~s, .

I I I
I f I '-.~. . (E1-", I

I

1 30' 60' 90'
FIG. 7. Primary experimental data. Curve A gives

the angular distribution, curve 8 is the far wing of the
beam profile of the He* beam. Curve C is the reading
of the monitor detector. The count time has been in-
creased twice to improve the statistics. Each point of
curves A and 8 has been separately normalized with the
intensity of the monitor detector.

=90' to that at some other angle was independent
of nearly every experimental parameter (beam in-
tensity, electron current and voltage, magnetic
field, background and ground-state beam inlet
pressure) so that it was concluded at first" that
the 90 spike was not an experimental artifact.
only after it was impossible to produce a similar
spike in a theoretical computation, a second de-
taile~ investigation revealed the following cause.

There are always some photons from the He
resonance transition (2'P-1'S, E=21.21 eV) in
the beam. Because of the extremely large cross
section for resonance absorption, they can be
effectively trapped in a strong beam. Some of
these photons will be absorbed in the scattering
center by helium atoms of the ground-state beam.
Most of them will decay back to the ground-state,
but a fraction of 10"' will make a transition to the
metastable 2'S state, and these atoms will be de-
tected on the multiplier. This somewhat involved
explanation was checked in two ways. (i) As the
momentum transfer by the photon is negligible,
the shape of the 90 spike should be given by the
convolution of the angular profiles of the detector
and the secondary beam. This turned out to be
true. (ii) As 2'S atoms are produced, they can be
quenched by a quenchlamp after the scattering cen-
ter. And the 90 spike disappeared nearly com-
pletely after the installation of the second quench-
lamp.

As indicated in Fig. 8, even a 98% quenching
probabilitv is not sufficient to reveal the true
shape of the angular distribution around 90' lab.
Therefore this portion was generally disregarded
in the fitting procedure.

No such problems ocurred for He(2'S)+ He, as
this is a double-difference measurement (quench-
lamp on-off, He beam on-off).

A similar peak at 8,~=90 was observed by
Martin et al." and Haberland et al."for He*+ Ne
scattering. An interpretation similar to that for
He*-He was given, but turned out to be incorrect. "

In summary, in scattering studies with excited
atoms any sharp peak at O„b=90' is very valuable
for testing the resolution of the apparatus, but
should be regarded with suspicion.

III. EXPERIMENTAL RESULTS AND DATA ANALYSIS

i0'—

I 1 t I t I I I I I

30 60 90
Lab.

FIG. 8. Photon-induced spike near 0= 90 for the scat-
tering of He(2 $). The peak heights for 90/f) and 98~/0

quenching efficiency are indicated.

Figures 9 and 10 show the measured distribu-
tions. Both distributions have been published
earlier in brief communications. ""The solid
lines have been calculated from the potentials
given below. For each eoint the statistical error
bar is given, but it is usually too small to be re-
solvable on the scale of the figure. The regular
oscillations are mainly due to nuclear symmetry,
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FIG. 11. Lowest singlet potential curves of the He2
molecule.

to one scattering angle and the differential cross
sections are strongly influenced by orbiting col-
lisions, and no known inversion procedure can
handle these situations. For energies well below
50 meV, when orbiting is no longer important,
Siska ' has developed an inversion procedure.

Of course, the question of accuracy remains.
From our experience we can say that from
data over a narrow energy range (say a factor of
2) no accurate potential can be obtained. But a
measurement of the differential cross section
every 30 meV over a factor of 5-8 in energy is
usually sufficient to determine an accurate poten-
tial for the energy range covered. In Sec. Pl, the
error estimates for the positions and heights of
the potential maxima are given. These estimates
were obtained by keeping the parameters of the
maxima fixed while optimizing the other para-
meters of the potentials.

The potentials obtained are shown in Figs. 11,
12, and 14, their analytical form is given in Tab-
les Q and IV, and numerical values are given in
Tables III and P. No serious attempt was made
to keep the number of free parameters small. It
is obvious from Figs. 9 and 10 that especially the
triplet results can still be improved.

v(R)
(meV)

139meV

IV. DISCUSSION OF THE POTENTIAI. S

100—

50

0 I l I

—50

-& eV—

-2 eV—

FIG. 12. Enlarged part of the excited state potentials
shown in Fig. 11. The solid lines for R &2.4 A have been
determined from the differential cross sections. The
dashed lines are from the calculation by Guberman and
Goddard. The deep attractive part of the potential and
the solid points had been determined earlier by Sando.
The apparent break in the curve comes from the change
of scale at —50 meV. The horizontal arrows give the
collision energies used in this experiment.

The unusual shape of the excited He, potentials
has been discussed by many authors, ' '" These
potentials are also called excimer potentials, and
the corresponding states for the heavier rare
gases have been used as energy storage reservoirs
for the rare-gas excimer lasers. " An excimer
state corresponds by definition to an excited at-
tractive molecular potential having a- dissociation
ground state.

Figure 11 shows the lowest: singlet potentials.
The ground state is purely repulsive, save for a
1-meV Van der Waals minimum at 3 A which is
too small to be seen on this scale. The asymptot-
ically degenerate excited state splits into a g and
u component for smaller R. Both potentials have
a very shallow (-l meV) Van der Waals minimum
at 8& 6 A, and a very deep (-2 eV) inner minimum
separated by an intermediate maximum.

Some spectroscopic information on the inner
minima is available from the analysis of the Hop-
field emission continuum and the famous 600-A
emission and absorpti. on bands. "'4

The splitting of the two excited curves can easily
be understood. Asymptotically one prepares one
beam with electronically excited atoms (A) and the
other one with ground-state atoms (B). Conse-
quently the electronic wave function can be written
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TABLE II. Analytical form of the singlet potentials. Units are meV and A.

Ungerade potential A Z'„

Morse potential (from Sando24)

V(R) = Vs(R) = 3061.1[exp-{2.0407(R-1.0399)}—1]~—2494.1 for 0~ R & 1.693 44
Modified Morse (fits Sandos numerical values)
V(R)= V (R) —117.05{sin[(~/0.84672)(R-2.1168)]+1} for 1.69344~ R& 2.05
1. Spline

V(R) =-251.016+ (R-2.05){398,495+ (R —2.75) [-811.622+.549.183(R—2.05)]}

for 2.05—R & 2.75
Parabola
V{R)= 47.377-130.03(3.137—R)2 for 2.75~ R & 3.137
2. Spline

V(R) = 47.377 + (R —3.137){ 25.32 + (R-3.9)[-34.236+ 31.291(R —3.137)]},

Modified expotential

V(R) = 19366.84exp~ —1.3650 + 0.4408exp-( R-2.627 2

Gerade potential C ~Z+

for 3.137—R & 3.9

Modified expotential
V(R) = 63 860.33exp(-AR —0.0570R2)
with A= 1.6385 + 0.07exp[-{(R- 2.5)/0. 3}2]+0.566exp{-[(R-2.22)/1.2075]2} for 2.7 —R & 0

where p, (A) means that atom A is in the excited
state and Po(B) means that atom B is in the ground
state. As the Hamiltonian is invariant with re-
spect to interchange of atom A and I3,

(5,(B)y, (A)

is also a possible wave function. A linear com-
bination will then give the correct asymptotic
eigenfunction

At the end of this section (see Fig. 13) it will be
shown that the difference potential V —V„=2V,
calculated by Guberman and Qoddard agrees with
the experimentally determined one within the ex-
perimental accuracy. The calculated average po-

TABLE IG. Numerical values for the singlet potentials
V = C~Z' and V =ARIZ'g Qe

X'"(R-")-4,(a)4.(B)+ y, (B)y.(&),
where g (gerade) stands for the plus sign and u
(ungerade) for the minus sign. The asymptotically
prepared. states are not eigenstates of the Hamil-
tonian when the atoms are closer together, but
two new states, one with I, the other with g sym-
metry. Within the Born-Oppenheimer approxima-
tion, the total interaction is averaged over the
electronic wave functions for fixed R. As one
averages over different electronic wave functions,
one obtains different interaction potentials V' and
V ". Within the Born-Oppenheimer approximation
the potential does not depend on the repass of the
heavy particles, so that the potentials for 'He'He,
He'He, and 'He'He are identical. There is no

coupling between the two states, as X' and X" pos-
sess different symmetry properties, and any ma-
trix element of the form Q ~

X ~X„) has to be zero
for collision partners of equal mass.

Obviously, the two potentials V, and V„can also
be written

V =V+V„V„=V. —V, .

R (A)

0.5
0.75
1.00

Min (1.05)
1.25
1.50
1.75
2.00
2.25
2.50
2.80
3.00

Max {3.15)
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00
5.25

Vg (meV)

163
109
90,1
77.2
73.4
59.8
48.0
37.5
28.2
20.3
14.2
9.6
6.4

2.4

V„(meV)

9867
—.501

-2472
-2492
-2122
-1359
-704
-303
-101
-82.0

32.6
44.9
47.4
47.2
44.1
38.4
31,5
24.7
18.5
13.3
9.2
6.3
4.2
2.6
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TABLE IV. Analytical form of the triplet potentials. Units are mev and k
Ungerade potential V„a3Z'„

Morse potential (Ginter)
V(R) = 2611.2 [exp{-2.1492(R -1,045)} 1'p —1947,2 for 0 ~ R& 1.203
Spline potential
V(R) = -1731.974 + (R —1.203) {2688.072 + (R —1.77) [662.348 —(R —1.203)6077.531} for ]..203 ~ R & 1.77
R4 potential
V(R) = 57 —265 (2.77 —R)
Spline potential

V{R)= 57+ (R-2.77) {-36.914+ (R-3.86) [-32.708 + 32.523 (R —2.77)]}for 2.77~ R& 3.86

Modified exponential

V(R) = 9081.6exp [-(1.4771- 0.1929exp {-[(R-3.1)/5.0p})R—R' 0.0887] for 3.86~ R & ~

Gerade potential V~c Z~

Spline function

V(R) = 144676 + (R —2.6) {-108.35+ (R —3.6) [2.070 + 29.76 ~ (R-2.6)]}for 2.6~ R & 3.6
Modified exponential

R —23~
V(R) = 41 454.1exp —1.7116+ 0.3650e~ — R —R2 ~ 0.0668 for 3,6 —R & ~

0.6036

tential 12(V, + V„)= V„on the other hand, is too
large.

A. Singlet potentials

The analytical form of the potentials used is
given in Table II. For large internuclear dis-

0.5
0.75
1.00

Min (1.05)
1.25
1.50
1.75
2.00
2.25
2.40
2.60

Max (2.75)
3.00
3.20
3.40
3.60
3.80
4.00
4.-20

4.40
4.60
4.80
5.00
5.25

144.7
127.6
97.9
74.8
53.8
36.3
23.6
15,1
9.6
6.1
3.8
2.4
1.5
0.82

10990
98

-1920
-1947
-1615
-842
-232
-36.1

37,6
52.0
56.8
57.0
53.5
46.5
37.3
27.6
18.9
12.6
8.3
5.4
3.5
2.2
1.4
0.78

TABLE V. Numerical values for the tripl. et potentials
Vg—- c3Z~ and V„=a3Z'„.

V„(meV)
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FIG. 14. Difference of the calculated and experimental
results for the first excited singlet state of the He2 mole-
cule. %ithin experimental error the two curves are
identical for R & 3 A, implying that the neglected part of
the correlation error is independent of the g/u symmetry
and given directly by this figure (for R ~ 3 A).

tances 8 the analytical form of the potential was
taken as

V(R) =A exp[-B(R)R —CR'],

where B(R) is given by a constant plus an additive
Gaussian. This allows a local and smooth vari-
ation of the exponent. The very-long-range Van
der Waals interaction was neglected, as it did
not have a noticeable effect on the angular dis-
tribution, save for backward scattering (() = 180')
at the lowest kinetic energy. If the minimum dis-
tance was allowed to vary in the automatic fit rou-
tine, it was iterated to distances larger than 6 A.
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FIG. 14. Potential energy curves for He(2 3S) + He.

Together with the known Van der Waals constant'""
this gives a well depth smaller than 0.5 meV. Al-
though the Van der Waals potentials have only a
very small influence on the angular distributions,
they have a very significant effect on the velocity
distributions in the metastable helium beam, "be-
cause the relative velocities of the He* atoms in
the beam are much lower than the collision ener-
gies.

The small-R part of the potential maximum was
represented by a parabola.

The height of the potential maximum is 47", meV
at an internuclear distance of 3.1+0.05 A. The
interpolation at both sides of the parabola was
performed by two cubic spline functions. The
minimum of the A 'Z'„potential was described by
a Morse function, which was proposed by Sando. "
It reproduces Qinter's" spectroscopic molecular
constants. Bando also gives some numerical val-
ues, which were approximated for 1.6 +R & 3.05
A by subtracting a properly scaled sine function
from this potential. Figure 11 shows the potential
used. The C 'Z~ potential also has a minimum at small
R, but the potential maximum is too high to be over-
come at our kinetic energies.

Figure 12 shows the long-range part of the po-
tential in more detail. The apparent break in the
curve is caused by the change of scale near -50
meV. The kinetic energies used in these experi-
ments are given by the horizontal arrows. Our

data are sensitive only to the long-range part of the
potential between -50 and 130 meV. The numeri-
cal values obtained by Sando are given as dots in
Fig. 12.

The dashed line gives the potential calculated
by Quberman and Qoddard with the generalized
valence bond (GVB) method, which always gives
rigorous upper bounds to the exact result. "

Figure 13 shows the difference between the ex-
perimental and calculated results. It is rather
remarkable that for R& 3 A this difference is the
same, independent of the g-u symmetry of the po-
tential. This implies that the experimental and
theoretical difference potentials [see Eq. (4)j agree
with each other for R & 3.0 A within 1-2 meV,
while the average potentials disagree by 5-20
meV'. Guberman and Goddard propose a 10%—20%
reduction of their results to account for neglected
parts of the correlation energy, but this reduction
is sufficient only between 3.2 and 4.0 A.

They calculate their results for R —~ to an ab-
solute accuracy of W.5%. As the absolute value
of the difference potential has to go to zero asymp-
totically, it should have been calculated very ac-
curately indeed. This implies that our difference
potential is accurate to 1 or 2 meV. This is also
the experience we have gained from the fitting
procedure. As the differential cross sections are
very sensitive not only to the difference but also
to the mean potential [see Eq. (4)], we believe that
our singlet potentials are a,ccurate to 1 or 2 meV.
If this argument is correct, Fig.' 13 will give di-
rectly the R dependence of the neglected part of
the correlation energy.

B. Triplet potentials

The analytical form of the triplet potentials is
given in Table IV. The long-range parts a,re given
again by the modified exponentials used for the
singlet potentials. The height of the potential max-
imum is 5I", meV at an internuclear distance of
2.77+0.1 A. The small-R part of the potential
maximum could notbe fittedby a parabola as inthe
singlet case; an R~ functional dependence mas
found to be more adequate. The deep chemical
well at 1.045 A mas represented by a Morse func-
tion, which reproduces Qinters spectroscopic re-
solt ~6

The very-long-range part of the potential has
been calculated by Das" in a multiconfiguration
self-consistent-field (S.C.F) computation. He ob-
tains a Van der Waals minimum at -7 A with a
well depth of 0.16 meV, which is consistent with
our results. The dotted lines have been deter-
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mined by Hickman and Lane" from thermal-dif-
fusion and exchange measurements. The agree-
ment is satisfactory below 40 meV. Their data
were limited to this energy range. The earlier
attempts to obtain the triplet potentials from bulk
experiments have been reviewed by Fugol'. "

0.6

0.4-
4Tcr g {r)

0.2

—He {2'S)
-—He {2'S)

C. Differences and similarities between the singlet

and triplet potentials

All four potentials determined from the differen-
tial cross sections are shown together in Fig. 15.
The repulsive wall is independent of the spin state.
Each of the two ungerade potentials has an inter-
mediate maximum, which is not due to a curve
crossing. The gerade potentials are purely re-
pulsive within our energy range, but also have
maxima which are curve-crossing induced, as
discussed in detail by many authors. ' '"

Guberman and Goddard" point out that the long-
range part of the potentials should hive a simple
interpretation, because the small 1s orbital of the
ground-state atom is in effect a local probe of the
large 2s orbital of the excited atom. The two
authors show that the potential should vary roughly
as the square of the amplitude of the 2s orbital
at the nucleus of the ground-state atom. Figure
16 shows the radial one-electron-charge density
as calculated by Winkler and Porter' for the two
spin states.

0.0
2 3 4 5 rtA]

FIG. 16. Radial electron densities for the two excited
He states as calculated by Winkler and Porter.

V. DISCUSSION OF THE INTERFERENCE STRUCTURE

The interference structure of the differential
cross sections is more complicated than usual
in atom-atom scattering —first, because two
potentials contribute coherently, whose shapes
are different from the usual ground-state poten-
tials, and second, because of the identical nu-

The triplet orbital has a smaller diameter than
the singlet orbital; consequently, the maxima of
of the triplet potentials are at smaller distances.

If one shifts the triplet charge density by 0.62

A, it overlaps with the singlet charge density at
5 A, as shown in Fig. 17(a). Shifting the triplet
potentials by the same amount, one obtains the
results of Fig. 17(b) and 17(c). The potentials
and the charge density show roughly the same be-
havior, as predicted by Guberman and Qoddard.

V{R)"
(meV) 0.1

100—

50, [meV3
50

r[A]

50 )—

I I I t i f I 1 I t

tA) 0
Vg

[meV]
50

3 4 5
=b

R [A]

-'t eV—
3 4 5 R[A]

Triplett (R +062Aj—Singu(ett

-2 eV—

FEG. 15. Comparison of the helium excimer potentials
determined in this work. The triplet potentials have a
shorter range.

FIG. 17. Long-range parts of (a) the radial electron
density, (b) the ungerade potentials, and the (c)
gerade potentials. The triplet scale has been shifted by
0.62 A. As discussed in the text, this figure proves the
remark of Guberman and Goddard that for large 8 the
small ls2 charge density of the ground-state atoms is
essentially a local probe of the diffuse 2s orbital.
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clei. The potential does not depend on the differ-
ent isotopes of the helium atom, as discussed in
Sec. IV. The total scattering amplitude, on the
other hand, depends very strongly on it. For the
scattering of distinguishable particles, e.g.,
4He+'He, it becomes

For indistinguishable particles this has to be sym-
metrized, appropriately. The He nucleus is a
boson, and therefore the total wave function does
not change sign when interchanging the nuclei.
Therefore, the symmetrized scattering amplitude
is given by

(6)

The amplitude f„ is antisymmetric with respect
to interchange of the nuclei, which is a direct
reflection of the symmetry property of the cor-
responding electronic wave function. The minus
sign in Eq. (6) destroys the symmetry of the dif-
ferential cross section around 8= 90', which one

, has for the scattering of identical particles on one
potential curve. The symmetrized scattering
amplitude can be split up into a direct and an ex-
change contribution, as shown graphically in Fig.
18.

The amplitudes in Etl. (6) have been calculated
by a numerical integration of the radial Schro-
dinger equation, although the V/KB approximation
is still reasonably -good. Within the WEB approx-
imation, each of the scattering amplitudes can be

written

where o„ is the classical cross section, g and L

are the radial phase shift and orbital angular mo-
mentum, respectively, giv~. ~g the classical scat-
tering angle 8. The term -/8 can be interpreted
as "orbital phase shift. "

The influence of the symmetrization can easily
be studied by calculating the differential cross

1011

10$

109

108
C

&- 10'

106

1Q

a)

10 .—

1Q—

f(direct) =~{fe(e)+ f„(e)}
1Q—

1P1

He 1Q
20 4p 6p 80

LAB. SCATTERlNG ANGLE

f(exchange)= z{fe (~-e) - f„(~-e)}

FIG. 18. Direct and exchange contribution to the total
scattering amplitude [see Eqs. (5) and (6)].

FIG. 19. Calculated cross section for He{2'$)+He
assuming distinguishable particles. At low energy the
regular oscillations are absent. The large effect of the
exchange contribution can be seen at high energies. It is
given by the shaded portions at the 139-meV measure-
ment. The influence of the symmetr'ization is much less
dramatic for the total cross sections (see Figs. 23, 24).



2244 BKRNHARD BRUTSCHY AND H KL L NUT HABKR LAND 19

8(l)=2 . (6)

assuming the angular momentum l to be a con-
tinuous variable. For the He*-He scattering the
phase shifts are calculated quantum mechanically,
and one has their values only for integer /. It has
proved very convenient" to define a "quantal de-
flection function"" as

The phase shifts are ealeulated only modulo 2m,

but the variation from one l to the next is rarely
larger than 2z, so this does not present a big
problem. With a little imagination and experi-
ence one can always draw a smooth curve.

Figure 20 shows the quantal deflection function
for the 42-meV measurement. It shows the be-
havior expected for the scattering from a purely
repulsive wall. The classical deflection function
would give 8(l = 0) = v and it is surprising how close
to this a value is attained. The def let'. tion functions
in Fig. 20 are very nearly linear, save for the
largest l values. If they are linear one can show
from Eq. (7) that the wavelength of the symmetry
oscillations should be

(10)

sections assuming distinguishable particles [Eq.
(5)]. Figure 19 shows the results. The regular
oscillations at lower energies are completely
absent, so they must be due to. nuclear symmetry.
For the higher energies the peak at 90 is much
smaller though still present, and the intensity
at large angles is markedly decreased because of
the loss of the exchange contribution. This is
indicated by the hatched area of the 139-meV curve
in Fig. 19.

At low kinetic energies, only the long-range part
of the potentials is probed. For the singlet ease
the splitting of the potentials becomes very small
as the two singlet potentials cross each other at
R= 4.88 A. Therefore, the difference of the scat-
tering amplitudes will, also be very small, i.e.,
f -f„=0. Inserting this into Eq. (6), one obtains
the result that the symmetrized and unsymmetrized
scattering amplitudes are identical for V~= V„. As
this is a very good approximation for He(2'S)+ He
at large R, the symmetry oscillations are partially
washed out at the two lowest energies (see Fig. 9).

The discussion of the oseillations in ground-state
atom-atom scattering relies heavily on the clas-
sical deflection function, which can be calculated
by a simple WEB type of integral if the potential
is known. The classical deflection function is re-
lated to the phase shift via the mell-known semi-
classical relation

42m eV

10 20 30 40

FIG. 20. Quantal deflection functions [see Eq. (9)] for
the He(2 ~$)+He cross section at 42 meV.

where l(8) is the orbital angular momentum cor-
responding to the classical scattering angle 8[via
Eq. (6)]. If 8 is a linear function of I, one can
write

l(8) = I(-,'m) —Ll, l(w —8) = I(-,'w) + Ll .
This gives for the wavelength of the symmetry
oscillations

which is independent of the scattering angle and
therefore explains the very regular interferenee
patterns at low kinetic energies. From Fig. 20
one has l(—,'71)=16, which gives b, 8, =11.2', in
exact agreement with the 42-meV angular distri-
butions of Fig. 9. Note that 68 is given in the
c.m. system, while Fig. 9 gives the data in the
lab system (8, = 28,~).

Figure 21 shows the deflection functions calcu-
lated for three higher kinetic energies. For the
gerade potentials one still gets the same mono-
tonic behavior as at lower energies, but dramatic
differences can be seen for the deflection functions
for the ungerade potential V„, because the kinetic
energy of the particles is now higher than the po-
tential barrier and spiral scattering (or orbiting)
will occur in the very deep inner well. The deep
minima in the deflection function result from or-
biting. The maxima in the deflection function lead
to rainbow scattering. The structure on the max-
ima comes from orbiting resonances.

Figure 22 shows schematically a deflection func-
tion from Fig. 21, taking into account nuclear
symmetry. The dashed curves are from the ex-
change contribution and are obtained from the
solid curves by replacing 0 by m —0. Altogether
one has four different types of oscillations, and
it would have been nearly hopeless trying to dis-
entangle their different and interfering contribu-
tions to the differential cross sections without
the use of the deflection functions. One has the
following types of oscillations:

(i) symmetry oscillations; because the nuclei
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FIG. 21. Quantal deflection functions for He(2 ~5)+ He
at three higher kinetic energies. Orbiting occurs in the
deep attractive well of the potentials. The structure on
the maximum for E= 65.6 meU comes from barrier pene-
tration effects.

where the l, are defined in Fig. 22.
(ii) g-u oscillations; loosely speaking, half of

the incident flux is scattered from V„ the other
half from V, . These two contributions add co-
herently at the detector. The wavelength of the
oscillations is approximately

Note the minus sign in this equation. As can be
seen from Fig. 21 and verified in Fig. 9, the wave-
length of the oscillations increases with increasing
scattering angle. The calculated wavelength is
again in good agreement with the experimental
results.

(iii) Orbiting oscillations; their approximate
wavelength can be read off Fig. 21:

68„b=2r/[l(8)+ l(-8)]=2r/[l, + l,]. (12)

The trajectories that go round the origin (once or

are indistinguishable. According to (10), their wave
length is roughly

b 8, =2r/[1(8)+ l(r —8)]=4r/f(l, + l,)+ (l, + l,)],

(loa)

~0 20 3P ~0 50

FIG. 22. A deflection function as in Fig. 21, including
the effect of nuclear symmetry.

several times) have only a small effect on the dif-
ferential cross section because of the large slope
of the deflection function in the orbiting region.
For the higher energies, symmetry and orbiting
oscillations have roughly the same wavelength.

(iv) rainbow oscillations; the rainbow peaks
are completely buried under the other oscillations.
Their position could only be identified in calcula-
tions, which assumed the scattering to occur only
from the ungerade potential V„.

The following conclusions can now be drawn
from this analysis: (a) At the two lowest kinetic
energies only symmetry oscillations are present.
(b) For the higher energies symmetry and orbiting
oscillations have roughly the same wavelength, so
that the fast oscillations are a superposition of
these two contributions. (c) Because of the minus
sign in the denominator in Eq. (11), the g-u oscil-
lations are much slower. They give rise to the

, slow modulation of the faster oscillations. The
wavelength of all these oscillations decreases
with increasing collision energy. Similar poten-
tials and the same symmetries hold for the scat-
tering of He' from He. At -500 eV the g-u oscil-
lations are dominant, and it is difficult to resolve
the symmetry oscillations. "

VI. TOTAL CROSS SECTIONS

The total cross sections, calculated from the
potentials in Tables II and IV are shown in Figs.
23 and 24. The solid lines are for identical par-
ticles, while the dotted lines have been calculated
assuming distinguishable particles. For He(2'S)
+ He the experimental data of Trujillo ' are in-
cluded in Fig. 24. The total cross section for
He(2'S) is roughly 40 A' larger than that for
He(2'S). For energies below the barrier
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FIG. 23. Total cross sections calculated for He(2 'S)
+ He. The sharp structures are shape resonances class-
ified according to their energy and vibrational (v) and ro-
tational (J) quantum number. The effect of the symme-
trization is rather small.
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heights the cross sections for distinguishable par-
ticles can be well approximated by

He(2'S} He(23S)

Q=Av ~ A' A 503 529

B, 0 14 018
U'sually the total cross sections at low energies
are dominated by the Van der Waals interaction.
But in. the He*-He scattering this interaction is
so smaH because of the large spatial extension
of the He(2s) orbital that it will become dominant
only at kinetic energi. es below roughly 1 meV. As
seen in Fig. 16, the He* singlet orbital is larger
and softer than the triplet orbital. Therefore the
total singlet cross section is larger and depends
less on the kinetic energy.

The oscillations below -50 meV have to be sym-
metry oscillations as they vanish for distinguish-
able particles. They result from the interference

of collisions with large impact parameters, which
are nearly forward scattered (8=0), with energy
transfer collisions at small impact parameters
and 0= m. The relative difference between the two
cross sections is given by curve I (arbitrary
scale). The position of the different maxima is
nearly entirely given by the energy dependence of
the S-wave phase shift, as shown elsewhere. "

The sharp structures above 50 meV are due to .

orbiting or shape resonances from the deep at-
tractive well of V„. All particles can tunnel
through the maximum in V„. The amplitude for
finding a particle inside of the maximum will be
resonantly enhanced if the kinetic energy matches
the energy of a quasibound state of V„. For en-
ergies much below the barrier height, the tunnel-
ing probability and therefore also the width of the
resonance will be small, and could therefore only
accidentally be detected using the grid used in
calculating the curves for the total cross section.
If the kinetic energy is only a bit smaller than the
barrier height of the effective potential, the width
of the resonance will become larger. They also
cause the structure on the rainbow maxima of the
deflection functions in Fig. 21. These resonances
play a large role in the calculation of the 600-A
band0'24 emitted by He(2 'S) particles crossing the
barrier. This spectrum and the resonances have
been calculated by Sando" using his potential
(V" of Table II). The resonances can be classi-
fied according 'to their vibrational (5) and rotation-
al (I) quantum number, which can be deduced from
the inspection of the calculated wave functions.
The cross section for light emission' is smaller
than 10 "cm', and was therefore neglected.

VII. EXCITATION-TRANSFER CROSS SECTION

In principle there is no way to measure the ex-
change process directly for 4He~+ He scattering,
as the particles are indistinguishable. But the
cross section for metastability exchange can of
course be calculated from the determined poten-
tials assuming distinguishable particles. From
Eq. (6) and Fig. 18 the amplitude of excitation
transfer is

f,„=f,(II- 8) -f„(m —e) .
The expression for the total excitation-transfer
cross section' becomes

Trujitto

I I I I I I I I I I I I I I I I I I I I I I I I j
20 40 60 80 100 120

Re(ative Energy lmeVl

FIG. 24. Total cross sections for He(23$)+He calcu-
lated from our potential and compared to the data of Tru-
jiBo. The agreement between the two independent deter-
minations is good.

aI, ,= —,g (2l+ I) sin'(gf- il",),
I~0

where g~'" is the 3th phaseshift calculated from
V „. The transfer cross section is mainly de-
termined by the difference potential. The cal-
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FIG. 25. Calculated total. excitation-transfer cross sec-
tion for 3He(2 ~) + He assumingdistinguishableparticles.
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culated excitation-transfer cross section for
'He(2'S)+'He is shown in Fig. 25 as a function
of the kinetic energy. Because of the increasing
splitting of the two potentials for smaller 8, the
cross section rises with kinetic energy. It starts
to oscillate when the energy becomes larger than
the barrier in the ungerade potential. The rate of
excitation transfer (a„,times relative velocity,
averaged over a Maxwellian distribution) is com-
pared to experimental results in Fig. 26. The
temperature dependence of these rates have been
measured in two remarkable optical pumping ex-
periments'"" in 'He.

The 'He nucleus has spin —,', so that the hyper-
fine state can be different before and after a col-
lision. This leads to a loss of coherence and a
broader linewidth in the optical pumping experi-
ments. The linewidth is measured as a function
of temperature, and the rate of excitation trans-
fer is obtained after an involved analysis. The
agreement with the higher-temperature data of
Colegrove et a/. 36 is very good if the correction
factor of 4 is applied to their data, as proposed
by Dupont-Roe et al." The agreement is not so
good with the 1.ower-temperature results of Bosner
and Pipkin" shown in the insert. This is probably
due to tQe neglect of the Van der Vfaals interac-
tions, which have only a negligible influence on
the differential cross section. BarbÃ' has mea-
sured the excitation-transfer cross section at
4.2 'K, which corresponds to an average collision

FIG. 26. Bate constant for excitation transfer obtained
by averaging the cross section of Fig. 25. The experi-
mental points are from two optical pumping experiments.

energy of W.5 meV. At this low energy the Van
der %abls well should influence ibis cross section
strongly.

Earlier theoretical calculations of excitation
transfer have been performed for He*+ He by
Evans and Lane~ and Hickman and Lane, ' and for
Ne*+ Ne by Cohen and Schneider.

VIII. SIMILAR TRANSFER PHENOMENA

There are many similar excitation-transfer
phenomena: spin exchange (K4+ Cs0 -K0+ Cs4), 39

charge exchange" (He'+ He -He+ He'), or
at much higher energies4' neutron exchange
("C+"C-"C+"C), or at even higher4' energies
m exchange (p+n-n+ p). Save for the last ex-
ample where no local potential can be defined,
there is a surprising similarity in the scattering
phenomena and even in the language to describe
them.

Note added in proof. The He*-He potentials
have also recently been calculated by Peach. 4'

The excitation transfer cross section has also
been measured by Zhitnikov et al.4'
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