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Electron-impact excitation of the berylhum isoelectronic sefluence
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An analytic atomic independent-particle model potential adjusted to experimental energy levels is used to
generate wave functions for the excited states of Bel, Bn, Cln, Niv, and Ov. Using these wave
functions in conjunction with the Born approximation and the LS-coupling scheme, the authors calculate
optical oscillator strengths, generalized oscillator strengths, and total cross sections for excitations from the
2s ('So) ground state. The results are compared with experimental ones and other calculations. Regularities
and systematic trends along the isoelectronic sequence are discussed.

I. INTRODUCTION

Atomic oscillator strengths of highly ionized
atoms have many important applications. Recent
advances in fusion research with magnetically con-
fined plasmas have made possible detailed spec-
tral observations of the plasmas. ' These inves-
tigations have revealed the presence of highly
ionized atoms which affect the behavior of the
plasma. In astrophysics, the interpretation of
the physical condition& in quasars and other
nebulae depends on knowledge of the excitation
cross sections of various lines. Emission
lines corresponding to the resonance transition
2s'('S0) -2s2p('P, ) in the isoelectronic ions
C IU, NIV, OV have been identified in some stellar
objects. ' Unfortunately there is little experi-
mental information available on important cross
sections.

From a theoretical viewpoint the ions of the
beryllium sequence plus the incident electron
constitute a five- electron system. Techniques
for treating many-electron systems rigorously
in a systematic fashion have not yet been re-
duced to practice. For this reason the present
theoretical approach exploits a realistic indepen-
dent-particle-model (IPM) description for ar-
riving at approximate electron-impact cross sec-
tions in the Born-Bethe approximation.

In comparison to Hartree-Fock-Slater (HFS)
calculations and to experiment, a simple two-
parameter IPM potential has been found to pro-
vide a good representation of atoms and mole-
cules. '"

II. IPM POTENTIALS

The potential for an electron in an atom or ion
with nuclear charge Z and number of electrons
N is, in atomic units,

V(r) =-(2/r)[(Z- q) n(r) +qj,

where A(r) is the screening function

(n(r) = [a(e"" I) +-I] '

and g = Z- N+ 1. The parameters d, II may be
adjusted to a selected body of experimental data.
This potential is inserted into the radial Schro-
dinger equation

(
—v(.) + z„,)~„,(.) = 0

d f(f+ 1)

to obtain the energy eigenvalues E„, and wave
functions P„„(r)/r. The parameters d, H are
determined by requiring the energy eigenvalues
to agree with the experimental energy levels
which are obtained from the tables of Moore. '
The ground state of the Be sequence being a
singlet state: 1s 2s2('So), only singlet states can
be reached with a direct interaction. Accordingly
we confine our attention to the singlet states of
Be I, BII,CIII, NIV, OV. By searching over the
excited state energies and the 2s ground state
energy we obtain the parameter values given in
Table I. To initiate the search we take as the
initial parameter estimates the values obtained
by Green, Garvey, and Jackman' (GGJ) from the
ab initio procedure of total-energy minimization.
The GGJ parameters are included in 'gable I for
comparison. For all the levels included in the
search, the IPM values agree with the experi-
mental values to within 5% in 85% of cases, and
to within 2% in 50% of cases. The experimental
levels which we have used to determine the poten-
tial parameters are the s, p, d,f states having
principal quantum number n ~ 7, wherever data
for such states exist. However, there is a con-
siderable variation in the quantity of experimental
data available from one ion to the next. Thus
for BeI, BII, CIII, NIV, QV the total number of
states which we have considered is 14, 8, 18, 9, 16,
respectively. %e may extend the levels in a
given series by using the formula'
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Atom/ion This work

TABLE I. IPM potential parameters. TABLE III. Quantum defects for s, p, d, f excited
states of the Be sequence, to be used in Eq. (4) with a
screening constant s& = 2.87 for a11 l.

Bet

C &ran

Ov

d

d
H
d
H
d
H
d

0.3854
0.2396
0.1967
0.1159
0.1321
0.0735
0.0994
0.0521
0.0797
0.0392

0.7690
1,4457
0.4900
1.1824
0.3600
1.0674
0.2957
1.0394
0.2454
0.9998

States

S

p
d

0.1779
0.0486

-0.1254
-0.1843

H/d = 0.6543 —0.03267)

= 0.7521 —0.0326Z .

X (R 100)

1.53
1.84
3.07
0.56

(6c)

(6d)

E„,= —[(8—s,) /(n —5,)] (4)

where s, is the screening constant and 5, is the
quantum defect. We find that. for a given value
of /, all the excited states within the isoelec-
tronic sequence are accurately reproduced by
Eq. (4) if the screening constants and quantum de-
fects are chosen as i.n Table II where it becomes
obvious that the screening constant varies only
slightly. Therefore it is not unreasonable to
define a universal screening constant for the Be
sequence. By choosing s, = 2.87 for all /, the
"chi squares" of the various fits are not ap-
preciably altered (see Table III). The "chi
square" is a measure of the goodness of a fit,
and is defined as

(5)

d ' = 0.1068+ 2.4885q (6a)

Here y is the experimental or given value, y is
the calculated value, and w is the weight. We
use Poisson weighting w=y ' in all of our searches.

We have found a systematic trend in the behavior
of the potential parameters along the isoelec-
tronic sequence. We find that the quantities d '

and H/d have a linear dependence on g. (q is
the degree of ionization plus one. ) Since N=4,
this translates into a linear dependence on Z.
These linear dependences may be expressed as

x, =aoZ +a&Z+a&.2

The coefficient ao is zero for "in-shell" transi-
tions (i.e., no change in the principal quantum
number. ) We have verified that the IPM transi-
tion energies conform to Eq. (7). For the prin-
cipal resonance transition 2s-2p, we set ao

——0
and vary the two coefficients a„a, so as to ob-
tain the best fit to the IPM 2s-2P transition
energies along the sequence. For the other
transitions 2s-el we vary all three coefficients
ao, a&, a2. The coefficients which reproduce the
transition energies best are given in Table IV.

(7)

III. .GENERALIZED OSCILLATOR STRENGTHS
FORMULATION

We give a brief presentation of the general
formulas used in this work. Derivations of
these formulas may be found in Ref. 5. We con-
sider the transition of an atom or ion from its
ground state to an excited state with momentum
transfer K. We define x=K'a02, where ao is the

Similar linear dependences on q have been ob-
served by GGJ for all atoms and ions with Z
& 36.

From the early work of I.ayzer' it is expected
that for a fixed transition within an isoelectronic
sequence, the transition energies x, may be ex-
panded as

= -7.3587+ 2.4885Z, (6b)
TABLE IV. Coefficients ao, a&, ~ to be used in Eq.

(7).

States S) X2 (x 100)

2.8119
2.9241
3.0342
2.9532

0.1303
0.0810
0.'0337

-0.0904

1.19
1.19
0.123
0.473

TABLE II. Screening constants and quantum defects
for s, P, d, f excited states of the Be sequence, to be
used in Eq. (4).

2s to

2P
3s
3P
3d
4s
4p
4d

ao

0
0.1555
0.1553
0.1602
0.2070
0.2039
0.2091

0.2321
-0.7381
-0.6744
-0.6800
-0.9974
-0.9359
-0.9739

-0.6587
0.9230
0.7199
0.6990
1.2375
1.0608
1.1408

X' (& 10')

2.34
1.02
1.22
1.27
0.70
0.094
1.10
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where
(8)

Bohr radius and x, = W/R, where W is the transi-
tion energy in eV and R is the Rydberg energy.
In our discussions of generalized oscillator
strengths (GOS) considerable use will be made of
the reduced or scaled quantity $ = x/x, . We
suppose that the atom or ion is initially in a
state which has quantum numbers L„S„J„M,.
After the active electron has been promoted from
a 60)0 orbital to a nl orbital, the atom or ion is
in a final state which has quantum numbers L&,

Sy, Jf Mf Only transitions with S&
——S» are con-

sidered.
By using the first Born approximation and as-

suming the Russell-Saunders LS- coupling
scheme for the initial and final states, it can be
shown that the GOS is given by

f f L~'f (x) =QC~(2l0+ 1)(2l+ l)(2L+1)
~

0 ~ S~,
J

T=x,' P„& x xP„& x dr
0

and C is a coefficient

(12)

C =NDF (2L;+ l)(2L~+ l)(2Jy+ 1)

and j~(Zx) is a spherical Bessel function. The
quantity N0 in Eq. (10) is the number of electrons
in the active subshell, and E is the coefficient
of fractional parentage" for constructing the ini-
tial state (n, l 0)" 0S, L, from the core state
(nal0)"0 'S,I,, and an naia electron.

In the limit as K-0 the QOS becomes the opti-
cal oscillator strength (OOS) . The OOS is cal-
culated from"

f0
———,'C(2l0+ 1)(2E+ l)~ T',(r, f 1&',

(,0 00/
where T is a radial dipole matrix element

, (y )j (Kr)p„,(r) d~J n010

Ci =NDF (2L(+ l)(2Ly+ 1)(2'+ 1)

(10)

For the Be sequence we have the assignments
L, = S, = J, = L,= $, = 0, NOE = 2. The 6j symbols
in Eq. (13) vanish unless the triads (Lz 1 L,)

=(Lz 1 0) and (f, 1 f) = (0 1 l) satisfy a triangle
condition. This requires that L&

——l = 1. Hence
the OOS vanishes unless the final atomic state
is 2snP(' )P, n=2, 3, 4, . . . .

The array in the large parentheses in Eq. (8) is
a 3j symbol, and the arrays in large curly brac-
kets in Eq. (10) are 6j symbols. '4 The quantities
P„, (r)/r and P„,(r)/r are the bound- state radial

n0l0
wave functions for the single-particle excitations,

IV. RESULTS FOR OOS

The OOS for the Be sequence have been inten-
sively studied theoretically and experimentally,
especially the resonance transition 2s ('S0)

TABLE V. Comparisonbetvreen IPM, experimental, HFS, TDHF, and other calculations
of OOS for the principal resonance transition 2s2(~SO) 2s 2p(~P&) of the Be isoelectronic
sequence.

Atom/ion

Be r

B II

C irr

Ntv
Ov

1.1240

1.0166

0.8427
0.7032
0.5929

Expt

1.21 + 0.03 ~

1.08 + 0.05
1.34 + 0.05~
0.83 + 0.09"
0 73+0 07
0.9 + 0.2"
0.65 ~ 0.03'

0.42 + 0.05~

HFS

1.317b

0.573 m

0.480

TDHF

1.378

1 004~

0 749c
0 596c
0.495'

Other works

1.256 d

1 4f

0.94'
0.985 + 0.015 '

0.73'
0.61'
0.52'

~Reference 17.
"Reference 25-.
'Reference 27.
dReference 28.
'Reference 18.
~ Reference 29.
~ Reference 19.

"Reference .20.
' Reference 21.
~ Reference 30.
"Heference 22.
' Reference 23.

Reference 26.
"Reference 24.
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TABLE VI. Results of IPM, HFS, and TDHF calcu-
lations of OOS for the transitions 2s (~Sp) 2s np (~J'~),
3&n&7', of the Be sequence.

TABLE VH. Coefficients ap, g, ~ to be used in Eq.
(15).

Atom/ion 2s to HFS TDHF
ap (x10 )

Bet

Brt

Nrv

3P
4p
5p
6p
vp
3P
4p
5p
6p
vp
3P
4p
5p
6p
7p
3P
4p
5p
6p
vp
3P
4P.
5p
6p
vp

0.022 0
0.013 1
0.007 0
0.004 05
0.002 53
0.1110
0.045 5
0.022 1
0.012 3
0.007 56
0.212 7
0.074 9
0.034 6
0.018 9
0.0115
0.300 7
0.097 3
0.043 8
0.023 6
0.0143
0.374 4
0.1144
0.050 6
0.0271
0.016 2

0.0041 ~

0.0050

o.54v'
0 150c
o.059'

0.588
0 158c
0.062
0.030
0.017 '

0.022 7
O.OO1O2 b

o.oeo 8"
o.o3e o"

0.223 b

o.ovv 5b

0.323 b

o.1o4"

0.4OO'

O.121b

~Reference 25.
"Reference 26.
'Reference 27.

—2s 2P('P, ). The computed OOS based on Eqs.
(11)-(13)are presented in Tables V and VI.
In Table V we compare the IPM OOS for the
resonadce transition 2s2('Sp) -2s 2p('P) to the
experimental values, " ' Hartree-Fock-Slater
(HFS) results, 2'" time-dependent Hartree-Fock
(TDHF) results, 2' and other results. 'P PP We see
that the IPM values are in reasonable agreement
with all the other values. In Table VI we present
the IPM OOS for the transitions 2s ('Sp) -2s nP('P),
3 &n &7, and compare them with HFS and TDHF
results where possible. For the cases of NIV
and QV we have computed the HFS values from
Kelly's formula26:

fp
——(0.3335,E)S(M)S(L)o /w, (14)

where AE is the transition energy, m is the sta-
tistical weight of the ground state, and g is the
square of the radial dipole matrix element. The
quantities S(M), S(L) are the relative multiplet
strength and relative line strength, respectively,
and are evaluated using general formulas given by
Rohrlich. 3' Extensive tabulations of 0 using HFS
wave functions have been given by Kelly for the
various species of oxygen and nitrogen. The

2P
3P
4p
5p
6p
vp

0
1.1602
0.2824
0.1132
0.0578
0.0333

5.3818
-7.9873
-1.5962
-0.5712
-0.2739
-0.1486

-2.9364
13.736
2.0757
0.5852
0.2351
0.1017

74.3
0.51
0.31
0.11
0.05
0.05

fp = ap + a~/& + a2/&' . (15)

The coefficient ap is zero for in-shell transitions.
We have verified that the IPM QQS conform to
Eq. (15). For the principal resonance transition
2s-2p, we set ap

——0 and vary the two coefficients
aq, a2 so as to obtain the best fit to the IPM
2s-2P QOS along the sequence. For the other
transitions 2s-nl, we vary all three coefficients
ap a~ p2 The coefficients which reproduce the
QOS best are given in Table VII.

V. RESULTS FOR GOS AND INTEGRATED CROSS
SECTIONS

For Be I, BII, CDI, NIV, OV we have computed
the GQS for a variety of excitations from the 2s
ground state and for a range of g from 10 2 to
10 . We find that the GOS exhibit a striking no-
dal structure which becomes more complex as
$ gets large. These features are illustrated in
Fig. 1 which displays our results for BII. The
results for the other ions have the same general
characteristics.

To expedite use in applications, we have para-
metrized all the GQS with simple analytic forms.
For optically allowed transitions such as 2s-2P,
2s-3P, etc. , we use the form

and for optically forbidden transitions such as
2s-3s, 2s-3d, etc. , we use

small differences between corresponding results
in the various calculations may be a reflection
of the sensitivity of OOS to fine details of the po-
tential and the radial wave functions, particularly
near the valence orbit. "3'

We have found that the OOS exhibit systematic
trends along the isoelectronic sequence. From
several discussions'""'3 it is expected that for
a fixed transition within an isoelectronie sequence,
the OOS may be expanded in inverse powers of
the nuclear charge:
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TABLE VHI. Values of parameters to be used in Eqs. (16) and (17).

Atom/ion X (&&10 )

Bet

Niv

Ov

3s
4s
5s
3d
4d
5d
2p
3P
4p
3s
4s
3d
4d
2p
3P
3s
4s
5s
3d
4d
5d
2P
3P
4p
5p
3s
3d
4d
2p
Bp
4p
5p
3s
4s
3d
4d
5d
2P
3P
4p
5p

0.4043
0.0890
0.0351
0.4174
0.1681
0.0830
1.1240
0.0220
0.0131
0.5839
0.1274
1.1129 .

0.3286
1.0166
0.1110
0.6647
0.1664
0.0602
1.4733
0.3694
0.1515
0.8427
0.2127
0.0749
0.0346
0.7132
1.6820
0.3765
0.7032
0.3007
0.0973
0.0438
0.7497
0.1701
1.8229
0.3709
0.1437
0.5929
0.3744
0.1144
0.0506

1.2950
0.6533
0.5335
1.8864
1.5908
1.4761
0.4298
4.2231
2.8393
1.5001
0.4281
1.6637
1.1733
0.3492
2.8814
1.6806
0.7249
0.4147
1.5741
1.0289
0.7548
0.2866
2.4829
1.3631
0.4972
1.8214
1.5219
0.8618
0.1355
2.2883
0.7851
0.3673
1.1024
0.4866
1.4851
0.4939
0.3762
0.2099
2.1701
0.4862
0.3617

0.2056
-0.2287
-0.3044

0.2050
0.1140
0.0775
0.0868

-2.3455
-1.6658

0.3269
-0.4673

0.1943
0.0239
0.0707

-1.0927
0.4543

-0.2962
-0.5005

0.1915
0.0053

-0.1621
0.0621

-0.7569
-1.1895
-1.8594

0.5633
0.1904

-0.0848
-0.0509
-0.6155
-1.4881
-1.8033
-0.1814
-0.5140

0.1896
-0.3804
-0.4051

0.0525
-0.5361
-1.6466
-1.6373

0.7870
0.7866
0.6588
1.0145
0.8557
0.7683
0.2205
0.6719
0.6670
1.0323
0.6013
0.9550
0.5625
0.2039
0.6786
1.1924
0.8213
0.5921
0.9307
0.4312
0.7498
0.1795
0.6735
0.8364
0.8036
1.2987
0.9163
0.8704
0.2241
0.6703
0.8678
0.7481
2.0519
0.6711
0.9058
0.6384
0.5171
0.1410
0.6674
0.7989
0.7230

0.06
0.33
0.30
0.19
0.02
0.01
1.03
8.66
2.05
0.08
0.98
0.28
0.50
0.18
3.19
0.17
4.90
1.53
0.27
2.43
3.25
0.04
1.37
2.70
2.33
0.26
0.24
5.33
0.01
0.68
3.15
4.18
0.22
1.92
0.22
7.76
9.51
0.01
0.35
4.69
5.09

Here E& is the first exponential integral function ~

and y(s, y) is the incomplete gamma function. 3'

The first term in this series which is dominant
at high energies leads to the familiar E 'lnE
dependence usually associated with the Born ap-
proximation.

For Be I, B I&, (:ILL, NIV, QV we have computed
the integrated cross sections for a variety of
excitations from the 2s ground state, and for
incident electron energies ranging from thres-
hold to 1 keV. The results are displayed in
Figs. 2—6. We see that the 2s-2P cross sec-
tions dominate strongly throughout the sequence.
Unfortunately there is little information available
with which to compare our results. Almost the

only results available are the calculated 2s-2P in-
tegrated cross sections for BeI based upon the
non- closed- shell many-electron theory (NCMET)
of Sinanoglu et gl. ~ We are gratified by the har-
mony between the IPM and NCMKT results, es-
pecially in light of the rigorous nature of the
NCMKT calculations which take full account of
all correlation effects.

We have investigated the existence of regulari-
ties and systematic trends in the cross sections
along the isoelectronic sequence. We have found
that for a given energy in the range 300 to 1000
eV, the 2s-2P cross sections along the isoelec-
tronic sequence conform very accurately to the
formula
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i I I i I I I I

lo
~ 2p

IO

CU

E
O
C:

b

10

3s

c4 IOE

lo

l
018

-IB
IO

IO l00
E(eV}

l000

FIG. 2. Integrated cross sections for BeI. The solid
dots are the NCMET results of Sinanoglu and Davis
(Ref. 28).

IO
I ( I illl

IOO
E {ev)

I I I I I III
IOOO

FIG. 4. Integrated cross sections for C III.

Ip-I5 K
rr(2s-2()=rro( )s( ), )n +8),

n=2 (22)

Ip-l6

where oo ——10 '6 em, K= 7205 eP, 5 = 0, g= 1.425,
b=0.4388 eV, and e is the base of natural logar-

IO

N
3s

-l7e IO

IO

Ip

IO

Ip-l9
IO

I I I I I III
IOO

E {eV)

I I I I IIII
IOOO

IOI9

IO IOO
E (eV}

I I I i iiii
l000

FIG. 3. Integrated cross sections for BII. FIG. 5. Integrated cross sections for NIV.
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-l6
10 2p

where for ns states K=29409, 5=0.569, g= —0.811,
and P = 3 and for nd states K = 872.1, 5 ='0.606,
g = -0.968, and P = 1. Again one would have to
fix a cofactor [1—(x,/E)]" to establish precisely
the overall magnitude of K.

10

C:

b

10

IOe
10

I I I I il

100
E(ev)

I I I I I III
1000

FIG. 6. Integrated cross sections for OV.

o(2s nl) = ooE/(n-—5)'(Z- a)~E, (23)

ithms. The cross sections computed using this
formula are not shown since they fit the corres-
ponding curves in Figs. 2-6 within the line width.
It is interesting to note that Eq. (22) accounts
approximately for the success of the scaling fac-
tor (Z- 1.35) employed by Watson, ' Dalgarno,
and Stewart" for scaling photoionization cross
sections of the Be sequence. An explicit
formula for the major resonance transition is,
of course, more convenient in applications.

We have also examined the applicability of
Eq. (22) to. all members of the 2s-np isoelec-
tronic series. If we set K = 132 35 ep, 5 = 0.015,
a= —10.8, and b =0.455 eV, we achieve 10% level
agreement with the 3P, 4p, and 5P results above
500 eV in Figs. 2-6. However, the fits are not
of high calibre and more work needs to be carried
out should these small cross sections be signifi-
cant in experimental situations. Qne problem
which arises is that the threshold (transition)
energies become so large that the domain of the
Born approximation moves to higher energies.
In earlier work Green and Dutta ' empiri-
cally modified Born cross sections by using a
cofactor of the form [1—(x,/E)]" which reduces
to the Born cross section as E-x„ the transi-
tion energy. It is not unreasonable to use a
similar cofactor for isoelectronic sequences but
it would take experimental measurements or
distorted wave calculations to fix the parameter
V.

For excitations 2s-ns and 2s-nd our theoretical
results display approximately the behavior

VI. SUMMARY AND CONCLUSION

The isoelectronic ions of the beryllium se-
quence play important roles in a number of phen-
omena in plasma physics and astrophysics, as
indicated in the introduction to this work. The
primary purpose of this work has been to apply
a realistic independent particle model to the
programmatic generation of optical oscillator
strengths, generalized oscillator strengths, and

electron-impact cross sections for a variety of
excitations' from the 2s valence shell of the iso-
electronic sequence Be I, BII, C III, N IV, 0V. From
our results we have obtained several phenomeno-
logical relationships representing the systematic
behavior of potential parameters, transition
energies, oscillator strengths and cross sections,
along the sequence. Such relationships are impor-
tant since they facilitate the evaluation of data
and make possible the acquisition of new data
simply by interpolation or extrapolation.

The substantial differences in Table I between
the screening function parameters found in the
present work and those found by QQJ are a mat-
ter of physical interest. Recall that we have
adjusted d and H to yield eigenvalues to be in best
agreement with the experimental valence and

excited energy levels whereas QQJ following Bass
et gl. 3 adjust these parameters to minimize the
total energy. Since the QGJ screening functions
are expected to closely simulate an average
Hartree- Fock screening function, to the extent
that our screening function departs from QQJ,
probably represents its departure from the ef-
fective average Hartree-Fock screening func-
tion. We have examined the systematics of
these differences and in general find that 0- Q«~
is positive at small r but negative at large r
with the sign change occurring at r = 1.5 in Be I,
r=0.5 in CIII, and r=0.3 in QV. This implies
that our Be isoelectronic potentials are systema-
tically more repulsive outside these radii than are
the GQJ potentials. Qreen and Kutcher" have
previously found potential differences between ex-
cited state adjusted potentials and energy mini-
mized adjusted potentials which vary in an ap-
parently unsystematic manner from atom to
atom-. The present work suggests a systematic
trend at least for an isoelectronic series. - The
study of Green and Kutcher suggests that these
potential differences might represent non-IPM
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effects such as residual electron-electron inter-
actions, polarization contributions, and rear-
rangement effects. A more-detailed study of
differences in IPM potentials obtained in various
ways is now underway.

Returning to our results here we should note
that they are in reasonable agreement with ex-
periment and at the same time in approximate
conformity with results based upon the Hartree-
Fock method. The fact that we tune the two
parameters in our analytic model to experimen-
tal energy-level data appears to ensure that our
model provides a realistic single-particle des-
cription of what is actually a complex many-
body problem. The compatibility which we have
found to exist between the IPM and NCMET re-
sults (see Fig. 2) strongly suggests that our po-
tentials empirically embody effects not included
in the Hartree-Fock model or in various ab initio

IPM approximations to it.
In final summary, we emphasize that the ana-

lytic independent particle model is addressed
towards practical applications of atomic theory.
Its convenience in applications as illustrated by
the systematic regularities in various properties
we have derived from it are important 'assets.
Other important assets are the computational
simplicity and the orthogonality and closure
properties, which are particularly helpful in cal-
culations of the properties of excited states which
are needed in numerous applications.
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