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Approximation scheme for strongly coupled plasmas: Dynamical theory
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The authors present a self-consistent approximation scheme for the calculation of the dynamical

polarizability a(k, co) at long wavelengths in strongly coupled one-component plasmas. Development of the
scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS)
velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-

'dissipation theorem to dynamical calculations. The result is the simple expression for a(k, co), ac„s(k, eo)

a„p„(k,co)tl + v(k, co)], where the dynamical screening function v(k, co) is expressed in terms of quadratic
polarizabilities, and RPA stands for random-phase approximation. Its zero-frequency limit v(k, 0) has
already been established and analyzed in the earlier GKS work. At high frequency, a«, (k, ~~ oo) exactly
satisfies the 1/co' moment sum rule. In the second stage, the above dynamical expression is made self-

consistent at. long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms
of linear ones, which prevails in the k ~0 limit for weak coupling, can be relied upon as a paradigm for
arbitrary coupling. The result is a relatively simple quadratic integral equation for a. Its evaluation in the

weak-coupling limit and its comparison with known exact results in that limit reveal that almost all

important correlational and long-time effects are reproduced by our theory with very good numerical

accuracy over the entire frequency range; the only significant defect of the approximation seems to be the
absence of the "domin6, nt" y ln y

'
(y is the plasma parameter) contribution to Im a(k, eo).

- I. -INTRODUCTION

The behavior of strongly coupled one-compo-
nent plasmas (ocp'.s) has been the subject of a
great number of recent investigations, ' both as a
result of Monte-Carlo' and molecular-dynamics'
computer studies and as a result as well of theo-
retical model buildings. ' The coupling strength
of such systems is conveniently described through
the plasma parameter y = ~'/4m (~ ' being the
Debye length, z' =4mPe'n, n the density, and P
the inverse temperature) which is greater than
unity for strong coupling. The physical charac-
teristics of the system manifest themselves either
as static properties (thermodynamic quantities,
pair-correlation function, etc. ) or as dynamic
properties (dynamical-structure factor, dynamical
response functions, collective modes, etc. ).
Among the theoretical methods pertaining to the
former, the hypernetted chain (HNC) approxima-
tion~ has been taken over from the theory of
derise fluids, while others have been formulated
with a view to their application to strongly cou-
pled plasmas. The method proposed by Totsuji
and Ichimaru (TI)' is based on the decomposition
of the three-particle correlation function by
mimicking its weakly coupled plasma structure.
Singwi, Tosi, Land, and Sjolander (STLS)' and
later Vashishta and Singwi' worked out a method
for the calculation of the dielectric response func-

tion by approximating the nonequilibrium pair-
correlation function. Some time ago, the present
authors and Silevitch (GKS)' proposed a some-
what similar scheme, where, however, the ap-
proximation was carried out in a much more sat-
isfactory way by evoking the velocity-average
approximation (VAA) as its principal assumption.

On the dynamical level, the dynamical continua-
tion of the STLS and the dynamical extension of
the TI schemes turned out to be wholly unsatis-
factory: actually they are structurally equivalent
to each other' and to the mean-field theories of
Nelkin and Ranganathan" and of Lebowitz, Percus,
and Sykes. " As such, they are unable to repro-
duce any collisional or long-time effects in the
dynamical form factor and in the behavior of
collective modes. Independent methods, geared
principally to the study of the dynamical form
factor in dense neutral. fluids but adapted or
adaptable to the dense ocp situation, have been
put forward in great variety. Generally speaking,
there are attempts to improve the mean-fieM
approach, assumptions for the Mori memory
function, "'"and schemes that inject approxima-
tions into the equation of motion for the dynami-
cal form factor. ' "All these approaches share
the common feature that they start with an already
given form of the static pair-correlation function
which is assumed to be determined either by
computer or other experimental data or by an
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independent theoretical approach. Another line
of approach originates from quantum many-body
formalism and calculates the dynamical response
function. Mukhopadhyay, Kalia, Singwi, and
Gupta" and Ichimaru" should be mentioned in
this connection.

The GKS theory has, probably for the first time,
provided an unambiguous unified scheme from
which both static and nontrivial dynamical ap-
proximations can be generated. There are two
principal building blocks to the construction of
the scheme. The first is the VAA which, as
explained in greater detail in Sec. II, consists
of replacing the "irreducible" part of the non-
equilibrium two-particle distribution function by
a properl. y chosen velocity average. The formal
advantage of this step is that it allows one to
replace the nonequilibrium two-particle distribu-
tion function by a nonequilibrium two-point den-
sity-correlation'function, which, in turn, can be
traded for an equilibrium three-point function.
The second building block of the scheme is the
application of the nonlinear (quadratic) fluctua-
tion-dissipation theorem (NLFDT),"which intro-
duces quadratic response functions as the basic
objects whose approximation is required. There
seems to be a much more natural and direct way,
especially in the dynamical case, to generate
approximate structures for these quadratic
response functions than for any other quantity
that might be a candidate for occupying a central
place in the theory.

The GKS scheme has already yielded excellent
formal results in the static case, where it goes
further than any other approach in satisfying
compressibility sum rules for the linear and
quadratic polarizability response functions. " The
VAA has also been shown to be rigorously com-
patible with the first two Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equations for an ocp"—
even though there are situations, e.g. , the two-
component plasma, "when the equivalence ceases
to prevail and certain exact symmetry require-
ments are violated.

That the GKS theory is capabl. e of handling dy-
namical effects beyond the level of the mean-
field description was evident from its original
formulation. ' However, no detailed development
of the dynamical theory that could lead to actual
calculations has so far been given. The exposi-
tion of such a development is the primary purpose
of the present paper. Our ultimate goal is the
establishment of a formalism based on self-
consistency for the calculation of linear and
quadratic response functions, which can lead to
the determination of these response functions,
at least in certain parameter domains, for arbi-

trary values of y. The fundamental relation sat-
isfying this objective is set forth in Sec. V, in
the form of a relatively simple quadratic integral
equation for u(k, &u), the linear polarizability.
The parameter domain to which it is restricted
consists of the regions of small k, but arbitrary
e values; thus it is readily amenable to the study
of the dispersion of collective modes. We contend
that the relationship there derived is the first
approximation scheme arrived at from first
principles and exhibiting correct and nontrivial
static and dynamical features.

Section II of the paper displays the derivation
via the VAA of the basic dynamical formula in
terms of equilibrium three-point functions. In
Sec. III the dynamical NI.FDT" is introduced and
is exploited to provide a basic link between linear
and quadratic polarizabilities. The relationship
plays a pivotal role in the theory, since further
progress or ramifications depend upon the partic-
ular approximation adopted for the elimination
of the quadratic polarizabil. ities in favor of linear
ones. The method espoused in this paper consists
of (i) studying only the small-k behavior of the
quadratic polarizability and (ii) postulating that
a decomposition of the quadratic polarizability
in terms of linear polarizabilities, which pre-
vails in this limit for the weakly coupled ocp, can
be relied upon as a paradigm for arbitrary y.
The manipulation of these assumptions leads to
the already discussed relation in Sec. V.

The reliability of the approximation scheme is
investigated in two independent ways. In Sec. IV
we demonstrate that for arbitrary k and y values,
n(k, e) as expressed in terms of the quadratic
polarizabilities, exactly satisfies the 1/~' mo-
ment sum rule. " In Sec. VI we compare our re-
sults in the small-y limit with the exact weak-
coupling results" valid to order y. We find that
all the important correlational and long-time ef-
fects, with one exception, are reproduced by
our theory with very good numerical accuracy.
In particular, the real. part of the correlational
contribution of n(k, &u) is found to be equal to the
exact result within 14%%uo at &u- 0 and within 0.5%%d

at &u=&u, [&u, =(4vne'/m)'' is the plasma frequencyj.
At high frequencies exact agreement up to the
coefficient of the I/&o' term is guaranteed by
virtue of the satisfaction of the 1/~' sum rule;
the agreement as to the coefficients of the higher
powers of 1/a& is less satisfactory. In the imagi-
nary part of the correlational contribution of
u(k, v), responsible for the collisional damping
of the collective mod, es, the part proportional to
y agrees with the exact result with good accuracy;
the so-called dominant y lny ' term, however,
is not reproduced by the theory. This is the de-
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ficiency referred to above; the study of its origin
and suggestions for possible remedies will be
dealt with in a later work.

II. VEI.OCITY-AVERAGE APPROXIMATION

External and internal polar izabilities are the
principal transport coefficients which provide
information about dynamical processes in the
system. They are also the central objects in
the approximation scheme discussed in this
paper.

External polarizabilities, closely related to the
more popular density-response functions, are
defined through the relations'

where G is the two-particle distribution function
[normalized to t()(A' —1)] and K(ix —x'i)
=88'(e'/ix-x'i) is the interaction force between
the field electron (at x) and a typical source
electron (at x').

Following the procedure outlined in Sec. I, we
nowpresent a method for converting the right-
hand side of (7) into expressions involving non-
equilibrium two-point and, subsequently, equi-
librium three-point correlation functions. We
then calculate the average-density response.

Our basic assumption is that G is well described
by its velocity average, in the restricted sense,
where only one of the velocity arguments is
averaged out:

h "'(k, (u) = —a(k, (u)Z (k, (u),

8' '(k, (u) = —),n(q, p, ;k-q, (u- u}
QP

G(x, v;x', v';t)

=-' f(x, v;t) dv"G(x, v";x', v', t)

x Z(q, (((, )E(k - q (u - (((, )

connecting the plasma field 8 to the weak ex-
ternal perturbation E. Internal polarizabilities
(usually referred to as polarizabilities) connect
8 to the total electric field E=E+ 8. They are
defined through the relations

8 ' (k, (u) = -n(k, (u)E ' (k (u)

@(,)( ) g, o.(q, p, ;k-q, (u —t(, )
E (k (u)

xE"(q g)E"(k-q (u-g)

where e(k, (u) =1+n(k, (u) is the wave-vector-
and frequency-dependent dielectric response
function. We note that

(x(kt (u) = n(k, (u)/&(kt (u),

(4)

+f(x', v';t) fdv" G(x, v x', v";t), (8)

f(x, v;t)—= d(x, v;t)f x(x, t), fdvf(x7;t)=1,

While this structure is exact in equilibrium, it is
certainly an approximation for the perturbed
system. The resulting double velocity-space in-
tegral term

f(x, v;t) fdv' fdv" G( vx'; vx";t)

which repl. aces

dv'G(x, v;x', v', t)

in (7) can then, in turn, be expressed in terms
of the nonequilibrium microscopic density-
density cor'relation function (n(x)n(x'))(t) since

&(q P)&(k-q (u- t()&(k (u)
' dv dv'Q x, v;x', v';t

The calculation of the first-order response
functions proceeds from the first BBGKY kinetic
equation

8 8 e ~ 8—+v ~ ———E(x, t) ~ —E(x, v; t)8t 8X m ' 8v (7)

~ 4 8v cfx K x —x' G x, v;x, v;t

for the one-particle distribution function E (nor-
malized to 1V, the total. number of electrons),

=(n(x)n(x'))(t) —5(x —x')n(x, t) .

n(x) = Q 5(x -xf) .

The n(x) and n(x') are equal-time operators and
the notation ()(t) refers to the time evolution
carried by the phase-space distribution function
[see Eq. (A1)].

Upon combining (7) to (9) and taking the Fourier
transform of the result, one obtains the VAA
kinetic equation

e 8 1 8-i((u —k v)E(k, v; (u) —— E(q, lf ) ~ —E(k-q, v; (u —l)) = —— q(t)(q) ~ ) (n)", ;,"n;)((u —)f)—f(p, v; v),
Q tt Q pV

(10)
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p(q) =4me'/q'.
n&l

p(n)

Equation (10}is valid to all orders in E. The
introduction of E will perturb Eo(v), the equi-
librium Maxwe1. 1 distribution, by

Application of the subsequent perturbation ex-
pansions to (10) results in a hierarchy of coupled
VAA kinetic equations. Only the first of these,

BEo(v) i 1 BEo(v)i((u-k ~ v)E("(k, v; (u)+ —E(k, (u) - =- ——Q q4(q) - (nr, -on;)
' ((u),

will be of jnterest in this paper; the second equation of the series has been used in the static development
of the theory. The subsequent conversion of the right-hand-side nonequilibrium two-point function jnto
equilibrium three-point functions is made possible by means of straightforward theoretical statistical-
mechanical perturbation calculations (Appendix A). Thus from Eq. (A10),

iPe "
(n- "n-) '

(re) = E(k, re) (ire f dt exp(iret)(n-. ,"(0)n;(0)n -(-t)) e(n-. ;(0)n-(0)n -(0)) ) .
0

From (11) and (12) one then obtains the average density

(12)

n ' (k, (u) = d v E ' (k, v;(u)

= —n (k, re)E(kre) i- —,, —,P, t're I dt exp(iret)(n- -(0)n;(0)n -(-t))r r

0c

+(n-;(0)n-(0)n „-(0))(o~ (13)

where

oto kp (u
Q(k) k ~ BE'(v)/Bv

dv
m co —k 'v

is the RPA value of the linear polarizability.

III. POLARIZABILITY FORMULATIONS

Equation (13) and the well-known density-response relation

n(" (k, (u) = (ik/4me) n(k, (u}E(k, (u)
/

immediately lead to the VAA polarizability expression

1
Cgl

n(k, (u) = o'o(k, (u) 1- —,—,P, (i(u dt exp(i(ut){n), ;(0)n;(0)n )-, (-t))(o~+(nk;(0)np(0)n g(0))(ol
0 ge

P

(14)

Equation (14) can be represented in the form

n(k, (u) = o.o(k, (u)[1+8(k, (u)], (15)

(16)

(17)

or, equivalently, expressed as a relation for the
internal polariz ability,

o.(k, (u) = c(o(k, (u)[1+v(k, (u)],

8 (k, (u) = v (k, (u)/e (k, (u),

where the screening functions 8(k, (u) or v(k, (u)

are responsible for the finite coupling correction.

We now further transform 8(k, (u) into a more
transparent expression through a series of alge-
braic manipulations. First decompose the equi-
librium three-point function into its "proper"
and "improper" components:

(n)-, ;(0)n;(0)n k (-t))(o~

=E(5p +5k»"){nk(0)n k(-t))(o)

+ {nk -p (0}np (0}n-k (-t))'" I;,r-;, r» o
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and define the quadratic dynamical and static
structure factors

S(p, p. ;k-p, v)

S(p p k'-p v)

&(P Pik-P v) a(P P-i —k I(+v)= -2 Im
P, V p. (p, + v)

2
&~;(l )e-;(vl.-(X))'"

pgk -peak 40

a(-k, l(. + v;k-p, -v)
v(p. + v)

(21)

+ oo

S(p, k-p) = ll
— —S(p, 9;k-, p, v).2' 2m

v(k, e) can now be written as

(19a)

(19b)

where the a's are quadratic external polarizabil-
ities conveniently normalized to

,o.,( p, 0; k - p, 0) = 2m P'ne '/(kP ik - pi )»

the static (l(, = v=0) value of, o.(p, l(, ; k-p, v) in the
RPA limit": for example,

k»(p, P;k-p, p)+P(p, k-p)). (20)

Further progress can be made and, ultimately,
self-consistency can be achieved first by express-
ing v in terms of quadratic polarizability response
functions. This is to be accomplished with the
aid of the dynamical NLFDT" which relates the
quadratic structure factor to the latter:

K 1 k ~ p Scan
8(k, &) = ——,—Q, —( d p, dv 5, ((u —(L(, —v)p~

P

(2(pi P»k Pi v) =&2&(P» V» k P» v)/2&0(pi 0»k —Pi 0) ~

(22)

Since S(p, )((,; k —p, v) is expected to be nonsingular,
the v, =0, v=0, and (u =-v singularities in (21) are
spurious, and the nonlinear fluctuation-dissipation
theorem remains unchanged if one stipulates that
each frequency denominator in (21) is a (double)
principal-value denominator. With this under-
standing, the injection of Eq. (21) into Eq. (20)
leads to expressions which are then amenable
to Kramers-Kronig analysis. They are

"dP, "dv „11' 1
8'(k, cu) = ——,—p, a"(p, 0; k-p, 0)+2&v — —0"(p, V, ; k-p, v)P —P P—

pp g pp 27' 2 w P. v (d —jU —v

"dP, "dv„„1 1 1—2&v — —a"(p, -l(, ;-k, )u+ v)P PP-
2P ~If' 27T jL( + V 4) —jL —V

"dg "dv„„ 1—2~ — —a"(-k, l(, + v; k —p, —v)P-P P
~277 ~2+ V Cj, +V (d —P —V

(23)

K' 1 k p "dp. „„~ ~ ~ 1 18"(k, &u)= —,—g, ~ —a"(p, p. ;k-p, &u —p. )P—Pp' 2m' ' ' '
p, co- jLj.

1—a"(p, —p, ; -k, &u)P —— —a"(-k, e; k-p, p. —&u)P
2m g 2m (d —Q

(24)

where 8 =8'+i8", a =a'+i0", etc. The first
right-hand-side term of (23) comes from the
static NLFDT, "

S(P, k —P) =a"(P, 0; k —P, 0) . (25)

In view of the fact that 0 is a plus function of its
frequency arguments, the expression (24) for v"
further simplifies to

2 OO

K 1 k'p
P "(k, )= —,—g, PP p "(p, p;k—-p, ut- )+p'(Pp, p;- ~k)+ (k- , k; kkp, p)) .k' 2A p' m „v(u —p)

(26)

In order to convert 8 into a form similar to (26), we manipulate the second right-hand-side term in (23),
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PPP t dp, dv
, p v((u - V - v}

1 "dp. "dv 4pPP — —0"(p, V.;k-p, v)+PP —0"(p, p. ;k —p, v)
(d ~V~4) —/~V

cLP 4v
~q

~ ~ ~ -
. lP gP+PP 9 (9 «lk —9 v)+PP «"(p «k-9 v))~ g p, v

m2
[0"(p, 0; k —p, 0) —0"(p, &u; k —p, 0)]

00 OO I

dp
& (p Vik —p ~- V)+P &'(p )(i)k —p (9) —V)

~ p

For the third right-hand-side term one can similarly show that

(27)

~(~+v)(~- ~- v)

Finally, the fourth right-hand-side term,

(28)

d "(-k, p, + v; k-p, -v)
v(V + v)(~ —V —v)

l „ -
d

0"(-k, V. + v; k —0, —v) d d d "
(-k, 9 + «; k —9, —v)

)

= ——(PP dV, dv ' ' ' +PP d«. dv ' ' '

) (99)
v(p, —v) v[~ —(u. —v}]

can be transformed with the application of the Poincarb-Bertrand theorem" into

1 PP — 9"(—k, « —v; 9 —p, «) + «'ll" (-9, 0; k - p, 0))
(d

0"(-k, «-v;k-p, v)-«'9"(-k, tv;k-p, p)) =0. (99«)--~-(V- v)

Combining Eqs. (27)-(29) according to (23) and taking account of symmetry properties like (t(p, u&; k - p, 0)
8( =k(d-);k, -p, 0) (see Appendix 8), one obtains

v'(k, u&) = —,—g, —PP 0'(p, p. ;k-p, cu-)u)-.a"(p, 0; -k, e)-0"(-k, e;k-p, 0) i .
1T

(30)

Equations (30) and (26) then combine, in turn, to give the desired expression:

ia' 1
OO

0(k, ~)=, —g . &I6 (P)[~(P, I;-k-p, ~-V)+&(P, ~-P;k p, V)]-
Similarly,

where

iz' 1 ~ k ~ p ", a(p, p, ;k-p, co-i(, ) a(p, &u —(((,;k-p, p)
P' "

e(P« u)e(k-Pp ~- V) e(P9 ~- V)&(k-Pp W)
(32)

a(p, g;k-p, e- p) =—i,o((p, p;k-p, +- p)/ o',(p, 0;k-p, 0). (33)
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Equations (31) and (32), together with (15) and

(16), constitute the central relations of our ap-.
proximation scheme. They determine the linear
polarizabilities in terms of the quadratic ones.
As such, they are evidently not self-consistent;
however, they open up avenues to further approx-
imation methods that lead to self-consistency.
The seminal question, of course, is how closure
can be accomplished. A relatively simple way is
to postulate a decomposition of a(p, t(, ; q, v) in
terms of linear n's. A more ambitious approach
is to relegate the closure to a higher level, i.e.,
to express a (or, o.) in terms of the cubic polar-
izability, a with the aid of the first BBGKY kinetic
equation perturbed to higher order in E. Closure
is then sought by expressing, a in terms of 2n
and n. This latter method has been pursued to
some extent, rather satisfactorily, in the static
(e =0) situation, "where it has been shown to give
excellent results from the point of view of satis-
fying compressibility sum-rule requirements.
In the present paper, however, we will develop
the former, simpler decomposition scheme. This
will be applicable to the parameter domain

(k/z)&u, /e« 1 and, therefore, it has no static
counterpart. In Sec. IV we will analyze the RPA

quadratic polarizability and will show that it has
a simple decomposition in terms of linear polar-
izabilities. This relationship will then be postu-
lated to serve as the basis of the self-consistency
scheme for arbitrary values of y.

We close this section with an important remark
about the structure of Eq, (16). Its ~=0 limit"'"

n(k, 0) = no(k, 0)[1+v '(k, 0)], (34)

IP 1 ~ k p a"(p, 0; k-p, 0)
O' N ~ p' e(p, 0)e(k - p, 0) '

p

is identical to the second BBGKY static equation

K
S(k) —1 =-, , 1+—Q, S(p, k-p))

relating the linear and quadratic structure factors
S(k) and S(p, k-p). This is readily seen by ap-
plication of the static NLFDT Equation (25) and

S(k) = (x(k, 0)/o'o(k, 0) to (34) and (35).

IV. HIGH-FREQUENCY BEHAVIOR

In this section we demonstrate that the approx-
imation scheme satisfies the known u high-
frequency sum rule. " We return to expression
(20), in terms of the quadratic structure factor,

d p,
"d v S(p, tL ', k —p, v)

v '(k, (()) = ——,—,S ( P, k —P) —(uP
k 1V P 2p 27/' (0- p —V

(36)

For ~ large, the principal-part denominator can be expanded and one obtains

K 1 k'p dp. dv
0'(k, ~- )= —

2 2/ 2
— ( t(—+)(' (SP P k-P v)P2 2g

1 —,+ „S(p,t', k-p, t")
Isa

2

[p (J;n), ;J.)-,
)l'l k+(k —p) ~ (J)-, ,"n~J )()

' k]
40

J )-, = g v, exp(ik x&).

P, [I-P,4&0

The calculation in Appendix C provides

[p ~ (J;n)-, ;J g)~'l ~ k+(k-p) ~ (J), ,"n;J p)l'l ~ k] =k'(I/pm) g g'[S(lk-pl)-s(p)],
y 7)-p 7780

(3 8)

where lt =k p/kP. The resulting statement for

(dv' (k, -) = —";
N g x'[s(lk-Pl) -s(p)], (39)

is tantamount to the 1/u&' sum rule. "'" Recalling
that 8(k, &o) =v(k, (())/e (k, (u), note that, to order
I/a)', the right-hand side of (39) is also the
correct expression for v(k, co). In the known

long-wavelength limit,
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8,'(k- 0, (u- ~) = ——,', y(k'/«')&u', /uP . (41)

V. LONG-WAVELENGTH FORMULATION

i)'(k 0 (d p()) =- ~— dX[S(x)-1]4y
15m e' W2

0

(40)
x= p/«.

Finally, in the y-0 limit where S(p) =So(p) =p'/
(p'+ «2), one recovers from (39) the long-wave-
length Debye-Huckel sum- rule coefficient

where q =k- p, v = ~ —p. . The subsequent develop-
ment in ~k v/&u~ to order k' then results in the
following relationship between a0 and n0:

a.(p, )(; q, ) ) =(~'./~')[&'"(p, V)+&'"(q, ~)]

2(~s/ s)[~(2)(~p ~)+~(2)(q p)]

+&(~'./~')[&'"(p, V )+&'"(q, ~)],

(42)

The main physical interest lies in the 1.ong-
wavelength dynamical behavior of the system,
especially the long-wavelength damping and
dispersion of plasma oscillations. We therefore
now turn to the derivation of the long-wavelength
(k- 0) formula for v(k, &u). Recalling the discus-
sion of Sec. III about the structure of a, we shall
suppose that it can be described by an RPA-like
structure. The latter is

a,( p, p. ; q, v) = . d v P'(v )
(

q'v ~ ~ p'v
x~k ~ p +k ~ qv-q v p -p'v

(42)

&"(p, ) ) =-,, n.(p, u),

&"(p, u) =- — „, n.(p, u),(2) ~ lp k'pk'q

t

ik'p'k q

0

i k ~ q(k ~ p)'
I(,4p2

Now write v in the form

(44)

(45)

(48)

(k ) =( / )' "'+2( ./ )' "+2( ./ )~'", (47)

(g) . K ( Pk'P k ( )
k (P P)+4 (k-P td-P) k (P ta —P)+4 (k-P P)) .

)p' -- &.(p, V)e.(k —p, ~ —) ) e.(p, ~ —) )e.(k —p, ) )

(48)

For v ' we have from (48),
Co 2 2

v ' ='— dp5(p, ) g, , [n,(p, I)+ n, (p, + —p)-2n (p, p, )n (p, ~ —p, )]

2kPX
[n,(k —p, p, ) + n, (k —p, &u —g)j

kp -2'
[n,(P, p)no(k —p, ~ —)J)+ n, (k —p, P)n, (p, e —0)J

2 2

[n.(p &) —n. (k —p, ) )+n.(p, ~ —
( ) —n.(k —p, ~ —V)J I

.

By virtue of the plus-function character of n(&u), Eq. (49) splits into

(') = (') v(
dye + stat

where
OO p2 2

v,'„'„=-— dp, 5 (p.) g, n, (p, p, )n, (p, (d-. p, )

+ . [n.(p, ) )n.(k-p, ~-) )+n.(k-p, ) )n.(p, ~- &)]I

(49)

(50)



2120 K. I. GOLDEN AND G. KALMAN 19

can be reduced to

k' 1&'" =- ——g (1 —4X'+ 4X')
yn ~ Ã

X ding P, ~0P P, ~ P
m CO

k2 ' kp 3

P

2 2—,. [~0(p, 0)- n.(k-p, 0)]
~

= ——,', yk'/(('. (53)

and where
The reduction of v ' is carried out along similar
lines:

OO k2 2

v ' =& d45. (v) g," —u(p, 4)+ a (p, e-k)- —n(p, w)a (p, v-w))
OO

P 0 0

kpg p, „c0-p,„—~.(k-u, ~)+ „~.(k-v, ~-~))
0 0

+ — ", [(t,(p, V)~,(k-p, ~-(u)+n. (k-p, V)&.(p, ~-W)]
0

(2) (2)v dye +v stat

where

(54)

k2 2 kp 3
d~& (~) Z ." @.(i&, r )&(L~-~)-,. (~(L~)~.(&-i&, ~-~)+~(v, ~-~)~.(~-R~)I)

0 aQQ

k (d 1 2 4(-x +2x )
P

dV 6-(u)n. (p, V)~.(p, ~- V), (55)

while

v„'„=o(2)

by virtue of the fact that both

(56)

(0 1
v{k, (o) = () —Q x'[&(Ik - pl) -s(P)]

co' k2 1—~——g (1-6x'+ 8x')
(d IP 1V

and

5(P)((,d —P)o(,((d —l ) =0 x dp ~-(p)Pj(p p)o((p u —p)

(58)

dI 6-(~)~~.(l )=o.

Finally, one can readily demonstrate that

v'" =O

to order k'. We note that one can infer (53) to-
gether with (56) and (57) from the generai sum-
rule result of Sec. 1V, Eq. (39).

We now combine Eqs. (47), (52), (55)-(57),
and (53); as to the last, however, we replace
its contribution by that corresponding to the ex-
act sum-rule result (39) vaiid for v(k, &u) as well.
The resulting long-wavelength formula,

we now propose to be valid for arbitrary coup/i'.
This, together with our exact relation (16),
comprises the proposed self-consistent approx-
imation scheme.

VI. WEAK-COUPLING LIMIT

The fundamental expression (16), together with
the small-k approximation for v(k, (d), Eq. (58),
is based on the VAA and the assumption of the
validity of the RPA-like structure of a(p, i(, ; q, v)
in terms of linear n's. In order to assess the
physical contents of the VAA in the present con-
text, we will evaluate the weak-coupling limit of
v(k, &o). Since the exact y «1 expression for
(x(k, e) is known" to order y, this calculation
will allow us to compare, to this order, v(k, (())
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with its exact counterpart.
The only approximation required for the evalua-

tion of v(k, &o) is the "static approximation, "
which amounts to replacing

n(p, t ) =n(p, t )/e(p, t )

is

, ) „"p(-"/2)
~21T ~ ~ x u) —'EO

n, (p, v) = (tP/p')[1+HZ(u))],

(61}

(62)

n(p, ~- t ) = n(p, ~- V)/e(p, ~- V)

by n(p, t()/e(p, 0) and n(p, (o —(u)/e(p, 0), respective-
ly. '1his approximation, which is probably quite
good, except for co = 2~0 has been used" rather
extensively; it is also instrumental in a calcula-
tion leading to the evaluation" of the exact
o(k, (o) and, thus it indeed provides the appropriate
basis for the desired comparison.

Using now both the mell-known RPA expression
for n and the static approximation, Eq. (58) can
be rewritten as

40 k
v (k, (o) = -y ~ —,['U „„g„„( )],

where so= v/ap and a =cavo/z. Introducing (62) into

(60), one obtains

H(p, (o)

dM P "(ttt ) + — dttt P "(ttt )s —+ tt )gp4 „ap „ap
(d

+ dzu wZ" (ao}Z —+zv
aP

where Z =Z'+iZ'". The evaluation of the integrals
can be done by using a method originally suggested
by Coste." The details are given in Appendix D.
The result for H(p, (d) is

H(p, (o) =, 1+——Z i i . (64)

'U.„.((o)

dxx' dp, 6 (p)no(p, t(, )no(p) (t) (u)
5n

6 " x'dx(, },H(p, (d), x=p/a, (59)

t((P, ~) = f dtt tt-(P)~ (P, P)~ ( P, ~ - P):

It already has been pointed out that the value of
is in agreement with the sum-rule require-

ment, i.e., 'U„„=—„.Exploiting now the fact
that n( p, )(() =- n+( p, t() + 2i n" (p, t() ts a plus func-
tion and therefore n*(p, p) as well as n(p, (o —9)
are minus functions of g, and that n" (p, 0) =0,
H(p, (d) becomes

—(-„i/«)a[A" &,(a') —1], (66)

Eq. (64) substituted into (59) now leads to

3 "" x'
(u

3 m 1 t (d ' ""du Z(u)
5w 4 2 P2 i((o, „u' (1+(d'/2u'&o, ')'

(65)

where u =&uv2aj. The integral can be evaluated
with the aid of a formula given by Baus", details
are again relegated to Appendix D. One is led
to the final result

r

'U, „„((o)= —o(l —2q'[I - «(Ie" (1 —erfq)])

ltPt (PO

H(p, (o) = —
J

—no'(p, p)n, (p (o- W)
a CO

(60)
)I =(d/2(do, E,((I) =

t exp(-t) .

The RPA expression for n(p, v) in terms of the
plasma-dispersion function (o is a positive in-
finites imal quantity)

The comparison with the exact result can now be
carried out on two levels. On the structural level,
the exact equivalent of (59) is"

(t...(tt)= f d* ' f ttttt (u)P(Pttt) ).(P, tt-P.)t,
g

Q m (PO

2 oo x2
&t tt. (P)[P(P, P)~(P, ~ —P)+. ~(P, tt)P(P, ~ —P)1)|5g ~2

x' 16 (aP x2dx, ,H(p, (o) —
1

~ dx1 .(1 —2x'H(p, (o)).
15m 1+x' ' ' 15m (o', , 1+x' (6 t)
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TABLE I. Values of'U(~) at &= 0, & =(dp, and co &&cop.

Exact

0.283
0.249 + i0.056
0,133 + 'g (Mp/M) 0.338

0.250 + i(~p/cu)0. 3011ny-~
0.248 + i(0.3011n&~ + 0.064)
0.133+ i(up/cu) t0.3011n(2cop -~/~) + 0.778]

In comparing (59) and (67), we see that the dif-
ference lies (i) in the different numerical coef-
ficient in front of the first integral and (ii) in
the appearance of the second integral. To some
extent, the two effects are compensatory. How-
ever, the imaginary part of the second integral.
is divergent as x- ~. The usual device of cutting
the integral off atP =y 'w leads one to the
familiar y lny ' contribution"' '" to the imaginary
part of e(k, v). This feature is absent in the
pres ent approximation.

On the numerical level, we exhibit in Table I
the values" of 'U(~) = —,', +'U, ,„(~) at u&=0, ~=&a„
and ~&&coo. Apart from the absence of the lny '
term (which does not affect the real part), the
agreement is very good. We note in particular
that the change in the dispersion of the plasma
oscillation due to finite y effects is virtually
identical in the VAA to what is predicted by the
exact theory; both indicate that for small but
finite y, d&u/dk &d&u/dk~„, .

VII. CONCLUSIONS

The purpose of the present paper has been to
formulate a self-consistent approximation scheme
especially suitable for the description of the dis-
persion of collective modes at long wavelengths
in strongly coupled ocp's. This has been ac-
complished in two stages.

In the first stage, the appl. ication of the dy-
namical NLFDT to the first BBGKY kinetic-equa-
tion suitably prepared in the VAA led to the im-
portant new formulations (15), (16), (31), and (32)
of the linear pol.arizabil. ities in terms of quad-
ratic ones; these equations are valid at arbitrary
values of k, cu, and y. In the ~ =0 limit the ap-
proximation scheme goes far beyond satisfying
the compressibil. ity sum rules for the l.inear and
quadratic polarizabilities; in fact, one ean repro-
duce the exact second BBGKY static equation from
(16), attesting to the accuracy of the VAA at the
level of the quadratic polarizabil. ity. For arbitrary
values of k and y and at high frequency (&u- ~),
we demonstrated [cf. Eq. (39)] that a(k, &u) [and,
of course, o.(k, &u)] satisfies the 1/u&' sum rule.

In the second stage, we made Eqs. (16) and (32)
self-consistent in the long-wavelength limit by
postulating the decomposition of the dynamical.

quadratic polarizabilities in terms of linear ones,
in. analogy with the relation which prevails in. this
limit for y«1. The result is a relatively simpl. e
quadratic integral equation for n [obtained from
(16) and (58)]. We evaluated (58) in the small-y
limit and compared the result given by Eqs. (59)
and (66) with the known exact y«1 result (67).
Apart from the absence of the y lny ' term (which
affects the damping but not the dispersion of the
collective modes), we see from Table I that over
the entire frequency range all other important
correlational and long-time effects are repro-
duced by our theory with very good numerical
accuracy.

The decomposition of,e in terms of linear a' s
has an obvious resemblance to various well-
established approximations for the static three-
particle correlation function in terms of a super-
position of pair-correlation functions. However,
while the latter has a long tradition of physical
interpretation, we are still in the dark as to the
precise physical contents of this dynamical
superposition scheme. Much more work will be
necessary to develop the correspondence be-
tween this novel language and the physical model.
it represents.

The absence of the y lny ' dominant damping
term in the y- 0 limit points to the likelihood of
the incorrect treatment of the cumulative effect
of distant collisions. This defect —which, inci-
dentally, is more significant for small- than for
high-y values —is, however, mme likely to be
related to the original. VAA hypothesis. than to
the dynamical. superposition approximation.

We have made no attempt to actually solve the
integral equation (58) combined with (16) for
arbitrary y values. Two obvious avenues for
approaching the problem can be envisioned: itera-
tion, and reduction to an algebraic equation by
modeling, n(p, p. ) and parametrizing it through
adjustable constants. Further developments along
these lines will. be discussed in subsequent
publications.
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APPENDIX A

In this Appendix, we show how the nonequilib-
rium two-point function can be expressed in
terms of equilibrium three-point functions. Its
calculation by ensemble averaging in the Eulerian
picture,

(n.-„.;n-)(t)=f dr»(l, t)n n;, --

p2 ] 2

H (F)=g ' + —g
Z=I.

is the unperturbed Hamiltonian.
The introduction of a sufficiently weak external

potential g into the system then perturbs H '
and 2 ' by amounts

dI' =d x,d v x
~ ~ d x„dv„,

calls for solving the Liouville equation
(A6)

(A2)

Z(F, f) =—-i [H(1, t), . . .], (AS)

for the time evolution of the nonequilibrium dis-
tribution function Q(I', f).

The unperturbed state of the system at t =0 is
characterized by the macrocanonical distribution
function

(A6)

Q(F, t) =Q (I')+Q ' (F, t)+ ~

with

(AV)

= —Q ()) (k, t) [n k, . . . ] .

The subsequent perturbation of (A2) results in

the formal solution

Q o (I') =(J) exp[-PH ' (I')],

where

(A4)

O'"(rt)=-t'f d, te x(p-i eki) Oi(i —t)O'".
0

and

tp' = fdlexp[ tktl
'' (l')), -

The expiicit form of 8') exhibited in (A6) leads
to Q(')(I', t) and (nk;n;)(')(t) as follows:

i peQ(o)2'(f-T)Q ' = —Q y(k"tt-T)(n - )Q'J") = Q P( "k, t-r)[H'" nt[;]
jvll Ptl

iPeQ ')
E(k ti 'i) e J )t»t

ftt

PeQ( o)

Q ' (F &) =- g dTE(k", t —r) ~ exp( iTZi )J-- .
)fly, 0

(AB)

(A9)

{n)( ono)
' (f) =- — —„d E(Tk", f —r) dI" Q( ng,"n,"e k" ~ J l»,Pe 1

) .e
~h~~~ J)-, =Q, )ri exp(-l'k x)). In the Eulerian picture the microscopic density and current operators haye
no explicit time dependence. The time dependence, however, can be generated by shifting the representa-
tion to the Lagrangian picture. Then, choosing t =0 as an arbitrary reference time and letting the time
evolution operator- act on J p-, one arrives at the result

(n n )i (t) =- —g —„f d k(k t- )t( t "(0)n",e(0n)k 'J -., (-"e))i t"

0

tel

P(k t)(n; +0)n;(0)n -, (0))'"' —— dt l(k, t t)(n;;(0)n;(0)n;(-t))i"-) .
0

(A10)

APPENDIX 8 l1 ( p, &u; k —p, 0) =a(-k, a&; k —p, 0), (82)

(81)

In this Appendix, we derive the useful triangle
symmetry relations

(2(p, 0;k —p, (d) =a(p, 0; -k, (d),

with the aid of the dynamical. NLFDT equation (21).
The salient point of the derivation is that we as-
sert that S(p, ((), ; q, )J) is bounded at p, = 0 and )J = 0.
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A zero-frequency singularity would be indeed
unusual.

Consider now Eq. (21) rewritten in the form

implying the weaker cond'ition

a"(p, 0; k - p, u) =0"(P, 0; -k, (d) . (88)

i&uS(p, p. ; k —p, (d) —p) = (b* —b)/l(. + (b* —b)/((d —)(),),
. (83)

where

b(u ~-p) =&(p I k-'p &-W)-&(p p-;-k (d)

(84)

b(V, ~- u) =~(p, V; k-p, ~- u)

However, by virtue of the Kramers-Kronig rela-
tions that 0(p, 0;k —p, (d)) and a(p, 0;-k, (d) satisfy,
(88) leads to the equality of the real parts as
well, which then renders (87) tantamount to (86).
Note that at the HPA level, one can rigorously
demonstrate from Eq. (42) that

Q,(p, 0, k —p, (d) =(I,(p, 0; -k, ~).
—0(-k, (d; k —p, y. —(u) . (8 5)

The assumed boundedness of S(p, 0; k-p, (d)) re-
quires that b(0, (d) =b*(0, u). Thus there are two
poss ibilities:

Similar arguments for the p. = ~ case result in

symmetry relation (82).

(i) b(0, (d)) =O=b*(0, u),
implying condition (81) above, or

(ii) Imb(0, (u) = 0,

(86)

(87)

APPENDIX C

The following calculation shows how the current-
density-current equilibrium correlation function
reduces to the pair-correlation function.

N N. N

(J;n)", ;J ),) ' = g g g dI" 0 ' v; exp(-ip x;) exp[-i(k-p) ~ x&]v, exp(ik x, )

g~ (o)
= Q Q Q J di'exp(-ip'x;) exp[-i(k-p) ~ x, ]exp(ik x, )v&Qi

i j l ~p)

1 ~ ~ &0(o)
dI' exp(-i p x, ) exp[-i(k —p) x&] exp(ik x, )v;

~pr

=l g P di'Q~'~ expi(k-p)'(x, -x&)
Pm i j

(n„~(0)np, (0))i =1 (N/Pm)[S(~k-p~)+Nb)", ;], (C1)

in which 1 is the unit tensor, and where we have
made use of Hamilton's equation v& = &H 0~/&p;

(i =1, 2, . . . , N) and the form (A4) of the macro-
canonical distribution 0 ' . Similar ly,

( J)-, Pg;J P)i') ~;)7; P~(&
——1 (N/Pm)[S(P)+Nb, "].

(C2)
')

APPENDIX D

In this Appendix we evaluate first the g and
then the p integrals that appear in (59) and sub-
sequent formulas that lead to (66). Analysis of
the p, integral leads to integrals of the type

I, = dkvZ" se,
w OQ

Note that in applying (C1) and (C2) to Eq. (38),
the terms 1 (N'/pm)5)-, ; and 1 (N'/pm)6; should
not be included since they are exactly compensated
by the -1(N'/Pm)p; and -l (N'/Pm)bg contribu-
tions from the static positive background.

l, (y)= I dwd"(w)Z(M +V),
m OO

d, (y) fdmwd"(M)Z(w+=y),
a d)o
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where Z(u}) is the plasma-dispersion function and
Z is its imaginary part. The evaluation of I,
is immediate, yielding

where 0 is a positive infinitesimal quantity.
With

u} = —,'(z -s), t =-,'(z+s), (D4)
ix—- & ~ (D2) this becomes

Following Coste, "I, and I, can be evaluated by
using the integral representation of S and inter-
changing the order of integration.

00 - t2/2

I,(y) = dkv Vm/2 e i' dt
z t-u}-y to-

"s2/@
I (y}= dze "i' ds

m 00 ~ O0

= (s/& )Z(yi&2 ) .

Similarly,

'
a

"
1 e""

I,(y) =
J du}u} vmi2 e "'i' dt

m 00 m 40

O0 e 00 e-&2/4
=8. dzze "' ds . ——,

' dze ' ' dse' ' '- —,'y dze ' ' ds
m 00 m 04 m OQ OO ~ QQ m 00

I' y (yb&=--,'mj 1+~ZI ~ i i. (D6)

II(p, &u) is now given by

K QJ (d) ( &di
II(p, &o) = —,I, + —I2 I +Is i i } (DV)

wP't ' ap ' apl '&apj ~'

which, by using (D2), (D5), and (D6) becomes

II(p, &o) =, 1+——"Z I, (D6)

the result quoted in (64).
The p integration of the above leads to the

integral

J(a) = Jt du. ..Z(u)

Beus" quotes the integration formula given by
J.W. Turner:

"du e"
dt e' =, [1—e" (1-erfrt)].

0 Q Q +~ 0

(D13)

(D14)

The imaginary part of J'(a),

Substitution of (D13) into (D12) gives the desired
result for the real part of the integral:

a )J'(a)=- —+, e' ' 1 —erf
4a 2~'

} &2 j

du» —Z(u}.
Q +Q dQ

By referring to the differential equation

JN(a) du (»},Z "(u)

~2 2 2 t (D15)

—Z(u)+uZ(u)+ 1 =0,
dQ

(D10)
is integrable in terms of the modified exponential
integral E,(}})

and the alternative integral representation

E'}e}= —e' "f de e' e (Dl 1}

E,(g) = —e
"dt

with the result

(D16)

that the real part of Z(u) satisfies, we transform
(D9) into

z ' 1 fn a' "du e" "
~2e").2~' 2a ~2 R2, u u'+2a'

(D12)

g ~2 y g2 2 g2
Z"(a) =- ——s' "E —-12» ~2 (DiV)

APPENDIX E

In order to facilitate the comparison between
our approximate results for y- 0 and the exact
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results derived from Coste's formalism, "we
sketch in this Appendix the main points leading
to the exact results exhibited in Table I. A de-
tailed derivation will be given elsewhere. We also
point out that, some erroneous statements not-

1

withstanding, "this result is in perfect agreement
with the requirements of the Kramers-Kronig
r elations.

Coste" obtained an exact expression to order
y for & a(k, &u) = n(k, &u) —n, (k, v) from the formal
expansion of the first two equations of the BBGKY
hierarchy. This result, further expanded for
k-0 and v'alid to order k', is given in Eqs. (3)-

(9) of his Paper II. With a little algebra this
result can be rewritten in the notation of (16) and
(59) of this paper with

k ~(d&n(k, &u) =y —~['V„„+'Vq „(u)],
K (d

'Ud, .(&) =Uo(~)+'Us(~),

'UD(&u) = dx x'46
15m

X dp Q„p, Q p p, Ql p
w OO

16 cu' + 00

Us(&d) =
2 dxx x dg 5 (p)[no(p, (d)no(p, (u —p)+ no(p, a)no(p, &g —p, )]-15K (d 1+x (EI)

Approximating" n(p, &u) by n(p, cu)/e(p, 0), the
above expression leads to

'UD(&) = dx—,),H(p, &u),
46 '" x'

w «& +x

+ QQ X2
Us (&u) = — dx, [I —2x'H( p, (u)],

]5m „1+x' "

H(p, ~) = —„—n."(p, ~)n.(p, ~ —V) .
"'"d

p,

(E2)

g: (d/2 &do'

E,(g) = —e
"dt

1

(Es)

Similar evaluation of 'Uz(ur) leads to

'Us(u&) = ——,', Vv —[1—e" (1 —erfg)]

+i —,', vw —[E,(y'g') —e" E,(g')]. (E 4)

The appearance of the y.-dependent imaginary part
is the result of the cutoff of a logarithmically
divergent integral at p,„=xjy. When evaluated
at g =;, (ES) and (E4) lead to the results quoted
in the second column of Table I. The imaginary
part of'0 (~) contains a lny ' which is obviously
dominant as y- 0. When the Kramers-Kronig
formula is applied and the Hilbert transform of
this term is taken, it leads to a negative contribu-
tion in Re&n(k, &u = &u,). From this fact it has
erroneously been argued" that Re& a(k, &u = a&,)

The integral in the expression for 'Uv(&u) has been
evaluated in Appendix D and in (61)-(66), with
the result

'UD(~) = —,', f 1 —2g'[I —v w ge" (1 —erfg)]]

-iP, ov mg[g'e" E, (g—2) —1],

Re'UD z (&u) = — d p
1 '

ImUD s p)
7T ~ P —40

(E5)

must be negative as y- 0. This line of argument
tacitly presupposes that the Kramers-Kronig rela-
tions carry the dominant term in the imaginary
part of b n(k, &u) into a dominant term in the real
part. However, it is well known that there is no
such dominant term in He&n; indeed, all its
contributions are of order y as y- 0. The reso-
lution of this apparent paradox lies in observing
that the cutoff applied in the calculation on the
integral in Im& n is e dependent, which cannot be
ignored; otherwise the applicabil. ity of the
Kramers-Kronig formulas is violated. The
proper procedure is to (i) use the integral repre-
sentation of the divergent quantity, which then
permits the exact evaluation of the Kramers-
Kronig integral. through the interchange of the
order of the two integrations, and (ii) account
for the plus-function character of the singular
denominator 1/&u' originating from the conver-
sion of'V(&u) into &n(e). Done this way, the
counterpart of the term containing y lny ' contribution
in Im» is of order y in Re4n, as it should be. Even
though it is stil. l. negative, it now has to compete
with other order-y terms: one is the counterpart
of the nondominant contribution, proportional to
y, in Im&n; the other is the counterpart of a 5-
function type singular contribution, related to the
1/~' denominator. Both of these contributions
are Positive, neutralizing and overwhelming the
negative piece due to the '*dominant" term: the
result is the net Positive &n(k, ~=&a,) as indi-
cated on Table I. This procedure is now ex-
hibited in some detail bel.ow.

First we consider the Kramers-Kronig relations
satisfied by 'UD(&u) and 'Vs(&u).
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Using the integral representations of 'V~(&u) and
'Us(~) as given by (E2) and interchanging the
order of the x and p, integrations, we realize
that (E5) is satisfied provided H(p, &o) is a plus
function.

,
That this is indeed so follows from

(D8), where the explicit expression for the H(p, &u)

is given: since Z(p, &u) is a plus function, so is
H(p, ~) and thus (E5), is automatically satisfied.
It remains to observe that the x integral in
Im'Us(&u) is logarithmically divergent, while it
is convergent in the expression for ReVE(~):
the convergence factor is'supplied by the p,

integration.
As for the analytic properties of &o.(p, e)
[V t g +&~y„(&u)]/&o', one has to realize that the

correct interpretation of the I/&u' factor is

Thus

(-„) k,
~

„„+Re „„(u))(
(d

(E6)

Im& o.(k, &u) =y —,u&', ,"" + —6"'(~)ImU gy„((d) 7f

x [u„„+Rev,„.(ra)]) . (EV)

Substituting (EV) in the Kramers-Kronig inte-
gral, one has

"'"dp, Im&o(k, p) k', '"dp ImU~y, (p) 1 &' R«dy (P)
m N. -m x' - „7y (p. —&u)V 6dp

0 stat+ 4 =y —, , [V„„+ReVdyll(R)j. (E8)

The difference between this expression and Eq.
(E6) for

Redact(k&o)

is due to the singularity of
Im&N(k, &u) at &v=0.

Finally it is instructive to display the three
contributions to Re&o.(k, a& = &a,) separately:

'U„„=0.133, Re'VD(&u, ) =0.296,

'Us(&u, ) is indeed negative, but certainly not
dominant. It is evident that replacing the full
Re'V(~, ) by Re'Us(~, ) yields, even qualitatively,
completely incorrect results.

Re'Vz(&uo) =-0.181. (E9)
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