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Hydrodynamic theory near the nematic —smectic-A transition
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The hydrodynamic theory of the smectic and the nematic phase is generalized to the vicinity of the
nematic-smectic-A phase transition by including the motion of the three slowly relaxing quantities. The
sound spectrum is recalculated and found to be in agreement with recent experimental data on the dispersion
and damping of first sound. In addition, the theory predicts two interesting effects for the nematic phase: (i)
a smectic layer ordering induced by a stationary shear flow, and (ii) the existence of high-frequency shear
waves.

I. INTRODUCTION

Quite recently, a strong anomaly in the attenua-
tion and velocity of longitudinal sound waves was
observed' near the nematic-smectic-A (N A)-
transition. Part of the data was found to be in
clear contradiction with existing theoretical re-
sults. ".The purpose of this paper is to show

that, with the help of a properly generalized hy-
drodynamic theory analogous to the Landau-
Khalatnikov theory of order-parameter relaxation
in helium, ' ' one can understand the behavior of
sound waves close to T„especially their aniso-
tropy, remarkably well. This is despite the fact
that the simple theory presented here neglects
critical fluctuations. A set of generalized hydro-
dynamic equations is derived, which includes the
relaxations of the magnitude g of the smectic order
parameter and the equation of motion of the director
n. Inthe caseof helium, the motionof onlyone soft
variable, the superfluid density, has tobe consid-
ered; in addition, contrary to the Landau-Khalatnikov
results for helium, the hydrodynamic theory predicts
a nonvanishing contribution from the order-par ame-
ter relaxation even above the Ã-A transition. Final-
ly, far away from T„with only minor modifications,
the proposed equations can be used to describe
noncritical dispersive behavior of hydrodynamic
propagating modes. In the context of liquid cry-
stals, this type of theory was first employed by
De Gennes, ' who arrived at a number of interest-
ing and experimentally verified predictions for
the nematic-isotropic transition.

Due to the intricate interplay between the smec-
tic's translational and orientational orders,
being one- and three-dimensional respectively,
the sta, tic theory of the N-A transition. still suf-
fers from serious difficulties. However, it must
be stressed that most of the results presented
here are not influenced by these difficulties. This
is especially true for the structure of the dynamic

equations and their eigenmodes. Only when deal-
ing with the critical behavior of the elastic coef-
ficients in prQer to exPlicitly evaluate the dynam-
ic results must one be aware of the unresolved
static questions,

I shall proceed as follows. In Sec. II the com-
plete set of the generalized hydrodynamic equa-
tions will be derived systematically and compared
to the equations of Ref. 3. They are then em-
ployed in Sec. III to calculate the dispersion and
damping of longitudinal sound waves both below
and above T, . In addition, two interesting effects
related to the anisotropy of the dispersion and
damping are found: First, analogous to the case
waves" may exist above T„and has the same an-
gular dependence as the hydrodynamic shear
waves in the smectic phase. Second, a smectic
layer ordering is induced by a stationary shear
flow in the nematic phase. At the end of Sec. III,
the noncritical dispersion found experimentally
in the nematic' and smectic-A phases'. and the criti-
cal one expected in the vicinity of the smectic~-
smectic-C transition are discussed. In Sec. IV
the results are summarized.

II. GENERALIZED HYDRODYNAMIC EQUATIONS.

The thermodynamics near the N-A transition
are determined by the conserved quantities (the
densities of mass p, energy e, and momentum

g, respectively), and inaddition by the displace-
ment I of the layers, the director n, and the mag-
nitude P of the smectic order parameter. So the
change in entropy density is given by

T ds = de —ij. dp —v; +; —y; dV; u+h; dn; —gg d$ .

Starting from Eq. (1) and the conservation laws,
one can determine the structure of the hydrodynam-
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u-n v+z =0,

ni+X„~V, VI + Fi

(5)

(6)

and finally the relaxation of the smectic order pa-
rameter

ic equations by a standard procedure" which is
based on the following three points: (i) The energy
current is a redundant quantity, and the energy
conservation must be consistent with and implied
by the form of all the other fluxes; (ii) the entropy.
production is positive definite; and (iii) the var-
iables u and ni are canonically conjugated to

g 'n and the intrinsic angular momentum, "'"r e-
spectively. (There are a number of univalent nota-
tions intheliterature. " Here, thatof Ref. 14is em-
ployed. ) The resulting equations are the continuity
equations for mass and entropy,

p+V (pv) =0, (2)

s+V {sv+fv) =R/T (3)

the momentum conservation,

g g
+ V I p —nI V~ Q~

—XaJ;VIh q + pI IVI p g + VI v, y
= 0,

(4)

the equation of motion for the displacement and
the director,

Equations (2)-(10) represent the complete set of
generalized hydrodynamic equations. However,
they are only useful in conjunction with the con-
stituent relations between the conjugate variables
and the variables. One can calculate them easily
by suitably extending De Gennes's free-energy ex-
pression".

h = -D(5n+ V ~u) + h"' (11}

(12)

(13)

dg = avdp~ + (8$/Bp) dp+ (8$/BViiu) dV ~iu,

dP = (BP/Bp) dp+ C p dv
~~

u p(8 p/8 p)d lI ~,

V p = (BV ()
+ DV ~)u + DV ' n

CV lip (8$/BV il u)V ii Pg

Generally, the variables y, P, and V P also de-
pend on s/p. This has been neglected, because
8(s/p)!Bt =0tothe lowestordersofq, the accuracy
of our calculation in Sec. III. The two elastic coef-
ficients D= (q,g)'/M—r and B= (q,g)'M» vanish above
T, . (qo is 2II over the interlayer distance, and

M~ and M'~ are the two components of the effective-
mass tensor introduced by De Gennes. ") The
molecular field of the director" in the nematic
phase is denoted by h"', the susceptibility y = Bp/
8 p.&

is given by the first coefficient in the free-
energy expansion f=ap2+5ItI4+ ~ ~ ~, and we have

P+P,qV,.v~+X =0. (7)
g= 1/a for T &T„y=-1/2a for T& T, .

Some of the nonlinear terms such as the Erickson
stress tensor have been neglected here. In ac-
cordance with the uniaxiality of both the nematic
and the smectic-A phases, the transport coef-
ficients A.„.„and p,.I have the form

The subscripts ) and & refer to the preferred di-
rection n, and finally' C =Bp~~/Bp and B=BQ„/
ev'

~,
u.

With

5(,=—(8$/Bp)5p+ {8$/BV „u)5V ~, u, 5no—:-V~u,
X;,-„=—'(1 —X)5;,n, ——,

' (1+X)5,"n, ,

p, , = p ((nInj + p~5.. .T
Eqs. (6) and (7) can be rewritten

nI +XIgI VIvt, -hI /yI = —(511 —5no)/I I 1 (15)

D
~ij -Vip') VpVl &

Z = -AEVI/ —fnIVIT

(10)

retain their form as given by the usual hydrody-
namics of the smectic and nematic phases. "'

where 5„.= 5„.-nin, The rate R of entropy. pro-
duction [Eq. (3)] is given by the product of the dis-
sipative fluxes (denoted by superscript D) and the
thermodynamic fore es,

R = f, V, T —IIv,.V, v-, -.z .V,Q. ,. —F,h. +X g~,

where the fluxes fv, IIv, , are obtained by expan-
sion in all the forces V,-T, V, v, , . . . To the low-
est order in the wave vector, q, only

Y; = -'h;/y, and X =rip, g

do not vanish. To the next order,

fI = -II&;V; T —(n;VI pI,D

g+ p, ,V;v,. = -{5$—5$$/7,

where we have defined the relaxation times

r = y/q and I., = y, /D .

(16)

(17)

The director is a hydrodynamic variable above
T„ therefore z, is infinite throughout the nematic
phase (while I. diverges only at the N Atransi--
tion}. The two elastic coefficients B and D have
been found" to vanish with different exponents.
This fascinating result appears to be a manifesta-
tion of the difference between the long-range orien-
tational order and the algebraic decay of the pos-
itional order. 7 { onsequently, it is unlikely that
z and vy would diverge with the same exponent.
However, as will be shown in Sec. III, the diver-
gence of 7 is solely responsible for the sound-
wave anomaly, and thus the data in Ref. 1 do not
yield information on D.
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In Ref. 3 Jahnig has also extended the hydro-
dynamic equations to include order-parameter
relaxation. Unfortunately, despite the correct-
ness of his basic concept, he has neglected both
the static and the dynamic. couplings of g to the
hydrodynamic variables. The static ones are the
thermodynamic cross derivatives sg/sp and sg/
aV

~~
u in Eqs. (12) and (13); the dynamic ones are

represented by the transport coefficients P „and
P in Eqs. (4) and ('I) [cf. Eqs. (2.5a) and (3.2) of
Ref. 3]. Because these are the very terms which
in conjunction with the divergence of z lead to
the observed dispersion and damping, this part
of his results is in disagreement with the. experi-
mental data of Ref. 1. Two other points of cri-
ticism, less important in the context of ultrasonic
measurements, are (i) the conjugate variable of
u is -V, p, , which in the notation of Ref. 3 is given
as V&(v', , +v.'„.). Therefore Eq. (3.1) of Ref. 3 is
correct only far away from T, (and with V T= 0);
in the vicinity of the N Atran-sition the motion of
u is given by Eqs. (5) and (9). (ii) The equation of
motion for n is generally characterized by two
transport coefficients y, and y, (or, as in our no-
tation, y, and X = -y2/y, ). In this respect, Eq.
(5.4d) of Ref. 3 seems to be deficient.

III. APPLICATION TO EXPERIMENTS

BP Pi . 1+%. 'D
+ — cg sin 0— —R, cos'0 v„

sp XP 2 P

BP 1+%, ~ D

PgP' ' R cos 19 sin8 v, = 0,
XP

BP &I+A. D P~~P~—C —
~

—R, — R cos8sin8 v„
~p &, 2 p Q3

BP B P'
+ ——+ —2C+—— ' R cos~L9

8P P XP

(19)

1+& 'D
1 . e

—R sin28 v =0.

Sipce the inverse compressibility aP/sp is by far
the largest quantity' " in Eqs. (19), we need only
solve for the first-order correction to 8P/sp,
yielding the velocities c', = &u', /q' and c', = &u', /q'
of first and second sound, respectively, as

coupled ones for v„and v, (case 1). Only case 1
gives rise to propagating modes. The two coupled
equations are

Employing the hydrodynamic equations (2)-(14),
one can' easily calculate the critical dispersion
and damping of the propagating modes, if atten-
tion is paid to one subtle point: The usual way
of solving the equations to the two lowest orders
of q with ~ -q will only lead to three relaxation
modes and no dispersion at all, because it over-
looks the fact that ~T or ~7, are, close enough to
T„actually large quantities. The more proper
way is to go on treating the m which appear alone
as proportional to q while taking the two relaxa-
tion factors

R =i apr/(1 —i&up) and R, = ivv, /(I —i&u~, )

(18)

as arbitrary parameters of the equations, which
are then solved to the desired order of q. Although
this method does not yield the explicit form of the
eigenmodes, it gives an adequate description of
the dispersive behavior. We shall restrict our
calculation to the lowest order in q, i.e. , we shall
neglect Eqs. (9) and set h" =0 in Eq. (11). With-
out loss of generality, the wave vector can be put
into there plane: q= (q„, O, q,). Taking n, p.&, p,
u, and v as the independent variables [cf. Eqs.
(11)-(14)]and eliminating the first four in favor
of v, we get one equation for v, (case 2) and two

c =c' ——p + cos 8+P, sin 8 —p
R 8$

Bp

R,D
(X + 1)' cos'8 s in'8, (20)

p

c', =c'„—— +P,
~

—P,
~

cos'8sin'8R 8$
aV ju

1 R.D(1+X)'(cos'8 —sin'8)', (21)

where

BP 2 B 4 2 Bc' = —2C cos'g+ —cos g,
' c' =—cos'g sin'g10

gp p
- & 20

p

are the respective zero-frequency velocities. "
As pointed out by Bhattacharya et al. , c„displays
a cusp which, in analogy to helium, "is likely
to be caused by the divergence of the specific heat
in the first term 8P/sp. In addition to this, the
elastic coefficients B (which has been shown" to
vanish with an exponent of approximately —,') and
also the somewhat similar coefficient C will en-
hance the cusp and increase its asymmetry, since
both are identically zero above T, .

Turning now to the dispersion of the sound velo-
city, we note first that the contribution of the di-
rector's motion is negligible: above T„n is a hy-
drodynamic variable and R, vanishes identically;
below T„.both D and 1+A, vanish with T approach-



ing T„making the term preceded by R, much
smaller than the one preceded by R. (The trans-
port coefficient 1+X is zero at T, because A. = -y, /
y„and, as has been shown by Jahnig and Bro-
chard, ' y, and y, diverge in the same way. ) We
can therefore rewrite Eq. (20) as

cj ego= [ &(al'r/(I f(d7')](c~ ego)~

where

(22)

&'„-c,o= ~P~~+ cos 8+Plein 8-p~ /Xp.

g = (qual)~ p . (22)

A similar effect is known above the nematic-iso-
tropic transition. '

Detailed quantitative agreement with every as-
pect of the experiment, especially the frequency
dependence af the damping for ~7.»1, cannot be
expected, because the simple theory presented
here neglects fluctuations which are known to be
important. However, the equations do provide
a convenient framework for discussion of the fata
and give an intuitive understanding of many of the
results. Notably, the angular dependence of the
experimental curves in Fig. 1 of Ref. 1 is in
agreement with Eq. (22): The anisotropy of the
sound velocity very close to T, is given by that of

c„, where the additional angular dependence, that
of hc =c„cyo ls monotonically decreasing:

b.c(0') & b,c(45') & Lc(90'), (24)

lt is evident from Eq. (22) that the dispersion
of sound waves is caused by the static (8$/BP,
Bg/BV„s) and dynamic (pp p ) couplings of g to the
hydrodynamic variables. Due to the density depen-
dence of T„Bg(T—T,)/BP diverges as
-(8$/BT)(BT,/Bp), with the exponent p —1. Note
that the same argument is not valid for 8$/BV

~~ I,
because T, can only depend (through the free ener-
gy) quadratically on V ~~u. A linear dependence
wouM erroneously imply a higher T„at which
the nematic liquid crystal would undergo a transi-
tion to a strained smectic phase. Above T„both
8$/Bp and Bg/BV

~~
u are identic" lly zero and the

transport coefficients p ~~
and p~ make the only

contribution. Though their temperature depen-
dence is completelyunknown, the anisotropic part
ap-=p, —

p~~ can be measured in a simple flow-
alignment experiment: Setting g = 0 in Eq. (16), a
velocity field of the form v = vq(z -x)(i+z) will
lead to some smectic layer ordering, where the
magnitude of the smectic order parameter is given

(dT »1»qg or cy.'T »q »$ ~ (26)

This implies that c& should not be much smaller
than c,„which, if possible, will result in an en-
hanced anisotropy of the dispersion of longitudinal
sound wave above T„and also facilitate the flow-
alignment experiment.

Equations (2)-(l) describe the dynamics of any
system in which one translational and two rota-
tional symmetries are spontaneously broken, and
in addition. a unit vector and a scalar relax slow-
ly. When the appropriate elastic coefficients are
set equal to zero, they become valid for simpler
systems. I shall conclude this section with a few
remarks about similar situations away from the
N-A transition.

Nematic liquid crystals often display noncritical
and anisotropic dispersion. With the assumptions

8$ 8$ ( 8$&
PB ~

j. PBP

and monotonically increasing otherwise. And in-
deed the data points closest to T, show how the
more compbcated dependence c,(0') & c,(90$
& c,(45') further away from T, changes to the mon-
otonicity of Eq. (24). In the same figure, the data
for T &T, suggest ~ = 0 in TBBA, the liquid crys-
tal used in the experiment. However, since
this is not required by the symmetry, we may
expect other materials to display a greater aniso-
tropy above T„ implying a larger value of sP.

The behavior of second sound in the smectic
phase is described by Eq. (21). In contrast to the
helium case, where c, g/r -, (g is the temperature-
dependent correlation length), Brochard" has
shown that experimental data require c,» g/~ in
smectics. This of course means that the two in-
equalities &usa 1 and qg «1 can be satisfied simul-
taneously, and gives rise to the possibility, not
encountered in helium, of detecting the critical
dispersions of second sound.

Equation (21) is also valid above T,. With f3 and

8, identically zero, we have

&u'=-R(b, P'/px) cos'8sin28 q
—= -Bc~2 q .

To the lowest order in q (i.e., &o
-q'), it gives

the usual relaxation mode ~ = -i/v. For the more
interesting high-frequency range R =-1, however,
Eq. (25) yields a pair of propagating modes, which
are easily recognized as shear waves and indeed
have the same angular dependence as the hydro-
dynamic ones in the smectic phase. In close
analogy to this, a pair of high-frequency shear
waves has been predicted' for the superfluidA.
phase of 'He, though only below T,. One can hope
to detect these unusual shear waves only if
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first that this is due to the internal molecular re-
laxations, characterized by a simple time, constant
7, and second that the isotopic elastic tensor be-
comes uniaxiaL in the high-frequency regime &7
»1, Zahnig' was able to establish a, relation be-
tween the anisotropic parts of the damping and of
the velocity. He has not shown how uniaxiality can
be realized. It is easy to see that by setting h
—= h"' and p—= 0 and redefining P as the slowly re-
laxing molecular quantity, Eqs. (2)—(7) will quite
naturally give rise to the uniaxial (smecticlike)
stress tensor assumed by Jahnig. And we may
conclude that there will be a pair of high-frequen-
cy shear waves in the nematic phase with the velo-
city c~ as given by Eq. (25).

The situation is quite similar in the smectic-A.
phase. And the reported' detection of dispersion
indicates the existence of the high-frequency shear
wave

&2 = [Q/p + (sp/'ev ~~M + il „—~~)'] cos20 si nOq',

which may be much faster than the hydrodynamic one,
e'=c,'Oq'. This will explain the fact that second
sound is more readily observableby Brillouin scat-
tering" than by ultrasonic methods. ' Approach-
ing the smectic-A-smectic-C transition from
above, the director n and tJr (which now stands
for the smectic-C order parameter) are again the
soft quantities, and the hydrodynamic equations
(2)-(7) and the spectrum equations (20) and (21)

remain valid. '4 The only differences are, of
course, that 1+1 is no longer necessarily a small
quantity, and that both relaxation factors R and

8, need to be considered. The analogy, however,
does not extend below T„where the symmetry is
much more complicated.

IV. SUMMARY

The hydrodynamic equations were generalized
to include the slow relaxation of the director
n and the magnitude g of the smectic order pa-
rameter. Their effect on sound dispersion and
damping, especially on the angular dependence,
has been calculated. The contribution of the mo-
tion of n turns out to be negligible in comparison
with that of P. The disagreement between experi-
ment and previous theories was traced to the
omission of both the static and the dynamic coup-
lings of P to the hydrodynamic variables. I have
found that a shear flow will induce a smectic layer
ordering in the nematic phase. If this effect is
large enough, longitudinal sound waves become
anisotropic and a pair of high-frequency shear
waves will propagate above T, . Analogies are
drawn to the smectic-A-C transition and the non-
critical dispersion of smectic and nematic liquid
crystals.
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