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Theory of resonance scattering and absorption of strong coherent radiation by thermally
relaxing multilevel atomic systems
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The resonant response of a multilevel atomic system to strong coherent radiation is analyzed using an
extension of the methods of time-independent scattering theory, adapted to the density-matrix formalism in
order to include thermal bath effects. General steady-state expressions are derived for self-attenuation and
resonance scattering rates in strong saturating fields, as functions of the coupling strengths, relaxation
parameters, and frequency detunings. Formal expressions are given for radiative-damping and collision-
broadening relaxation parameters, relating the latter to scattering amplitudes. Modifications of collision-
broadening parameters by the presence of very strong fields are discussed. The Bloch equations are derived

by transformation to the time domain, under specified conditions.

r. im RODUCTroN

The response of simple atomic (or molecular)
systems of two or more energy levels in resonant
interaction with strong coherent monochromatic
radiation fields has been studied extensively in re-
cent years, experimentally as weH as theoretical-
ly. These studies include (i) Steady-state and
time-resolved spectroscopy of two- and three-
level systems, including attenuation (absorption)
spectra, and resonance Raman (resonance fluores-
cence), with homogeneous coupling to a thermal
bath (radiative, collisional, etc.),' "(ii) satura-
tion absorption in Doppler-broadened line spectra
(Lamb-dip spectroscopy), ""(iii) transient co-
herent effects, """such as optical nutation, pho-
ton echo, and double resonance, and (iv) multi-
photon dissociation of molecules by coherent ex-
citation where, at least part of the process is
described as a multilevel resonance absorp-
tion. ""'

In all these problems, the atom (or molecule)
is approximated by a system of sharp resonance
transitions between discrete levels, homogen-
eously or inhomogeneously broadened, strongly
excited by the incident radiation. The customary
analysis of such systems is carried out by finding
time-dependent (or steady-state) solutions to the
equations of motion of the density matrix for the
single-molecule multilevel degrees of freedom.
In homogeneously broadened systems, these equa-
tions are know'n as the Bloch equations. "' If
velocity effects, such as Doppler shifts, are in-
troduced, these are replaced by a generalized
linear Boltzmann equation (with internal states)

Practically all recent work is concerned with
application of these equations. An analytic solu-
tion of the Bloch equations has been obtained for
certain simple systems. The two-level system

has been solved for one strong-mode attenua-
tion' ' ' for weak-probe attenuation in the presence
of a strong mode"" and for resonance fluores-
cence, """"""in the rotating wave approxima-
tion (RWA). Corrections owing to deviations from
the RWA have been studied. ' Attempts have been
made to solve the two-level Bloch equations for
certain temporal forms of variation. "" Such
solutions require smooth variation of the light-in-
tensity profile with the time in order to conform
with the RWA. Analytic solutions for the three-
level system were available only with certain lim-
itations on the parameters. "'" Numerical solu-
tions are available, too. ' Recently, algebraic
methods were introduced as a means of solution
of "ladder"-type N-level- excitations in the R%'A."
The three-level two-mode problem has been fully
solved (with arbitrary T, and T, relaxations,
coupling strengths, and frequency detunings).

There are, however, certain fundamental prob-
lems concerning the derivation, validity limits,
and possible extensions of the dynamic equations
which require more attention:

(a) Are the Bloch equations, with relaxation pa-
rameters determined by the equilibrium proper-
ties, valid in the presence of very strong saturat-
ing fields? If not, what are the necessary modifi-
cations? (b} Can weak-field (linear response) the-
ories for the relaxation parameters (such as col-
lision broadening) be extended to multiphoton pro-
cesses? (c}Is it possible to incorporate syste-
matically in the theory such modifications as sev-
eral-photon nonresonant simultaneous transitions
(such as two-photon simultaneous absorption),
coupling by relaxation to radiatively inactive lev-
els, etc. ? (d) Can one develop direct (time-inde-
pendent) methods for obtaining steady-state solu-
tions? (e) How should one define attenuation rates
for a particular field mode when several strong
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coherent modes are present? Can this problem
be posed as a scattering problem?

These and related problems are studied here.
The method of solution is basically an extension
of the methods of time-independent scattering the-
ory to the density matrix formalism. The follow-
ing main steps are: (i) Description of attenuation
and scattering as photon counting rates, (ii) dis-
placement of the external field from the boundary
conditions tp the time evolution in the form. of a
time-dependent classical field, (iii) introduction
of tetradic notation to the time evolution of the
density matrix, (iv) removal of the time depen-
dence of the interaction by the Floquet method,
(v) introduction of the proper self energy by av-
eraging over the thermal bath, (vi) distinction be-
tween radiative couplings of free molecules and
couplings coincident with self-energy insertions,
the latter leading to the modification of the equil-
ibrium relaxation rates by the external field (e.g. ,
field-enhanced collisions), (vii) reduction of the
basis of the equations to a "resonance set" con-
sisting of all levels, or eoherences of level pairs,
resonantly coupled by the radiation, introducing
various corrections to the RWA (simultaneous
several-photon transitions, Bloch-Siegert shifts,
relaxation processes involving levels not actively
coupled to the radiation, etc.} and (viii} finally,
the relation to the equations of motion is discussed.

This work is mostly concerned with homogeneous
broadening by radiative or collisional thermal
baths. Velocity effects are briefly discussed. The
present work is limited to single-molecule excita-
tions, disregarding cooperative phenomena.

II. THE INITIAL STATE

Consider the scattering of a monochromatic co-
herent radiation (laser) beam L into a scattering
mode S by resonance interaction with a closed
microscopic atomic system A, coupled to a large
thermal bath B. Here L generally means mono-
chromatic coherent radiation, with several dis-
tinct modes, each characterized by a macroscop-
ically large density of photons. S stands for the
scattered mode (or modes) specified by an ideally
resolving detector that measures radiation fluxes
(or photon counts). A is a microscopic (one-body)
scatterer (e.g. , an atom, a molecule, a disordered
impurity in a crystal, or an intramolecular sys-
tem in a large molecule) characterized by an in-
ternal set of discrete levels. ' The interaction of
various seatterers with the radiation is assumed
to be uncorrelated (i.e. , we disregard cooperative
excitation phenomena). Incorporated in B are all
other degrees of freedom, not directly involved
in the resonance interaction with L (or S), acting

on A, as a thermal bath. These bath modes can be
molecular (e.g. , binary collisions in a gas, pho-
nons and local modes in a crystal, intersystem .

crossing in a large molecule) or radiative —in-
cluding both virtual transitions (radiative damping}
and actual fluorescence by cascading processes.

We shall use throughout the simplifying assump-
tion that A and B, in their equilibrium state, are
statistically uncorrelated. This assumption im-
plies that their equilibrium density matrix is
separable:

PAB PA PB

where

(Ia)

PA BPAB (Ib)

depends, at most, on average bath properties and

pB~ is completely independent of A. , This assump-
tion is frequently applicable in dilute or weakly
coupled systems (e.g. , in dilute gases). Correc-
tions due to initial correlations can be formally
introduced by the methods of temperature Green
functions, provided p~ is a canonical distribu-
tion. "'" This would, however, exclude systems
prepared in stationary but not canonical-equilib-
rium states.

It is further assumed that pA~ can be written in
a diagonal form:

p~= p&~p&~p~&p&'

where

p'OQ p Ogp OQ

(4a)

(4b)

by further distinction between a molecular bath M
(e.g. , collisions) and a radiative bath E (fluores-
cence).

Quite generally, the complete set of eigenstates
of the Hamiltonian of A, , H„, is used in Eq. (2).

The equilibrium state of the various field modes
(in the absence of the external beam) is likewise
assumed to be separable. More particularly, we
shall concern ourselves here with opting/ photons,
assuming

ecO» kBT,

where co is the photon frequency and T is the bath
temperature. (Modifications due to far-infrared
"thermal" photons can be, incorporated in the
framework of the present theory. )

The equilibrium state of the field in the optical
limit (3) is the photon vacuum

~

0) (0 ~.

To sum up, the state of the complete system be-
fore the external sources are "switched on" can
be written approximately as
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The initial conditions following the switching
on of the external beam can be formally expressed
by the "in" asymptote (extending the jargon of
scattering theory to the density-matrix formal-
ism):

pin petjpeqpeqpext (5)
I

where p~"' depends only on externally controlled
parameters. In dealing with a coherent single-
mode optical radiation, p~"' is simply the pure
Glauber state"

mode of the beam is given by

A, =-C, (Sc{L}).
Quantizing the field in a macroscopically large
volume, where the density of scattering modes is
infinitely large and coincidence of two photons in
the same mode is vanishingly small, one can de-
fine a scattering rate into an infinitesimal. solid
angle dQ by

= C,(1)fe(n),

Extension to several modes is straightforward.
Equation (5) is related to the vacuum state by a
unitary displacement operator D(n~):

pi™= D(o'd
I
0) &0 ID'(o'.» (7)

where

D(n~) = exp(n~a~l —n~a~),

a~~ and a~ being, respectively, the photon creation
and annihilation operators for the L mode. This
unitary operator is used in the transformation of
the external-field effects from the initial. condi-
tions (7) to the time-evolution operator, where
they manifest themselves by the addition of a
classical-field time-dependent interaction to the
Hamiltonian. ' "

where fz(Q) is the density of modes per solid an-
gle, and Nz in (9) is replaced by the projection
operator Pe(1) for the one-photon occupation-num-
ber state in the S mode, P~(1)= Ilz) &1&I; i.e. ,

C~(l) = lim —tr{P~(l)U(t, t,)p "U ~(t, t,)}(SE{I}).dt

The trace in (9) or (14) is over the complete Hil-
bert space. Owing to the unitarity of U,

(15)

at all times. Therefore (9), or (14), is unaltered
if a c number is added to Nz, or Pz(l).

The total Hamiltonian II in the time-evolution
operator

III. PHOTON-COUNTING RATES
U(t, t,) = exp[- tH(t —t,)in. ) (16)

In dealing with multiphoton processes at high in-
tensities, it is useless to talk about cross sec-
tions. However, one can define attenuation rates
of one of the beam modes, or scattering rates into
an infinitesimal. solid angle of an ideal detector in
a scattering (or fluorescence) experiment. In both
cases, it is useful to define photon-counting vates
as the asymptotic limit

C ~
= lim —lim tr {N&U (t, t,)p"U ~(t, t,)},S (9)

SEE{I} (scattering),

S c{L}(attenuation) .
(1la)

(lib)

In the latter case, the attenuation rate of the S

where p" is defined by (5) as the "in" asymptote,
U(t, t,) is the time evolution operator of the whole
system (A+ 8+ S+ L) in the Schrbdinger picture,
generated by the (time-independent second-quan-
tized) total Hamiltonian H, and

&s= as'as (10)

is the number operator of the S mode. We distin-
guish between a scattering experiment and an at-
tenuati on experiment:

includes all interactions with the radiation modes,
in second-quantized form, as well as other inter-
actions (collisions, etc. ). Note, however, that on
expanding (9), or (14), in power series of the in-
teractions, the last one to appear in the left of U

(or the right of U~) must be Vz, the interaction
with the $ mode. All other interactions commute
with N~ (or Pe).

The displacement' operators in (7) can be dis-
placed from their position as acting on the vacuum
state pP to a position in which they act on N~ (or
Pz), by using the property

a',(t) (Dn, ) =D(o.,)[a',(t)+ n', (t)] .

Here

(17)

a'(t) = a'e""~' ak(t) a+evitdI t (18)

where a'= a, a = a~, n'= n, n = n*, and cd~ is the
frequency of the L mode. Therefore, transforming
to the interaction picture with respect to H~ (the
free L-mode Hamiltonian), we can shift D(o.~)
from right to left, adding the c number o.~(t) each
time a~ appears in the interaction, until we reach
N~ on the right. Similarly, D (az) is shifted from
left to right until we reach N~ on the left (using the
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invariance of the trace under cyclic permutations).
Transforming back to the Schrodinger picture, the
result is

Cs—- lim —tr{D~(n~)NsD(n~) X(t, t,)p~x~(t, t,}j,d
dt

(19)

where p~ replaces p", and X'(t, to) is the time-
evolution operator obeying the Schrodinger equa-
tion

(&s)NsD(as} = asas+
i
o's

I

'+ (o'sas+ nsas)

(S~{Ij). (28)

The first term represents forward scattering of. a
second-quantized field in the single S mode, and
vanishes as A '.

i ns i' is a c number, and hence
does not contribute to the trace. We are thus left
with

A = -lim —tr{(usas+ nsas)dt

d—„X(t,t,) = (i/h-) [H+ V"(t —t,) ]X(t, t,), (20)
xx(t, t,)p"x'(t, t,)] (sc fr,j}.

with a classical-field time-dependent interaction,

V (t)=(a, (t)iV, in, (t)). (21}

The interaction with the I mode, in the electric-
dipole approximation, is

Vcl(t) — p e Q gk(t)sk'lid Rg = Q Vc)k

(22)

Here p,„and R„are, respecti. vely, the dipole mo-
ment and the center-of-mass position of A, a~ is
the polarization of the L mode, and

&~(t) =+i(h(u/2A')"'n~(t)

C s(1)= lim —tr{Ps(1)X(t,t,)p~x ~(t, t,)] (SK{Lj).d

(24)
In attenuatgon measurements

are the electric field expectation values in the
familiar "box normalization" in a cube of length A.
In an ideal setup, where the field is evenly dis-
tributed over a macroscopically large volume,
the photon flux c

i ctz
i

'A ' is independent of A,
Hence, 8~, too, is independent of A. Notice,
however, that interactions with second-quan-
tized fields, such as Vs(S&L}, are inversely
proportional to A' t'. As the density of modes f s
in (13) is proportional to A', Cs (SK6}will ac-
commodate V~ just once in X and in X~. C~ does
accommodate, however, the emission to all field
modes other than S (the E modes) an arbitrary
number of times (fluorescence cascades), allowing
at most one photon per mode, since the summation
over F cancels A '. Also, note that the definition
of photon-counting rates can be extended to in-
corporate coincidence rates of two Chstipgct pho-
tons.

Consider, again, Eq. (19). In scattering ex-
periments Ns [or Ps(1)] commutes with D(a) and
one simply gets

The appearance of o.~a~ requires that the classi-
cal-field interaction V&s'(t} in a power-series ex-
pansion of X(t, t,) be replaced just once by a sec-
ond-quantized V~, which is proportional to a~.
Its magnitude is compensated by o, ~s (a,ll higher
powers of Vs vanishing as inverse powers of A).
Similarly, o.~a~~ requires that V ~ be included just
once in X~(t, t,). Exactly the same result is
reached if one replaces a~a~+ n8a~~ by the S-mode
vacuum projection operator Ps(0) =

i Os) (Os i, while
replacing the solitary a~& by u~z (and as by ns), re-
taining, however, the order: V~' is the last inter-
action on the left of X (or Vs" the last one on the
right of X~). Hence

A =-lim —tr{P (0)[X' '(t, t,)p"X~(t, t,)

+X(t, t,)p"X' "(t, t,)]j
(Sc {I,j) . (26b)

With X' ' defined by the restrictions above, it is
related to X by

t
x'-'(t, t, ) = -(iim) at'ft(t, t') v -(t')x(t', t,),

tp

where U, is the interaction-free time-evolution
operator. Taking the time derivative in (26b) one

gets, after some manipulations,

As= (2/5) lim {ImSs(t)ps*'(ks, t)j (S & {Lj),

(26c)

Ps"'(ks, t)

= tr{es p,„e'"s'"&Ps(0)x(t, to)p~x ~(t, to)j (28)

is the polarization of 2 by the externalfield, in the
dipole approximation. Equation (28) is a vacuum
expectation value in the S mode (but includes all
E-mode cascades). It incorporates the external
field modes, as classical fields, to all powers.
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IV. TIME-INDEPENDENT THEORY

A time-independent formalism can be introduced
to obtain the asymptotic time limits in (24) or (26).
This formalism is similar to the one used in ordi-
nary scattering theory, "with two exceptions: (a)
We deal directly with the time evolution of the den-
sity matrix (and not with the Schrbdinger ampli-
tudes), as a most appropriate way of introducing
thermal bath effects. (b) We remove the explicit
time dependence in the classical-field interac-
tions.

The first goal is secured by using tetradic (Liou-
ville-space) notation, " ' in order to convert the
binary form &at into a single perturbation ser-
ies. Define the tetradic operator X by

C,(1)= lim —,(&I,(1)
~

x(t, t,)
~
p )), (36)

p( t) —g p( )c( t)e in ~ cot

x (n= (n~); n~= 0, +1,+2, . . .), (37)

where X is binary in p~. Note the disparity be-
tween the bra, vectors (projection operators) and
the ket vectors (density matrices) in (35) and (36).

Our second goal, that of removing the explicit
time dependence, is achieved by the Floquet meth-
od,"adapted to the density-matrix formalism. '
The method is based on the expansion of the solu-
tion in harmonics of the fundamental frequencies
of the perturbation:

(XpX )cb
—g X c bdpcd g Xcblcdpcc (29) where

CC CC

Similarly, define the tetradic analog of H, namely,
the Liouvillian

8' (d= tl~4)~. (38)

The tetradic analog of (20) is

d—x(t, t,) = -t[x+v,(t —t,)]x(t, t,),

(30)

(31)

The various components p'"' are governed by an
infinite set of equations of motion with time-inde-
pendent coefficients, in which Vz" raises (lowers)
the harmonics numbers Pz~ by unity. The matrix
elements p,", can be treated as vector components
in an extended Hilbert space,

p,",= ((ab; n
~
p)) .

p.,-=«iif
~
p)&, (32)

and tetradic operators as matrices,

where 'V~=lz '(V~I* —I V~), using the condensed
notation of (30). The double perturbation expan-
sion in powers of V~ is then replaced by a single
perturbation series in powers of 'U~, although at
the price of doubling the number of steps (it takes
twice as many perturbation steps to go from pp to
bb, as from g to b). The tetradic operators are
defined on a Hilbert space of dyadics (Liouville
space). Using the double-bracket notation, "or-
dinary dynamical variables or density matrices
can be described as vectors,

This double space is a direct product of the dyadic
Liouville space, and the Floquet space of harmon-
ics numbers ~n&&, which is the classical analog of
the occupation-number representation. In Floquet
space, K is diagonal, while 'U~' turns into a time-
independent nondiagonal operator by substituting

as (time-independent) raising and lowering opera-
tors. The time-dependent exponential harmonic
factors are taken care of by subtracting from K
the Floquet-space diagonal operator of frequency
harmonics 0, where

0 ~n))= n' u& ~n)). (41)

«&
~

&&& = tr(&'&]. (34)

The various counting rates can now be written as
tetradic matrix elements. Thus, e.g. , (26b) at-
tains the form

A. ~
= —lim —((P~(0) ~X' '(t, t,)

~
p~&&,

d
(35)

where in K' ', 'Uz'" is the last interaction on the
left. Similarly, (24) is rewritten

where the metric of this space is specified by de-
fining the scalar product

The double-space time-evolution operator is then

x(t, t,) -'JJ(t, t,) = exp[—i2(t —t,)], (42)

where

-~- ~+, (43)

is time independent.
We are now in a position to take ihe time limits

tp - -, t-~. First, as only steady -state solu-
tions contribute in this limit, we are interested in
the "vacuum expectation" values in Floquet space
((O~g ~0&&. Second, we can use the identity""
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lim —P(t- t,) = -iv'(+f0),d
(44)

where t'(z) is the double-space analog of the scat-
tering T matrix, obeying the Lippmann-Schwinger
equation,

e(z) = V+V(z —Z, ) 'e(z), (45)

where Z, = 2-'U. Here z is a complex number,
and its limit on reaching the origin from above
the real axis is taken in (44). All photon-counting
rates can be expressed as double-space matrix
elements of V'. Thus, e.g. ,

C (1)= —i«P (1}i(}1&(+to)Ip i0)& (46)

Closely associated with W is the Green's operator
9, defined by

9(z) =(z -8) ',
in terms of which

v'(z) = v+ e9(z)u .

(47)

(48}

Its Fourier transform gives the time-evolution op-
erator,

g(t)=&2mi) ' e '"'9(zat0)dz (t 0).
~OO

(49)

Another closely associated operator is the double-
space analog of the Mufller wave operator,

59(z) = 1+ 9(z)u, (50)

in terms of which steady-state solutions of the
density matrix can be expressed as

p"= «o
~
Ii(+ o)

~
o&&p (51)

In a scattering problem involving free molecules
(with no thermal bath) and where all fields are in

occupation-number states, (46) simply reduces
to the Golden Rule, expressed in terms of the or-
dinary (dyadic) T matrix. The tetradic matrices
q and 5R can be used to express scattering rates
and steady-state populations in A, averaged over
the thermal bath, in the presence of strong co-
herent radiation.

v'= a (v", + u, )a',
'U' = '0 —'U~= a'Vz(P+ P'0g+ g'Oa'+ QQQ,

(53)

as the "relevant" and "irrelevant" parts of the
interaction, respectively. In calculating a matrix
element of g' in the 6' subspace, we can use double-
perturbation expansions in terms of g' and 9", of
the kind used in the distorted-wave method. Col-
lecting first terms involving 'Q" into proper self-
energy insertions, defined by

z(z) = au, a'+ a uC(z —&RAN)-'gva' -=a o(z)a,
(54)

we finally get

a &(z)a = [oil" (z) r'(z)+ Z(z)]5lt&,'&(z).

Here

ct'r(z) ~r+gr9r(z)gr

where

(55)

(56)

contribute to virtual processes, cascading, etc. ,
which are not directly involved in the interaction
of the free atomic system A with the relevant fields
(L or S}. Furthermore, the two types of interac-
tion may coexist; A can interact with I. while it is
dynamically correlated to the. bath. %'e shall use
below a scheme in which only interactions of the
relevant modes with the bare uncorrelated atomic
system are incorporated in the relevant interac-
tion. The & matrix is then explicitly expanded in

power series of the relevant interaction. All other
interactions (pure or mixed) are introduced as
self-energy insertions (relaxation effects).

The distinction between "free" states of the rel-
evant degrees of freedom and states in which they
are dynamically correlated to the bath can be
formally achieved by using double-space projec-
tion operators of the kind introduced by Zwan-
zig. '"" Suppose we divide the complete double
space into two parts by the complementary pro-
jection operators 6 and Q = 1 - . A proper way to
choose 6 will be discussed later below. Define

V. THERMALLY RELAXING SYSTEMS
9'(z) = [z —2; —Z(z) —V"]-', (5V)

The definition of & by (48) is not unique. Any
division of Z into $0 and U will do, provided only
the initial state (density operator) and final state
(projection operator) are stationary states of 2,:

2
~

p'; 0))= 2
~
P; 0)& = 0 . (52)

We may include in '0 all interactions of 4 with the
rest of the system. Some of them are "relevant"
to the resonance scattering process, such as ~&~

or ~', and others are "irrelevant", such as the
interactions with the bath (gz= V~+g„). The latter

K'(', )(z) = 1+ [z —2; —Z(z)] 'Z(z),

sir, I'&(z) = 1+ Z(z)[z —S;—Z(z)]-',
(58)

that precede and follow &', respectively, are a
kind of Mufller operators that describe the rear-
rangement of the initial and final states by the ir-
relevant interactions. The extra Z(z) in (55) al-

and 2,= (PS,(P. The operator g' is defined explicit-
ly in terms of the relevant interaction U', with
bath effects introduced through the contribution of
Z(z) to the propagator 9'(z). The operators



2062 ABRAHAM BEN-RE U VKN AND YIT ZHAK RABIN 19

Z ''&(z) = lim, Z(z) . (60)

By matter of defining the equilibrium state,

(z) l p; 0))= 0 . (61)

It seems as if Z(z) would not obey this rule owing

to the inclusion of the external field. Recall, how-

ever, that p~ was separated into an uncorrelated
product by Eq. (1) as a convenient approximation.
The true equilibrium state is a stationary state of
the jul/ Liouvillian 2 -c~' in the absence of the ex-
ternal fields, including U~. In an expansion of
the time evolution in powers of all interactions,
p~ remains unaffected and hence the system stays
confined to the (p subspace, until the first applica-
tion of ~'. But as ~' enters Z only through /vs,
it cannot modify the equilibrium state. Hence

Z(z)lP"; o)&= o, III", (z)lp" o))= lP
' o)),

irrespective of the presence of the external fields.
The scattering problem is then completely speci-
fied by substituting I' for l in (46), the new ex-
pression beginning with 'U~' on the right and ending
with ~. Similarly W" ' substitutes &' ' in a sim-
ilar expression for the attenuation rate, with g" '

ending with 'U" on the left.
A projection operator in double space that meets

both requirements made above is the Zwanzig pro-
jection operator" ""

(63)

where I~ is the unit operator in the bath degrees
of freedom. Given a tetradic operator 8, 6'"' av-
erages it out over the bath:

6'"'8p"= tr, (@p~)p" -=&~&,p",
where the trace is taken over all bath degrees of
freedom, leaving (8&a defined on the relevant de-

lows for transitions from the initial to the final
state by irrelevant interactions solely.

We are now in a position to define the projection
operator. First of all, we should require that the
initial state

l
p~; 0)) and the final state

l
P~; 0)) lie

completely in the subspace spanned by O'. As ~
is not included in Z(z), it immediately follows that

((P; 0
l Z(z) = 0, ((P; 0

l
OR", &(z) = ((P; 0 l, (59)

allowing us to omit 3R~&'& and the intermediate Z(z)
from (55}. Next, we require that 6' be defined so
that g~' cannot induce correlations with the bath
if they are not already present. This means that
'U~' does not contribute to 6g and {P, but may
contribute to g'0$. (The corresponding contribu-
tion of Zz is vanishingly small. ) The equilibrium
proper self-energy is the limit of Z(z) in the ab-
sence of 'U~',

= z Qpp&& Qp p

&&) ~ t eq

F

(2) ~i ~ t t eq
Q~, Q~P&& Qpg&;, ~

F F'WF

describing states of one-photon cascades, etc. ,
coexisting with the rest of the system in thermal
equilibrium. The extended definition of p would
be

As the coincidence of two photons in the same I'
mode is vanishingly small, in the limit of large
volume, each time Z(z) reappears in the calcula-
tion it will be completely ignorant of the number
of cascade photons already present. Using (67) for
6' in radiative damping we therefore get

Z(z) = Z"'(z)+ Z"'(z)+ ~ " (68)

Here, in terms of explicit matrix elements in E
space of the operator a introduced in (54},

z&'&(z)=«o,o l~(z)lo o,&& (69)

incorporates virtual processes (including radiative
damping),

Z"'(z) = P ((Izlzl o(z)
l
ozoz&) (70)

represents a one-photon cascade, etc. Note that
Z(z) incorporates all intramolecular transitions
induced by the bath (elastic as well as inelastic),

grees of freedom (A+ L+ S}. Double-space vectors
in the subspace projected by (P"' can be labeled

ab;nznz', n)), where lab)) represents the operator
a) (b l (in the space of eigenstates of H„), and

nznz)& represents in&) (nz)l in the space of occu-
pation-number states of S. These are eigenvectors
of 20:

ab;nsns'n»

= [e,&, +(nz —n'z)ez -n' v] lab;nznz', n)),

(65)

where 5+,~ is the energy difference between a and
L

The proper self-energy Z(z} defined in terms of
0 "' incorporates all relaxation phenomena as vir-
tual radiative processes (including radiative damp-.

ing, collision broadening, etc.). It does not in-
corporate fluorescence cascades" as true (inter-
mediate and final) states. In order to incorporate
cascading in the definition of Z(z), let us define
the sequence of operators
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since it is defined on the complete Hilbert space
of A.

Having thus fully specified the projection op-
erator, we have reduced the probl. em to the rele-
vant subspace of Eq. (65). Using g' and 9', de-
fined on this basis, we can write down the expres-
sions for scattering and attenuation: So, for one-

photon scattering,

C (1)= —i g «bb; 1 1;0
~

q'(+ i0)
~
aa; 0sO s, 0))P

(SefI,j), (V1)
where g' is quadratic in ~ ~, but to arbitrary pow-
er in ~~'. Similarly,

1

As=-~21m+ P" '*Q [&&ab;le~9'(+io) ~cd;1z))P"~'-&&ab;1s~9'(+io) ~dc;-1~&)P"~'*](p~-p~)
glacd L

(~~ Q&), (V2)

where the sum over L, is carried over all external
field modes, and

p"~'= (2!f-f)&c p,„&~e+z.'"~ ~d)$~ (VS)

is the coupling coefficient, the absolute value of
which is the Rabi nutation frequency of the transi-
tion d- c. The interaction V' in (V2) contains only
the classical-field interaction 'U~'.

The first equality expresses Hermitian conjuga-
tion. The latter is called Liouvill. e conjuga-
tion' ~"; it is closely associated with the micro-
scopic reversibility of the time evolution under
time reversal. Considering the proper self-en-
ergy as an operator defined on the reduced basis
of Eq. (65), one gets as a result of Liouville con-
jugation

«ab;nsns , n~Z(z) ~cd';nsns;n))

= —«ba;n', ns; -n~&(-z*) ~dc;nsns; -n))*.

VI. THE PROPER SELF-ENERGY

Given a complete basis of vectors
~
np;n)& in

double space, Liouvillian operators generally obey
the symmetry rules

of'O~' in gag, in addition to'Us. Let 6 be intei'-
preted as representing states of the "bare" rele-
vant system (A+ L+ S), uncorr elated with the bath
(the latter being in a state. of thermal equilibrium),
and gg~o' be interpreted as inducing such dynam-
ic correlations as virtual excitations of the bath.
g~ is a measure of the effect of such virtual ex-
citations in equilibrium. The occurrence of 'Uc~

with the bath excitations in gg modifies these
virtual excitation rates.

In order to understand. under what conditions
such modifications become necessary, one should
study first the meaning of the various ti.me scales
associated with Z(z).

The magnitude of elements of I'(io) is inter-
preted as an inverse relgxatiog time. Following
the terminology of B1.och and followers, " ' one
usually associates a T, relaxation time with ele-
ments of I' connecting level "populations",

r, -
~&&aa(1 bb&&j-',

and -a T, relaxation time with. elements connecting
two-level "coherences",

T,-
~

&&ab )
I'

( cd))
(

' (a & b, c e d) . (V8)

The z dependence of I'(z) serves to introduce
another time parameter, v', called the e0r~elatjon
(or memory) time, as the characteristic decay
time of the memory kernel,

Equation (V5) allows for the division of E(z) into
an antisymmeiric part (6) and a symmetric part
(I') under Liouville conjugation,

e

C(f) = (2vi)-' 1(z+ iO)e-*"'dz (f&0),

e.g. , by defining

(V9)

Z(z)=~(z) -il'(z). (V6)

Whil. e 6 is interpreted as a frequency-shift ma-
trix, acting as a perturbation of R0, l is inter-
preted as a relaxation matrix, having the oppo-
site character under time reversal.

As defined in (54), the proper self-energy de-
pends on the external fields through the inclusion

4tdt .
0 ~ 0

(8o)

To be more specific, (80) is a matrix relation.
However, we shall refer below to r as an order-
of-magnitude parameter, generally meaning an
upper bound to the various elements of (80).

A third type of characteristic time, associated
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P T( & 1 (i = 1, 2) . (82)

On the other hand, if we want to retain only cou-
plings of the field to the bare atom, leaving g(z)
dependent on equilibrium properties only, P should
be small on the scale of the inverse correlation
time,

Pr «l. (83)

Obviously, both (82) and (83) can be met only if

with the coupling strength to the external fields,
is the inverse of the Rabi nutation frequency, P
where

(81)

The latter serves to introduce a time scale over
which the external fields appreciably modify the
density matrix. In order to see effects peculiar
to strong fields, such as saturated absorption, or
multiphoton processes, we ought to have

Z(x+ i0) = Z(+ i0) (7' «T„T,) . (88)

By differentiation with respect to time, one then
gets

—p'(t) = —i [g+V'+ Z(i0) ]p'(t),
8$

(87)

where

(88)

is the reduced density matrix of the relevant sys-
tem. In homogeneously broadened systems, where
effects of the positional (translational) states of A
are negligible, (87) is reduced to the discrete set
of internal states of 4, where it constitutes the
Bloch equation. (For translational effects see Ap-
pendix B.) Note, however, that as (83) is not nec-
essary, we obtain a modified Bloch equation, with
field-dependent relaxation rates, when very strong
fields are present, such that

r«T, (i =1,2). (84) pre 1. (89)

Condition (84), which frequently holds in many
dilute (or weakly coupled) systems, such as dilute
gases, is known as the short-memory limit. '~' '
It enables us to define a significant range of the
coupling strength P over which strong-field effects
can be observed without having to modify the
equilibrium relaxation rates, replacing Z(z) by
Zgz). Major simplifications are obtained in this
range: (i) As Z (z) depends only on 'Us, its cal-
culation is simpler, (ii) Z gz) is diagonal in Flo-
quet space:

(88)

cutting down many possible couplings. (iii) The
symmetry of Z~ is determined by p~. lf the bath
is isotropic (spherically symmetric), as in fluids,
Z~ is invariant under rotations, and is corre-
spondingly simplified, al.lowing the use of reduced
matrix elements, independent of the degeneracy
quantum numbers (see Appendix A). Since only
elements such as (85), with ~,~

—~,„small, are
generally important, therefore, barring acciden-
tal near-degeneracy of two states of the same
symmetry species, we shall not have matrix ele-
ments connecting "populations" with "coherences".

A most important simplification arising from
(84), but not necessarily requiring (83), is the
Markovian approximation. As v is much shorter
than T, and T„we can replace Z(z) by its value
at the origin, Z(+ i0), over a margin of z values
(along the real axis) that is wide compared to the
magnitude of Z. Therefore, one can approximately
Fourier transform 9'(z) of Eq. (57), to obtain a
time-evolution operator for the reduced (A+ I.+S)
space, with Z(z) as constant parameters,

VII. RESONANCE SCATTERING

Before discussing specific relaxation mecha-
nisms, let us consider one further simplification,
namely, the reduction of the complete set of vec-
tors !ab)) in A space into a subset of level pairs
resonantly coupled to the relevant radiation modes.
This step is essential, because one is generally
concerned with only a small number of levels,
and the errors (or corrections) involved in neg-
lecting all the rest should be known.

Consider all vectors !ab, nsn's', n)) involving a
pair of levels a, b of A that are directly connected
by application of p~' (to any power) or ps or both,
and that obey

&,q+(ns ns)mrs n'to! - "~

Here 6 is an arbitrarily chosen fixed interval,
qualified only by the requirement that

(90)

J3 !Q . s! «5«~~
(which can be easily met in optical spectra). The
g space is thus divided into a resonance set de-
fined by the requirements made above and the
complementary off-resonance set. This division
is formally summarized by introducing proper

(91)

The structure of the modified equations is then
considerably complicated, as symmetry breaking
and nondiagonality in Floquet space introduce many
new couplings. As we shall see below, these mod-
ifications can be safely neglected in radiative
damping, but may become significant in collision
broadening, particularly where inelastic (T,) pro-
cesses are involved.



THEORY OF RESONANCE SCATTERING AND ABSORPTION OF ~ . ~ 2065

projection operators,

(p (pR+ (pN (92)

9R(S) [S gR jeff(S) ()P(S)]- (96)

where Zo~= 6'~Z, (P~ is the matrix of resonance fre-
(luencies obeying (90), and

jeff(S) (pRg(S)(pR

+(pRz(s)(p"(z -(p [2;+z(z)](pg '

x (pNg(s)(pR. (96)
In this manner, the interaction 'U' defined on the
complete set (p is replaced by%"(z) on (pR and
Z(z) is replaced by Z"f(z). As e"(z) is practically
independent of the self-energy, the corrections to
the single-photon coupling (P"'U'(P~ can be con-
sidered as representing simultaneous transitions
of two or more photons, with no intermediate-
state time-delay effects.

' Consider, for example, the second-order term
1

eyp(2) (p~r(pN(& (pNgr(pN) 1(pNgr(pR (gq)

Its matrix element between the "population" vec-
tor laa)) and the two-photon coherence lac)) (in-
volving a summation over a complete set of inter-
mediate levels b),

((ca; 2~ le") laa', 0~&&

= @ 'Q (I';")„(co,-(o„) '(&;")„

(98a)

is the coupling coefficient for simultaneous two-
photon absorption. Similarly, the second-order
element

s si f, l~"'1 aalu 0s si f&&

=a 'Q [(Vs)„((gf,—(g„) '(Vf,")„
b

+(&i").e(-~s -~e.) '«s&~]
I p(1 g, l I, ) (98b)CC

The projection of V' onto the resonance set by (P~

can be expressed in terms of operators confined
to this subspace, using the same methods that led
to the separation of "relevant" from "irrelevant"
interactions. So,

rR(z) = (pRW'(s)6 "=m(z)+m(z)9"(z)~(z) . (93)

Here

I()p(S) (pRrgr(pR

+(pR~rIpN[& (pN(gr+~r)(pN]-fpNgryR (g4)

where, thanks to (91), we have neglected the prop-
er self-energy Z(s) accompanying 2r in the de-
nominator in (94). Also,

is the coupling coefficient for ordinary (nonreso-
nant) Raman scattering. vP(e) may also have diag-
onal elements between coherences, by undergoing
nonresonant virtual transitions. Thus

«ab;n, lm") lab;n, »=
2 g [p„(~(u,) —p„(~(d,)]

(99)

is the Bloch-Siegert shift" "of the n~-photon co-
herence, the P coefficients being defined by (98a)
with the exception that V~' repj.aces one of the
two interaction-matrix elements. The approxima-
tion

W = W" '= (p "0r(pR

is commonly known as the rotating-svave approxi-
mation.

Nondiagonal high-order couplings, such as (98),
that involve a change in n~ or n~, can be added to
the "relevant" interaction (100) as representing
resonance couplings of a higher order, together
constituting an extended RWA. Elements such as
(99) (Bloch-Siegert shifts), that are diagonal in
the relevant photon numbers, can be added as
perturbations to the resonance-frequency matrix

These perturbations will not be dealt with
further below.

The proper self-energy has also undergone mod-
ifications by projecting onto the resonance set,
as is evident by (96). In addition to the direct re-
Laxation couplings O'"Zd'~, indirect couplings can
occur through intermediate states not belonging
to the resonance set. Such, for example, is the
element

jeff
ccsac

~cc;gg + cc' b'b'

bb'

x)e —r),), ,„r„,„I (c ma)

(101)
(6 having no elements in the space of "populations"
laa))). An element c&a expresses the enhance-
ment of the direct T, relaxation from a to c
[I'„,„(i0) being negative] by indirect transitions
through intermediate levels b, b', etc. , which are
not interrupted by resonance interaction with the
radiation.

Elements of (101) with c= a represent an in-
crease of the lifetime of level a [I'„,„(i0) being
positive] by cross exchange with neighboring en-
ergy levels. Such an exchange is possible if the
transition from a to b is (at least partially) re-
versible. If b is a long-lived metastable state,
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g r„.,=o, (1o2)

expressing conservation of population, is obeyed.
Irreversible transitions of the kind described
above, where the b states cannot be reached by
the radiation processes, will lead to a depletion
of populations in the resonance set, leading to
vanishing steady-state solutions.

It is nevertheless possible to observe the tran-
sient behavior of the resonance set in such cases,
by resorting to the dynamical equations. The z
dependence of the principal-part contributions to
'VV(s) is very slow, owing to (91), allowing their
replacement by w(io) in Fourier transforming to
derive the time dependence. {The 6-function con-
tributions are very rapidly oscillating in time
and can be neglected on a "coarse-grained" time
scale. ) If, in addition, Z"'(z) is also a slowly
varying function of z, one can write down a re-
duced Bloch equation (in the limit of homogeneous
broadening only), defined on the resonance set
only, with&' replaced by&(io) and Z(i0) by
Z elf(zo)

ps(t}= —i [Zos+ m(io) + Z"'(io) ]p"(t)8t

+ &Zeff(&0)ps sa

Here

a member of a dense set of levels (as in internal
conversion), or a true continuum state (e.g. , when
g is a predissociation state, or an autoionizing
state), the exchange is irreversible and the cor-
rections to I' will vanish. It is important to real-
ize that the projection (P is defined on the complete
set of states of the relevant degrees of freedom,
and hence the sum rule

VIII. LEVEL EXCITATIONS

A convenient aid to the calculation of attenuation
rates and of steady-state populations of excited
states is the matrix of level-to-level excitation
rates,

W = —i((bb; 0
~

f(+'fo}~gg; 0)). (105)

ey- a& ~&&;ai (106)

where

Wss. —' ImP(
d&y C(2 2 dQ

x [((db; n~
~

9"(+io)
~
ca; n~))P'"&'

—((db' n~
~

9"(+io)
~

ac; -n~))P,'"&'*] . (107)

Equation (107) expresses the contr ibution of the
pair of resonance coherences gc and db to the ex-
citation rate from a (or c) to b (or d).

The attenuation rate, expressed in terms of
(107}, is

These are not transition rates in the true sense
of taking the asymptotic time limits, since indi-
vidual-1. evel populations are not stationary states
of Z(z}, and therefore undergo relaxation follow-
ing the resonance excitation [described by the op-
erator %I'& in (55)].

Suppose now that the final state
~

bb; 0)) can be
reached from the ps~-photon resonance coherence

~
db; nz)), with a coupling coefficient P~(P'*. How-

. ever, the same coherence can lead to dd; 0)),
with the opposite-sign coefficient -P~(P.'*. Simi-
larly, ~aa;0)) and ~cc;0)) both connect to ~ca;n~))
with +P(,"&'. Considering that to each

~

ca', n~)) there
is a Liouville-conjugate

~
ac; -n~)), and taking ad-

vantage of the symmetry of BR under Liouville
conjugation, we can write

ps(f) (pRp(f)(ps (104)
L a&cd

W BI (peg peg)

with So~ containing only the slowly oscillating
(near-resonance) eigenvalues of Z;. The extra
term involving p~ should be added, since the
equilibrium condition (62) generally does not apply
to the incomplete subspace 6'~.

In resonance subsets where escape by relaxation
is (at least partially} reversible, nonvanishing
steady-state solutions exist, and one can use the
reduced operators &~ and 8~ to obtain the reso-
nance attenuation and scattering rates. The cou-
pling coefficients in (72), for example, should be
replaced by higher-order coupling coefficients if
simultaneous two-photon transitions are involved
in the cd or gb resonances, provided that at least
one of the photons in the gb resonance is an S-
mode photon.

L c&cd

W sL (pea peg) (108)

where, by the resonance conditions, ~„&0, &d,
& 0. In the two-level system (&,~&0), this simply
reduces to the well-known expression

Az ——-W„(pg —p~~}= W~, (p,"—pP) {2 levels).

(109)

Equation (72) is a particular application of (108)
to one-photon resonances in the HWA.

The excitation rates are also useful in the cal-
culation of steady-state populations. These popu-
lations are related to the equilibrium populations
in a complete closed basis by
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pst Ilr(+ t0)pee

where

(110a) etc. , in the form of a finite continued fraction.
Also, it takes a population vector to cross from
g& 0 coherences to ps&0 ones. Therefore

3g (z) =1+ 9'(z)u'=1+ 9,"(z)r (z), (11la) a=a"+a'-'= 2Rex", (118)
and

9,"(z)= [z-a;-Z(z)]-' (112a)

ttRe st 3itR(+ t0) ttRe ee (110b)

is the zero-interaction limit of 9 (z). This ex-
pression can be reduced to the resonance set if
the set acts like a closed subset under the com-
bined effect of resonance interaction and relaxa-
tion [i.e. , if the sum rule (102) holds on the sub-
set, with I'"t replacing I']:

where in R"' all intermediate coherences have
positive (negative) Qn~, the last equality in (118)
follow ing from Liouville-conjugation symmetry.

The introduction of B enables us to write a non-
Markovian generalized rate equation involving
only levei populations (assuming brett is Mark-
ovian),

t
r(—t) = -I'[r(t) —p"] +

J
R(t —t')r(t') dt',

where

KR(z) = 1+ 9"(z)~z)= 1+ SeR(z)&R(z) (11lb)

where

r,(t) = (a~ p„(t) ~a&,

(119)

(120)

pR st [Ie+ 1 -lW]ttRe ee

where I is the unit matrix, and

(113)

I', = ((aa 0~1 "t(+i0) ~bb 0))

is the level-relaxation (T,} matrix.
The excitation-rate matrix combines popula-

tions only. However, intermediate states in the
Born expansion of g~ include both populations and
coherences. Let us define the single-passage
rate matrix R as the matrix combining popula-
tions via coherences only,

R„=-i ((bb; 0
~
K„„(+i0)

~

aa; 0 )),

(114)

(115)

where populations are excluded as intermediate
states in g ~,„. In terms of R,

W=R[1 r-'R] '=(R-' r-')-'

ttRest (f fe-1R) tpRe ee (11')
The introduction of the single-passage rates helps
to simplify the calculations. " For example, when
only one-photon transitions are involved, the di-
mensionality of the problem can be reduced step-
wise by a renormalization scheme that introduces
one-photon coherences, two-photon coherences,

and

9,"(z)= [z —ZR —Z "t(z)]-'. (112b)

In this case the radiation simply redistributes the

populations in the reduced set p"=6'"p6'~, keeping
the overall population in the set constant. Neg-
lecting the rather unlikely possibility of having
a matrix element of Z connecting a "population"

~
aa)) with a coherence.

~
ab&&, we can rewrite (110b}

in matrix notation (treating the populations as col-
umn vectors},

and the memory kernel is the Fourier transform
of R(z),

S(e)=(2 i) ' jee '*eS(ee(0)de (t&0),
~e OQ

(121)

—, gt) = r[r(t) p~-]+ —Rr(t),
8

(123)

and the level excitation can be treated as an inco-
herent rate process. "

IX. RADIATIVE DAMPING

Radiative damping in the presence of strong co-
herent fields has been studied from various points
of view by several authors. ""We shall therefore
dwell only-briefly on its properties, from the
point of view presented here.

Consider the proper self-energy resultir. g from
virtual radiative processes in the absence of col-
lisions, and in the weak-field limit. The damping
of the n~-photon resonance coherence ~ab&& is
given by

Z,"eI,"~t '(z) = ((ab; nl.
~

Z (z) I ah; nr, && (124)

The only contribution to it)pter in (54} comes here
from spontaneous emission to all I" modes. We
consider ihe vacuum as the initial state in the op-
tical limit implied by (3). Hence

R(z) being the extension of R= R(i0) to arbitrary
z above the real axis. Notice that R(t) usually de-
pends only on coherence (T,) propagators, and its
time scale of variation is determined by the T,
relaxation rates. Therefore, in the limit of strong
T, relaxation (as when strong elastic collisions
dominate the self-energy),

(122)

Eq. (119) reduces to the simple rate equation
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vzlab;0~0~;nr&& = b ' g [&clzl vs laos&lcb leone', nz&& —&el+I v~lbo~&*lac;0~1+', n~))] . (125)

Summing over all virtual atomic states, and over all I' modes,

z.",!," (z) = g- p g &I &cl.
l v. l,o&

I
(z ~,+ ~„+n,~,)-'+1&el,

I v,
I
bo,&

I
(z ~. ~.,+ n,~,)-

F C

(126)

In the limit z -+i0, and assuming near-resonance
conditions z~&~= u» we simply get

++%(Rr, )(+ 0) L i(~rad+ ~rad)
abyab

Z &~ &(z) = g &&cd; lz1z', lz Io(z) Iab;0+0+', lz&&

= 2 i(g„g*+g, ~g ')

where
(z - io, (u„=u)„=n~u) ~), (131)

grad
ca

F C

(128)

where, ignoring space degeneracy, g= p,,&/p, ,~ is
the ratio of coupling coefficients.

I

X. COLLISION BROADENING

is the spontaneous decay rate of level p. Equation
(127) is obtained by neglecting the contribution of
the Cauchy principal parts to (126), assuming that
the coupling coefficients are very slowly varying
functions of ~F.

The memory kernel 4(t) obtained by Fourier
transforming Z (z), according to (79), is singular
at short times (f-0) under the approximations
used here (of one-photon electric dipole emission
and ~„an homogeneously broadened optical fre-
quency, neglecting velocity effects). ' This ef-
fectively corresponds to a zero correlation time
for spontaneous radiative decay,

(129)

Therefore, radiative damping is Markovian for
all practical purposes. Furthermore, radiative
decay rates should not be appreciably affected by
the presence of strong fields, or by the presence
of other relaxation mechanisms which are to be
added independently to Z(z).

One-photon cascades contribute to off-diagonal
elements of Z(z), such as

zqu~I„(z) = Q &&bb;

1~1~;0~la�(z)

Iaa;0~0~;0~&&

(130)

where fb, is the decay rate from z to b. Notice
that the sum rule (102) is observed when a, b,
etc. , form a closed set under radiative decay.
Cascading contributes al.so to cross relaxation be-
tween neighboring coherences. For example,

Collision broadening of linear-response one-
photon spectra in dilute gaseous systems has been
the subject of numerous publications. "" Some
work has been done on two-photon processes,
simultaneous or resonant. ""The theory is im-
mediately extended to multiphoton resonance spec-
tra in the domain of not-too-strong radiation,
where (83) holds, the only complication arising
from space degeneracy. In collision broadening,
v is the duration time of a collision (-10"sec at
room temperature), whereas in dilute gases T,
and T, are mean times between collisions (typical-
ly 10 '-10 ' sec at atmospheric pressures).
Therefore, the domain where field effects can be
ignored is quite wide.

At higher field intensities, when (89) replaces
(83), the collision-broadening rates should be
modified by the presence of the fields. This is
particularly important in T, processes governed
by weak large-gap inelastic collisions where the
presence of the radiation can help bridge the en-
ergy gap. "" A comprehensive theory of such
processes is still unavailable.

We shall deal here only with the theory of for-
eign-gas broadening, where the bath molecules
are treated as distinct from A. The theory can
be extended to incorporate' resonance transfer by
inelastic collisions between identical molecules,
just as in the linear-response theories. '""

In the binary-collision approximation, the op-
erator o (z), from which Z(z) is calculated, is
simply Nz&ac(z)&z, where 9 c is the tetradic 7'
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matrix for the collision pair and N~ is the number
of bath molecules. (An extra factor A ', the in-
verse volume, comes from the "box" normaliza-
tion of the translational states, making Z(z) pro-

portional to the gas density. } Using an expression
relating the tetradic & matrix to the ordinary
(dyadic) T matrix, we get (ignoring space degen-
eracy}

((cd;nI. IT (z}lab n.»

=N 5 ' Q p„(cylT(E,+E„+n~k(u +«) lay) „b„,—b„b„,(dylT(E, +E„n—~&~1, —«*) lb'y&*

OO

+(2mi) ' dxg),',"~,',(x;z)(cb
I
T(x+ n~h(u~+ sz)

I
ay)(db

I
gx+iO) lby)'&,'„"~~(x;z) .

~OO

(132}

Here pz is the equilibrium density matrix of the
bath molecule, ly), I

5), etc. , forming a complete
basis;

Q "rq~(x; z) = (num id —E, -E„+«+ x) i

—(-E~ —E~+ x —iO) '; (133)

T is the ordinary binary-collision scattering ma-
trix, obeying the Lippmann-Schwinger equation,

T(«) = V„+V„(« H„-H—) 'T(kz}, (134)

with the collision-pair Hamiltonian H„+H~+ V».
Equation. (132) is generally valid, in the binary-

collision approximation, when la), lb), etc. , form
a complete set of states of all degrees of freedom
of A, including translational states. The limit of
homogeneous broadening, where velocity effects
can be neglected, is obtained by transferring the

translational degrees of freedom to the role of
bath degrees of freedom, incorporated in the sum-
mation over y and 5 in (132), leaving a, b, etc. ,
as initial states only. This limit is particularly
suitable for heavy A. -type molecules perturbed by
light B-type molecules with a short-range inter-
action. Otherwise, velocity effects (such as ve-
locity-changing collisions) will enter Z(z) even in
the limit where Doppler broadening is neglig-
ible 83 ~

A frequently used approximation, valid when

g~~~= ~„=(d„, and the collision rates are much
smaller than the inverse duration of collision
T 11 is the impact approximation. """ Equa-
tion (132), in the limit z -iO, can then be approx-
imately expressed by on-the-energy-shell ele-
ments of T only. Again, ignoring degeneracy,

((«'nil&"(io) lab'n~)& =Nz& 'g p:([&ay IT(E.+E.+io) lar) —&b'IT(Ei+E6+i0&lb&)*]b..b.»~

+ &vri b(E, + E„—E, -E5)&cb
I
T(Ee+ E~+iO& lay) &d5

I
T(Ei+ Ei+iO)

(135)

The impact approximation is intimately related to
the Markovian approximation. The latter, how-
ever, deals with the z dependence, while the
former is concerned with the energy variables.

Using the "optical theorem" obeyed by on-ihe-
energy-shell elements of the T matrix, we get for
population-damping (T,} rates (in the impact ap-
proximation)

((cc;0~
I
Z~(+ iO)

I
aa; Oz, ))

i [r

inning

ginel(1 b )] (136)

where

is the rate of inelastic collisions from g to c, and

~ine1 ~ pinel

cAr

(138)

is the inverse collisional lifetime of level g. The
proper self-energy for an Q~-photon coherence
(n~ ei 0) includes a frequency-shift contribution n. ,
in addition to —il". These shifts are usually quite
small and will not be discussed here. Diagonal
elements of the relaxation matrix are given (in
the impact approximation} by

((ab. n
I

Z ee(+ iO) lab. n )) (rinei+ rinel)+ rel

(139)

x 5(E,+E„-E —E6) (13'l) where
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—(b5
l
QE + E„'0)

l by) l
'5(E„—E ) (140)

is the proper-T2 contribution of elastic collisions
owing to interference (dephasing) of forward scat-
tering amplitudes in the two levels g and h. The
elastic proper-T, contribution is particularly
important in atomic spectra, where the interaction
potentials in the ground and excited states are very
different, and inelastic collisions are very rare.
Condition (122) then usus. lly holds. In molecular
spectra the relative contribution of inelastic col-
lisions is usually not small. The expressions for
the collision rates can be appreciably affected by
the presence of very strong fields obeying (89),
particularly when inelastic collision rates (137)
involving a large energy gap

(141)

are concerned. The two-body interaction P'»
should then be augmented by V~' in the calculation
of the collision rates.

Strong fields can also affect elastic collisions
by modifying the potential curves. " However, the
magnitude of such an effect in dephasing collisions
is not known.

Finally, we should recall that in the strong-field
domain Z(z) becomes nondiagonal in the Floquet
numbers n~, and the spectral structure is con-
siderably complicated.

APPENDIX A: SPACE DEGENERACY

. Most works on the response to strong fields
avoid for obvious reasons the complications aris-
ing from space degeneracy (unless it is an essen
tial part of the effect studied, as in the Hanle ef-
fect" ). For a general introduction to rota-
tiona, l-symmetry considerations in the density-
matrix formalism, the reader is referred to the
review article by Omont. " We shall be satisfied
here with a few fleeting observations.

The A. -molecule basis (l 11)}is completely spe-
cified by a set of principal quantum numbers (o,),
a total angular momentum (j,), and the component
of the angular momentum along a space-fixed
axis (m, ). The Liouville-space set

l ej,m„pj~m~&& (m, = -j,, . . .,j„'m = -j, . . . , j~)

(Al)

forms a degenerate manifold, in w'hich linear
combinations can be formed to create a basis for
the irreducible representations of the rotation
group, "

x lnj, m„pj,m, )), (A2)

So, g 1 removes the degeneracy in J (but not in M)
by introducing J-dependent relaxation coefficients.

The interaction'with the external field, in the
electric-dipole approximation, includes the first-
rank tensor operator" p,

"' which can alter J by
+1. M can generally change by 0, +1, depending
on the polarizatioris &~ of the external-field
modes. However, things are considerably sim-
plified in the parti. cular case where all the modes
have the same (linear) polarization direction.
Choosing this direction as the quantization axis
for the angular momentum, we have AM= 0. The
degeneracy is then completely removed by using
M= 0 throughout the Bo'rn expansion of the transi-
tion rates, with J alternating by +1 jumps, with a
null value on both ends of the expansion. The
intermediate possible values of J are bounded by
the vector coupling condition,

(A4)

given the basis (A2). Therefore, in a finite-level
set, where j, and j~ have the upper bound j
is bounded by 2j

The situation is even further simplified if all
field modes propagate in parallel and have the
same cixculgr, rather than linear, polarizations.
For then (using the propagation direction as the
Quantlzatlon ax18)

M= aJ= Q 11' (A5)

at all intermediate steps in the Born expansion,
thus tying up the allowed values of J to the Floquet
numbers pg.

APPENDIX B: VELOCITY EFFECTS

The effect of strong fields on Doppler-broadened
gas spectra, as an example of an inhomogeneously
broadened system, has been studied extensively
under the name of saturation, or Lamb-dip, spec-
troscopy. "" We present it here using our gen-

with the help of the Clebsch-Gordan coefficients.
In the approximation of uncorrelated bath, and

assuming that the bath is isotropic (e.g. , collisions
in a dilute gas), Z(s) is invariant under rotations
and therefore is diagonal in J, M, and indepen-
dent of M. Thus in the attenuation-rate problem,
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(BI}

be the momentum transfer associated with the
coherence lab;n)), where a, b, are internal mo-
lecular states. The momentum 5 p, associated
with the center-of-mass motion of the molecule
A, spans a Euclidean (R,} manifold of such co-
herences in double space,

l
ab(p );n)) =

l
ab; p+ K-„,p; n)) (p E-R,) . (B2)

Vfith this manifold is associated a continuum of
resonance frequencies,

2;jab(p);n))= [&u, ~
—g nr~~+ v„-(p)] lab(p);n)).

Here

(Bs)

vip }= m 'h p K-„ (B4)

is the Doppler shift associated with p, with m be-
ing the molecular mass.

The continuous manifold can be conveniently
turned into a discrete one by "box" normalization
in a finite volume A', introducing the denumerable
basis

eral formalism, and discuss the limit under which
inhomogeneous broadening can be eliminated.

The separation of the "relevant" degrees of
freedom A from the bath B is a matter of optimal
choice, guided by a hierarchy of time scales, on
the one hand, and by the requirement of simplic-
ity, on the other hand. System A should be so
chosen as to make the relaxation time (T, or T,)
much longer than the correlation time (v') for the
interaction with B.

In ordinary gaseous systems, at low densities,
the most natural choice of A is the isolated atom
(or molecule), if cooperative phenomena are to be
neglected. Correlations exist only during the rel-
atively short duration of binary collisions. By
the isolated molecule we mean all degrees of
freedom (internal and translational}. A reduction
of the degrees of freedom constituting A is plaus-
ible only if there exists a further hierarchy of
time scales within the set of one-molecule excita-
tions.

The dependence of resonance frequencies on the
translational states, through the Doppler effect,
accounts for the inhomogeneous broadening. I et

dependent of the external field, the self-energy
is diagonal in Q, forming a matrix in the manifold
of (B5}with elements

«cd [q ];n
l
z 'q(z)

l
ab [p ];n)) .

Elements p=q represent self-damping of individual

p components of the manifold, while p 4q elements
(velocity-changing collisions) represent cross re-
laxation between the various components. Veloc-
ity-changing collisions thus play here a role anal-,
ogous to that of inelastic collisions in an homo-
geneously broadened multilevel system.

Inhomogeneous velocity effects can be elimi-
nated, and the manifold (85) replaced by the sin-
gle vector lab;n)) (which corresponds to the con-
finement of A to internal degrees of freedom only)
if the following two conditions are met: (a) The
Doppler width is small compared to the magnitude
of the self-energy (e.g. , at sufficiently high gas
densities). (b) The cross sections for velocity
changing are much larger than those involved in
dephasing by elastic collisions, or in inelastic
collisions. One can then replace the matrix (B6),
defined on the manifold (B5), by the single ele-
ment

~,'i.s(z}=g pf«cd[q]~nlrb'"(~}lab[p];n)), (B&}

treating the translational motion as part of the
"bath".

Another limiting situation in which A can be
reduced is the case of the "Brownian-particle
model", "applicable when the A-type molecule is
a very heavy one, and is perturbed by a gas of
light molecules with a short-range interaction.
In this case, (B6) becomes diagonal in, and inde-
pendent of, the momentum Sp. If in spite of the
heavy mass the Doppler width is not negligible,
saturation dips will occur, but they will be inde-
pendent of the velocity. The shape of the spectrum
will then be obtained by simply convoluting the
Gaussian-shaped Doppler profile with the homo-
geneously broadened fixed-velocity line profile.

The temporal behavior of the density matrix
of the Doppler-broadened molecule, in the approx-
imation of Markovian self-energies (and in the
limit A- ~) is governed 'by a generalized linear
Boltzmann equation (recalling our assumption of
negligible initial correlations). Expanding the
A-reduced density matrix in the basis (B2),

l
ah[p );n))= (2m/A} lab(p );n)). (B5)

(BS)

In the range of field strengths where g(z} is in- we have
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+ dq ab p;n Z +io cd q;n p,'~' q;t

where we have used the short-hand notation

n+ & ~
-=(n„.. , n~. + &, . . .)

for the multimode external field.
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