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The controversy over whether to use the length or the velocity form of the interaction of electric dipole
radiation with atoms is resolved on the basis of gauge invariance. When the unperturbed Hamiltonian is
chosen to be the atomic Hamiltonian, the condition that the probability amplitudes are gauge invariant
implies that the interaction is of the length form, —tf I', f, not the velocity form, —(q /me)A. .ll. Hartree-
Fock theory is examined and shown to be form invariant under local gauge transformations, i.e., gauge
invariant. A comparison is made between the length and velocity forms of the interaction and oscillator
strengths. If the true Hamiltonian is nonlocal, only the length form of the dipole oscillator strength is valid.
If the true Hamiltonian is local, the length form of the dipole oscillator strength may be transformed to the
velocity form.

I. INTRODUCTION

Ever since Chandrasekhar' showed that the os-
cillator strengths for electric dipole transitions in
atoms calculated from the exact wave functions
could be written in several apparently equivalent
forms, there has been a controversy over which
form to use for approximate calculations. Chand-
rasekhar' advocated the use of the velocity form
for calculations using variationally determined
wave functions. Others have shown that in many
situations the length form is superior. "' A rich
lore has developed with many "rules of thumb"
over when to use the length form and when to use
the velocity form. ' Some understanding of these
"rules of thumb" has been given by Anderson and
reinhold'. using qualitative considerations of upper
and lower bounds. ' However, the situation is still
more of an art than a science, since there are
many factors that must be taken into account in de-
ciding which form to use and the decision cannot be
made unambiguously.

On the other hand, Starace' has applied the prin-
ciple of minimal electromagnetic coupling to vari-
ous approximate Hamiltonians with nonlocal poten-
'tials. These Hamiltonians give different values for
the dipole length and velocity oscillator strengths.
He has come to the conclusion that a length form of
the interaction should be used. ' He presumably
shows that the Hartree-Pock (HF} equations are
not gauge invariant. ""~hen the principle of
minimal electromagnetic coupling is used to make
the HF equations gauge invariant, an additional in-
teraction with the electromagnetic field is in-
duced. '"" This interaction converts the original
"velocity" interaction into a "length" form of the
interaction. Starace' claims that his length form
is the only physically correct interaction for Ham-

iltonians with nonlocal potentials.
Starace's recommendation has been criticized for

not telling whether the "length" or the "velocity"
form of the oscillator strength is closer to the ex-
perimentally observed value for a particular tran-
sition. '~" Starace has responded" that the value
of the velocity form is irrelevant, since "once one
has started by choosing an approximation proce-
dure (for nonlocal potentials). . . only the length
formula should be used. "

In this paper we show that on grounds of gauge
invariance it is indeed the length form of the in-
texactfo+ that should be used The gauge- invariant
formulation of the interaction of radiation and mat-
ter" shows that in order to use the atomic Hamil-
tonian as the unperturbed Hami'ltonian for electric
dipole transitions, it is necessary to make a gauge
transformation to the gauge in which the vector po-
tential is negligible and the scalar potential is the
electric dipole potential, —,E ~ r." It is this
"length" form of the interaction that is then treat-
ed by time-dependent perturbation theory, in con-
trast to another "length" form advocated by Star-
ace and Lin. '

Much confusion has arisen in the literature by
associating the length form of the dipole oscillator
strength with the length form of the interaction,
and the velocity form of the dipole oscillator
strength with the velocity form of the interaction.
On the basis of gauge-invariance arguments we
show that it is only the length form of the interac-
tion which should be used. For a nonlocal Hamil-
tonian, this means that only the length form of the
dipole oscillator strength is valid. However, if
the true Hamiltonian is local, the length form of
the dipole osciQator strength may be transformed
to the velocity form. If a nonlocal model Hamil-
tonian„ like the HF Hamiltonian, is used to evalu-
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ate these expressions, different results are ob-
tained. Which form gives better agreement with
experiment is then a question of detailed computa-
tion. However, the velocity form of the dipole os-
cillator strength must be derived from the length
form, which emerges naturally from the length.
form of the interaction. The length form of the di-
pole oscillator strength may, in this sense, be
considered as more fundamental than the velocity
form.

Contrary to several authors, " ''o we also show
that the HF equations are in fact gauge invariant.
In order to remove the dependence of the HF equa-
tions on the electromagnetic field, the gauge trans-
formation mentioned previously must be made
which gives the length form of the electric dipole
interaction as the perturbation.

In Sec. II the gauge invariance of many-bodywave
mechanics is discussed to review concepts and es-
tablish the notation. Then in Sec. III the gauge-in-
variant formulation of the interaction of electro-
magnetic radiation and matter is given, based on
the gauge invariance of transition probability am-
plitudes. In Sec. IV the HF equations are shown to
be gauge invariant. The nonlocal HF exhange po-
tential is shown to lead nonuniquely to a velocity-
dependent potential in Sec. V. When the principle
of minimal electromagnetic coupling is used in
this velocity-dependent potential, it is made gauge
invariant. However, in the electric dipole approx-
imation the dependence on the electromagnetic
field cancels out. In Sec. VI the different length
and velocity interactions are discussed and com-
pared. The different forms of the oscillator
strengths are discussed in Sec. VII. Finally, the
conclusions are given in Sec. VIII.

II. GAUGE INVARIANCE OF THE MANY-BODY

SCHRODINGER EQUATION

In order to provide some background and to es-
tablish the notation, the gauge invariance of the
many-body Schrodinger equation is discussed. The
form invariance of the many-body SchrMinger
equation under local gauge transformations is a
straightforward generalization of the treatment for
a single particle. " It is this form invariance of
the equation that we will call the "gauge invari-
ance" of the equation. In order to clarify the basic
ideas, we will use wave mechanics instead of the
second-quantization formalism used by I.in. '

The Schrodinger equation for a system of N iden-
tical fermions in a time-dePendent electromagnetic
field characterized by the vector potential A and
scab, r potential &, is

(2.1)

1
+ — V, (x),x~), (2.2)

where V, (x) is the static, external potential ener-
gy. For an atom, for example, the external poten-
tial energy is the Coulomb potential between an
electron and the nucleus. The two-body interac-

'tion V, (x, y) between a particle at the. point x and a
particle at the pointy is assumed to be symmetric,
V, (x, y) = V,(y, x). For an atom, the two-body po-
tential is the Coulomb repulsion between the elec-
tirons.

A local gauge transformation of the first kind"
can be made on the wave function

4 (x„.. . ,x„,t)

=exp i — A r, , t 4 x„.. . , x„;t,
@C

(2.3)

where A(r, t) is an arbitrary, differentiable, real
function'of space and time. The SchrMinger equa-
tion in Eq. (2.1) is form inva'riant under the gauge
transformation in Eq. (2.3),

H(A' A. ')4'=f1
9 0 (2.4)

'The new vector potential A' is related to the old
one A by

A' =A+&A, (2.5)

and the new scalar potentialA', is related to the old
oned, by

GA
Ap Ap

( )
(2.6)

which are the usual gauge transformations of the
second kind" in electrodynamics. A comparison of
Eq. (2.4) with Eq. (2.2) shows that the Schrodinger
equa, tion is form invariant under the local gauge
transformation in Eq. (2.3). This "form invariance
under local gauge transformations" is considered
here to by.synonymous with the "gauge invariance"
of the SchrMinger equation.

' III. GAUGE INVARIANCE OF PROBABILITY AMPLITUDES

A gauge-invariant formulation of the interaction
of electromagnetic radiation with matter has been
developed by pang. " His approach is summarized

The antisymmetric wave function@ =4'(x„.. . , x~; f)
depends on the coordinates x, (&=1,2, . . . ,&),
where x& —(r&., v;) denote the spatial coordinates r;
and spin o& of particle &. The Hamiltonian H(A, Ap)
for fermions of ma.ss m and charge q is

H(XA, ) = g (2
—[p;——X(F,, t)j'+qA, (r„ t)+ v, (x,))
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here, since the ideas are essential to an under-
standing of the resolution of the "length" versus
"velocity" controversy. The transition probabili-
ties must be independent of the choice of gauge.
If the transition-probability amplitudes are inde-
pendent of the gauge, the transition probabilities
will be also. By choosing the basis functions in
terms of which the true wave function is expanded
in an appropriate way, the transition-probability
amplitudes can be made invariant. It is commonly
thought that the gauge can be chosen arbitrarily
and that the unperturbed or basis determining
Hamiltonian can also be chosen arbitrarily. Yang"
showed that making the formulation gauge invariant
requires the basis-determining Hamiltonian to be
the quantum-mechanical energy operator. The en-
ergy operator is H(A, 0), i.e., the Hamiltonian
without the scalar potential of the time-dependent
field. 'o Yang" has shown that the energy operator
obeys the correspondence principle. The time de-
rivative of its expectation value is the expectation
value of the quantum-mechanical power operator.

The eigenvalue problem for the energy operator
ls

H(A, 0)4„=EP„, (3 1)

where the energy eigenvalue E„and the eigenstate
y„ in general depend on the time through the vector
potential A=A(r, t). In order to develop a gauge-
invariant formulation of the interaction of electro-
magnetic radiation with matter, Yang" expanded
the true wave function in 4 in terms of the eigen-
states in Eq. (3.1),

cn+n (3.2)

The time derivative appears on the right-hand side
because the eigenstates 4„depend on time through
the vector potential A in Eq. (3.1). Under the local
gauge transformation in Eq. (2.3) on the wave func-
tions, the coefficients c„ in Eq. (3.2) are unchanged.
The matrix elements in Eq. (3.3) are also gauge in-
variant,

(q„'[ ($ qA (r„t) -t'll —)q'„',)

(gqA (q„t) —tll —)q ), ($.4)

under the local gauge transformation in Eq. (2.3).

hen this wave function is substituted into the
SchrMinger equation in Eq. (2.1), we obtain

i jgc„-E„c„

= g &q„~ (QDA(r„t)-ttt —
),q ) t . (D D)

B(A', A')=H(D, D) —gqZ( t) r, D.

1
(3.'I)

The Hamiltonian in the absence of the electromag-
netic field is H(0, 0) =H, . The eigenvalue problem
for the energy operator in Eq. (3.1}in this gauge
becomes

(3.8)&04'n =&nC'.

where H(A', 0) =H(0, 0) =H, is the atomic Hamilto-
nian in the absence of the electromagnetic field
and 4„'=4„are its eigenfunctions with eigenvalues
E„. The states C„are not time dependent because
the atomic Hamiltonian H, is not time dependent.

With the choice of gauge in Eqs. (3.5) and (3.6),
Eq. (3.3) reduces to

$%„-E„C„

Therefore, Eq. (3.3) for the probability amplitudes
is gauge invariant.

The case of electric dipole radiation is consid-
ered now in which (a) magnetic effects are negligi-
ble and (b) the electric field is slowly varying over
the dimensions of the atom. Then the new gauge in
Eq. (2.5) can be chosen such that the new vector
potential vanishes, "

A' =A+ VA = 0 . (3.5)

Of course, electromagnetic radiation requires both
the electric and magnetic fields for its existence.
The choice of gauge in Eq. (3.5) is applicable only
to the description of the effect of the electromag-
netic radiation on the atom in the electric dipole
approximation. The effect of magnetic and higher-
order electric multipoles on the atom is neglected.
When Kq. (3.5) is solved for A, and substituted in-
to Eq. (2.6) for the new scalar potential, we obtain

A,'(r, t) = -E(0, t) ~ r, (3.6)

where the electric field of the electromagnetic ra-
diation E(0, t} is evaluated at the origin. In its ef-
fect on the atom in the electric dipole approxima-
tion, the field of the electromagnetic radiation can
be described by a scalar potential only. For mag-
netic multipoles the vector potential is, of course,
required. The electric field E(r, t} must of course
be computed from Maxwell's equations which in-
volves the magnetic field B(r, t). However, for the '

interaction of this electromagnetic radiation with
the atom in the electric dipole approximation, on-
ly the electric field at the atom E(0, t) is required,
and it is derivable from the scahr potential in Eq.
(3.6).

With the choice of gauge given in Eqs. (3.5) and
(3.6) the Hamiltonian in Eq. (2.2) becomes
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The transition probability amplitudes in the elec-
tric dipole approximation are thus calculated from
the length formula.

The conclusion then is that if eigenstates of the
atomic Han". iltonian in Eq. (3.8) are to be used for
the basis states, the elect ic dipole interaction in
the "Length" form in Eq. (8.7) is the proper per-
tmbation. This form of the Hamiltonian is com-
monly used in practice. " Since questions have
been raised about whether to use the length or ve-
locity form of the interaction in approximate cal-
culations involving nonlocal potentials, Hartree-
Fock theory is examined in Sec. IV.

+ Jt dy I', (x,y)p, (y, y)P, (x)

cfy V2x, y po y, x y =C X . 4.1

A particle in the single-particle state o. has the
wave function Q (x} and eigenenergy a . The inte-
grals in Eq. (4.1} include both integration over the
spatial coordinates and summations over the spin.
The single-particle reduced density matrix p, (y, x)
18 defined as

p.(y, x)= g Ap(y)A, (x),
1

(4 2)

where the sum is over the first N occupied orbi-
tals. The first integral in Eq. (4.1) is the direct
potential due to all the other particles while the
second integral is the exchange potential. Several
authors7 '" hgve sajd that the HF exchange poten-
tial is not gauge invariant, but it appears that they
have not transformed the density matrix properly.

If a local gauge transformation of the first kind'~
is made on the orbitals Q (x), where x = (r, a), the

IV. GAUGE INVARIANCE OF THE HARTREE-FOCII'

EQUATIONS

Equation (3.1}is an N-body "time-independent"
Schrodinger equation. One way in which it can be
solved approximately is to use Hartree-pock theo-
ry, " in which the wave functions %„are approxi-
mated by Slater determinants, detQ&~(x&)), where
Q,.(x) is a single-particle function for the state i.
The Bayleigh-Ritz energy variational principle can
be applied to the ground-state expectation value of
the energy operator EI(A, 0) calculated with a Slater
determinant as a trial wave function. This proce-
dure leads to the Hartree-Fock equations.

The HF equations derived by such a procedure
for N identical fermions in a time-dependent elec-
tromagnetic field are"

1 g 2

y.(x) + V, (x)y„(x)

new orbital

Q' (x) =exp [iqA(r, t)/hcjg (x) (4.3)

+ &y~, ~,y ~0 y, y

dye, g, y p,' y, x '
y =~, ' x, 4.5

where the new vector. potential A.' ig re@ted to the
old one by Eq. (2.5). Equation (4.5) has the same
form as Eq. (4.1}. The HF equation is therefore
form in', riant under the local gauge transforma-
tion in Eq. (4.8), . which is what we mean by the
gauge invariance of a Schrodinger-lRe equation.

Thus, in Spite of the HF exchange potential being
nonlocal, the HF Hamiltonian for the system
H„r (A, 0) ~Z,h, (A, 0), where h~(&, 0) is the single-
particle HF Hamiltonian, can serve as an approx-
imation to the energy operator for the system in
Eq. (3.1). The approximation may or may not be
very good, but at least it retains the proper sym-
metry properties under gauge transformations.

On the other hand, Starace' has shown that a
nonlocal potential is in general not form invariant
under local gauge transformation" and must be
made gauge invariant. His proof is valid for non-
local potentials that do not depend on the wave
functiqns. However, in the HF case, the exchange
potential does, depend on the orbitals through the
density matrix in Eq. (4.2). In Sec. V we consider
Starace's procedure.

V. VELOCITY DEPENDENCE OF THE HARTREE-POCK

EXCHANGE POTENTIAI.

Starace showed that in general a nonlocal poten-
tial is not gauge invariant. In order to make it
gauge invariant, he rewrote i.t as a velocity-de-
pendent (i.e., momentum-dependent) potential. '4

He then used the principle of minimal electromag

is obtained, where A(f, t) is an arbitrary, differen-
t:iable, real function of the space coordinate r and
time t, but not of spin o. For the sake of concise-
ness, we will write A(f, t) =A(x) in Eq. (4.3) with
the stipulation that it does not depend on the spin,
but does depend on the time. Under the gauge
transformation of the first kind in Eq. (4.3), the
single-particle reduced density matrix in Eq. (4.2)
transforms as

p,'(y, x) = exp(i(q/etc)[A(x) -A(y)]jp, (y, x) . (4.4)

If Eqs. (4.3) and (4.4) are solved for P and p, in
terms of p' and p'„and substituted into Eq. (4,1),
the equation becomes

gA I 2

I, g5- y'. (x)+ V,(x)y.'(x)
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netic couPling, in which the momentum operator P
is replaced by jf-qA/c, to make it gauge invari-
ant. '"" An additional interaction with the electro-
magnetic field was thus induced. Veen an expan-
sion was made, and only the first two terms re-
tained, he found that the additional interaction with
the electromagnetic field could be incorporated in-
to a "length" form of the interaction.

Since the HF exchange potential is already gauge
invariant, as shown in Sec. I7, it is not necessary
to change it to obtain a gauge-invariantexpression. "
However, for the sake of illustrating the procedure
used by Starace' and others, "we show in this sec-
tion that it can be applied in a modified form to the
HF exchange potential to obtain a velocity-depen-
dent potential. The principle of minimal electro-
magnetic coupling is then applied to make it gauge
invariant. If the electric dipole approximation can
be made, in which the vector potential depends on-
ly on the time, it is shown that the additional de-
pendence on the electromagnetic field which is in-
duced just cancels out. Vfe are thus left with the
original velocity-dependent potential before the
principle of minimal electromagnetic coupling was
applied. This velocity-dependent potential is equal
to the original nonloeal exchange potential, so the
procedure has not changed the equations.

The HF exchange potential in Eq. (4.1) is a non-
local potential,

[V„P ](r, c) = d'r' V,(r, r')

x +r 0' &r 0'

(5.1)
where summation on repeated spin indices is im-

plied. Any nonlocal potential ean be rewritten in
terms of a velocity-dependent (i.e., momentum-
dependent) potential. '4 However, for a potential
that depends on the orbitals, the prescription for
rewriting it in terms of the velo'city is not without
ambiguity. Starace' considered only a nonlocal po-
tential in which the potential did not depend on the
orbitals, although he applied his result to the HF
exchange potential.

Using the translation operator, Starace' writes
the orbital g (r', c') in terms of (II) (r, c') as

y (r', c') =exp[i(r' —r) p/if]g (r, c'), (5.2)

where P= -ih B/Br is the momentum operator. The
expansion of the exponential in Eq. (5.2) gives a
Taylor series. From this expansion it is clear .

that the operatox li does not operate on the expan-
sion parameter r' —r." The effect of the transla-
lation operator in Eq. (5.2) is to introduce a mo-
mentum dependence. "

A point that was apparently overlooked by Star-
ace' and others" is that the HF exchange potential
does not depend on the local density at r', since it
involves p&(r, o). The orbital Q, (r, o) can be writ-
ten in terms of the orbital Q,(r', o) by again apply-
ing the translation operator

P;(r, c) = exp [i(r r') ~ p—'/k]P, (r', c), (5.3)

where fP =-NB/Br' is the momentum operator.
This equation can also be used in Eq. (5.1). There
is thus not a unique prescription for replacing the
nonlocal exchange potential by a velocity-dependent
potential, since Starace' did not use Eq. (5.3).

When both the expressions in Eq. (5.2) and (5.3)
are used, the HF exchange potential in Eq. (5.1)
becomes

(5.4)

(5.5)

which is obviously not the same form as Eq. (5.2).
In order to make the velocity-dependent potential in Eq. (5.4) form invariant under local gauge transfor-

mations, the principle of minimal electromagnetic coupling can be used, in which j5 is replaced by
qA/c. " Then the potential in Eq. (5.4) becomes

[V„(X)(„](r,v) = J d'v')', (r, r') g, (P, o') exp[((ll)(F —P) [p'-qA(r', t)/c])4, (T", s)
1

[V„(II) ](r, o) =
(

d'r' V(r, r') Q,*(r', o') exp
& Q, (r', c) exp~ g f~(r, c').i(r —r') p, (i(r' r) ~ j5-

=1

In contrast to Eq. (5.1), this velocity-dependent potential is no longer form invariant under the local gauge
transformation of Eq. (4.3). For example, Eq. (5.2) transforms under the local gauge transformation in

Eq. (4.3) as

(I)' (r', a) = exp{i(q/Kc)[A(r', t) —A(r, t]j exp{(i/K)(r' —r) [p —qVA(r, t)/c]) P'o(r, o'),

x exp{(i/$)(r' —r) ~ [p —qA(r, f)/c jjQ (r, c') .
Equation (5.6) is now form invariant under the gauge transformation in Eq. (4.3) in the sens'4 that

[V„(A')Q'](r, c) = exp[iqA(r, f)/kcj[V, „(A)$ ](r, o'),

(5.6)

(5.7)
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where the new vector potential A is given by Eq. (2.5). Equation (5.6) shows that there is thus an addition-
al interaction of the system with the electromagnetic field which is induced by this procedure.

However, in situations where (a) magnetic effects are negligible, and (b) the electric field is slowly
varying over the dimensions of the atom, the spatial dependence of A can be neglected, and A(r, t)
=A(t)." Then Eq. (5.6) becomes

x exp((i/k)(r' —r) ~ [p —qA(t)/c])Q (r, o') . (5.6)

Now since p' does not act on the expansion variable
r —r' in the first translation operator and p does
not act on the expansion variable r' —r in the sec-
ond translation operator, t;he dependence on the
A(t) cancels out. We then obtain in the dipole ap-
proximation

treating the electromagnetic field by perturbation
theory destroys the gauge invariance. " Expanding
out Eq. (2.2), we obtain for the interaction

'If„,, = — P [p, A(r;, f) +A(r„ t) p;]

[&„(A)4 ](r, o) = [V.„(0)$ ](r, o), (5.9)

where the right-hand side is given in Eq. (5.4).
Thus for the Hp' exchange potential in the electric
dipole approxixnation, there is no additional de-
pendence on the electromagnetic field which is in-
duced by converting it in this way to a momentum-
dependent, gauge- invariant potential.

It should be emphasized that this section only il-
lustrates a modification of the procedure used by
Starace' and others. " This procedure is not at all
necessary because the exchange potential is al-
ready gauge invariant as shown in Sec. IV. In the
atomic case there are no nonlocal or velocity-de-
pendent potentials in nature, in contrast to the nu-
clear potential. "

VI. LENGTH AND VELOCITY FORMS OF THE
INTERACTION

The conclusion arrived at by Starace' is that be-
cause of the nonlocal nature of the HF exchange po-
tential, a "length" form of the interaction between
electromagnetic radiation and matter should be
used. As we saw in Sec. III, the "length" form of
the interaction should indeed be used, but not; in
the sense of Starace' and Lin. ' If the HF equations
are not to involve the vector potential, the length
form that should be used is the electric dipole in-
teraction, -qE ~ r.

Since the HF equations are gauge invariant, as
shown in Sec. IV, any gauge can be used to calcu-
late the effect of the electromagnetic field. How-
ever, the freedom to choose the gauge and the
freedom to choose the unperturbed Hamiltonian are
intimately related, and not independent as corn-
monly supposed. "'" %hen an arbitrary vector po-
tential A is used, the gauge invariant HF equations
in Eq. (4.1) involve the vector potential.

The usual procedure" of expanding out the quad-
ratic term in the Hamiltonian in Eq. (2.2) and

The Coulomb gauge is usually used, where V ~ A=0
and A, =O. In the electric dipole approximation A
depends only on the time, and the A. ' term can be
removed by a unitary transformation;" Then Eq.
(6.1) gives the usual "velocity" form of the inter-
action

(6.2)

However, the expansion of the Hamiltonian de-
stroys the manifest gauge invariance of the theory
developed in Sec. III. When Eq. (6.2) is used as the
perturbation the expansion coefficients of the wave
function + in terms of the atomic states 4 „are
gauge dependent, and are therefore not probability
amplitudes.

For many first- and second-order processes,
the interaction in Eq. (6.2) gives the same result
as the length form of the interaction in Eq.
(3.7).'"" However, for nonresonant processes,
the two interactions are not in general the same. '4

Lamb" recommended the "length" interaction in

Eq. (3.7) as the proper interaction, because it
agreed with his experiments. The interactior. in

Eq. (3.7) is manifestly gauge invariant because it
. explicitly involves the electric fieM E. Qn the oth-
er hand, the "velocity" interaction in Eq. (6.2) in-
volves the vector potential, and so it is not unique
because a term V'A can be added to A without
changing the physical situation if A satisfies Lap-
lace s equation.

Grant" has recommended that the velocity form
of the interaction be given a privileged position.
The velocity form of the interaction in Eq. (6.2)
comes from the vector potential in the Coulomb
gauge. The Coulomb gauge is one of the most con-
venient to use when quantizing the electromagnetic
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pa

q ~Sigh

int —z — HHp & ~ rf A
g

(6.3)

fields but the Lorentz gauge can also be used. "
In any case, the combined electron-photon system
must, of course, be gauge invariant, so obviously
any gauge can be used even in the quantized field
problem. " There thus does not seem to be any ba-
sis for recommending the velocity form of the in-
teraction other than convention.

In the situation considered here, the electromag-
netic field is classical and the electrons are de-
scribed nonrelativistically. Any gauge for the
electromagnetic field can be used in the Schr5ding-
er equation in Eq. (2.1). As the discussion in Secs.
II and III points out, it is not the Hamiltonian that
is gauge invariant, but it is the energy operator. '""
For the probability amplitudes in Eq. (3.2} to be
gauge invariant the eigenstates of the energy oper-
ator must be used. In the electric dipole approxi-
mation when the gauge is chosen such that the en-
ergy operator is equal to the atomic Hamiltonian,
it is the length form of the interaction that is ob-
tained. Although this is a specific choice of gauge,
it is the only one for which the basis functions do
not depend on the electromagnetic field. Grant"
emphasizes that gauge invariance implies charge
conservation in the Lagrangian formalism. He
then shows that the HF theory does not satisfy the
equation of continuity, which apparently means that
the HF theory is not gauge invariant. As we have
seen in Sec. IV, HF theory as formulated here is
in fact gauge invariant. Grant and Starace" have
attempted to reconcile their differences, but con-
clude that "it is clear that there is still much to be
done before the last word can be said on the sub-
ject."

Because of the extra dependence on the electro-
magnetic fieM which was induced by the nonlocal
potential, Starace' found the interaction to be giv-
en by the "length" form

for a harmonically varying field A(f) = A(0) e-'~'.
The commutation relation,

Ho, Q F) =-iS Q —~,
m ' (6.5)

is valid only for a local potential. W'hen it is used,
the matrix elements of H„, in Eq. (6.2} with re-
spect to the eigenstates of H, in Eq. (3.8) are

where 8&"„~=E" -8"„ is the difference between
the system energies calculated in the HF approxi-
mation, and 4",~ is the HF wave function for the
system in the state n.

Thus, both Eqs. (6.6) and (6.7) have the same
form. " If the condition of resonance u„=(d or
(Pr = &o is used in Eqs. (6.6) or (6.V), respectively,
they are equal to the corresponding matrix element
of the interaction in Eq. (3.V). However, . the reso-
nance condition can be satisfied by only one matrix
element. Unless two operators have all their ma-
trix elements equal they are not the same opera-
tor. For nonresonant processes the interactions
in Eqs. (6.2) and (6.3) give results different than
the length interaction in Eq. (3.7).'4 In Sec. VII we
explore the implications of the inequivalence of
length and velocity forms of the interaction on the
length and velocity forms of the dipole oscillator
strengths.

(6.6)

where 8'u„=E„-E . The HF system Hamiltonian
H» does not satisfy Eq. (6.5). However, the ma-
trix elements of the interaction H,",, in Eq. (6.3)
are

&@» IHtg 'I@sr
&

&ds F
E(') ' &+sr

I
~ ~~

I

4»& (")

where B„F is the HF Hamiltonian for the system
in the absence of the electromagnetic field. Be-
cause H» is nonlocal, Eq. (6.3) is not the same as
the "velocity" form of the interaction. However, it
is also not the same as the length form in Eq. (3.V).
As we have seen in Sec. V, the procedure Starace'
used in obtaining Eq. (6.3) did not include the addi-
tional velocity dependence in Eq. (5.3) required to
make the exchange potential gauge invariant. Thus
the interaction in Eq. (6.3) should not be used.

It is instructive to compare the matrix elements
of the interactions in Eq. (6.2) and (6.3). In the
Coulomb gauge, the electric field is

(6.4)

VII. LENGTH AND VELOCITY FORMS OF OSCILLATOR
S'fRKNGTHS

A question that is related with whether to use the
length or the velocity form of the interaction is the
question of whether to use the length or velocity
form of the dipole oscillator strengths. Hansen"
has shown that to each form of the interaction
Hamiltonian there corresponds a form of the dipole
oscillator strength, although he says they are aQ
equivalent. We have shown in Sec. III that if the
atomic Hamiltonian is to be used as the unper-
turbed Hamiltonian, it is the length form of the in-
teraction that must be used to insure a gauge in-
variant result. The length form of the interaction
implies that it is the length form of the dipole os-
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cillator strength that naturally occurs in Eq. (3.9)
for the gauge-invariant probability amplitudes.

The "length" form fpr oscillator strengths for
dipole transitions" is defined as

f~ = ra„„(4„)$r, (o ) ', (v.l)

where k&„=E„-E is the energy difference be-
tween the eigenstates 4„and C of the atomic Ham-
iltonian H, in Eq. (3.8). For a local Hamiltonian,
the commutation relation in Eq. (6.5) can be used
to express the dipole length form in terms of the
dipole "velocity" form'

(v.2}

A further application of the commutation relations
in Eq. (6.5) gives the dipole "acceleration" form, '

(7.3)

where V is the total potential energy. If the exact
wave functions are given, then the different forms
of the oscillator strengths in Eqs. (V.l)-(7.3}are
all numerically equal,

nnt nnt nm ~ (V.4)

(v.5)

for a local Hamiltonian H, . This conclusion is also
true if exact eigenstates of any local model Ham
iltonian are used. It is universally agreed that the
dipole acceleration form in Eq. (7.3) does not give
reliable results because it gives a high weight to
the region near the origin where approximate wave
functions are not especially reliable.

If the exact Hamiltonian H, is nonlocal (i.e., ve-
locity-dependent) as it is in nuclear physics, " then
the commutation relation in Eq. (6.5) is not valid.
In this case Eq. (7.4) is not valid, and the various
expressions in Eqs. (V.1)-(V.3) are not equaL Be-
cause of our gauge-invariance arguments in Sec.
III there is only one dipole oscillator strength,
namely, the length form in Eq. (7.1). The other
expressions in Eqs. (7.2) and (7.3) are based on in-
teractions that violate the gauge invariance of the
theory.

In the atomic case where the atomic Hamiltonian
is Eocal, the situation is more subtle. Although
Eq. (3.9) with the length form of the interaction is
still the correct equation to use, it may be trans-
formed by using the commutation relation in Eq.
(6.5) to give

ilc —E„c„

Even though Eq. (7.5) involves the matrix elements
of the "velocity operator" P/m, it is not the same
equation as we would have obtained using the ve-
locity form of the interaction in Eq. (6.2). The
matrix elements of the length arid velocity forms
of the interaction are related by Eq. (6.6).

The controversy over the length versus velocity
form of the dipole oscillator strengths is now seen
in a different perspective. The length form of the
interaction in Eq. (3.7) is the one that should be
used. However, for a local Hamiltonian H, Eq.
(3.9) can be transformed into Eq. (V.5) which is an
equivalent equation for the gauge-. invariant proba-
bility amplitudes. For a nonlocal model Hamilto-
nian like the HF Hamiltonian, which in some sense
approximates Ho, the length and velocity forms of
the dipole oscillator strengths are not equal. The
velocity form of the dipole oscillator strength
would occur when Eq. (7.5) is solved, and the
length form would occur when Eq. (3.9) is solved.
It can be legitimately asked then whether the length
form of the dipole oscillator strength in Eq. (7.1)
or the velocity form in Eq. (7.2) gives a result
closer to the exact value. This is a question that
must be ultimately answered on the basis of de-
tailed computation.

However, since Eq. (7.5) is derived from Eq.
(3.9), which is based on the length form of the in-
teraction, another point of view is also possible
when nonlocal model Hamiltonians are used. The
length form of the dipole oscillator strength can be
considered to be the fundamental one, since it
emerges directly from the correct form of the in-
teraction. 'The deviation of the calculated length
form of the dipole oscillator strength from the true
value, if known, is a measure of the accuracy of
the model Hamiltonian. If the velocity form of the
dipole oscillator strength is also calculated, the
deviation of it from the calculated length form is a
measure of the nonlocality. of the model Hamilto-
nian. This point of view emphasizes that it is the
length form of the interaction which is fundamen-
tal, and which leads naturally to the length form of
the dipole oscillator strength. The velocity form
of the dipole oscillator strength is a derived result
that is only valid when the true local Hamiltonian
is used in the commutation relation of Eq. (6.5).

VIII. CONCLUSION

This paper has shown that on the basis of the
gauge invarianee of the interaction of electric di-
pole radiation with matter, the length form of the
interaction, -qE ~ r, should be used, and not the
velocity form of the interaction, -(q/m)A ~ jY.

Therefore, the length form of the dipole oscillator
strength arises naturally in the solution of the
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equations of time-dependent perturbation theory.
If the Hamiltonian is nonlocal, as it is in nuclear
physics, "the length form of the dipole oscillator
strength is the only valid form.

If the Hamiltonian is local, as it is in atomic
physics, the exact length form of the dipole oscil-
lator strength may be transformed into the velocity
form. In practice, exact wave functions are sel-
dom available and it is necessary to use approxi-
mate wave functions that are eigenstates of some
model Hamiltonian. If the model Hamiltonian is
local there is no problem, since the length and
velocity forms of the dipole oscillator strengths
are still equal, although not equal to the exact os-
cillator strength. But if the model Hamiltonian is
nonlocal, as is the HF Hamiltonian, the length and
velocity forms of the dipole oscillator strengths
are not equaL

Two alternatives then arise. The first is to cal-
culate the length form of the dipole oscillator
strength with the eigenstates of the nonlocal Ham-
iltonian. The second is to transform the length
form of the oscillator strength to the velocity form
with the true local Hamiltonian, and then calculate
the matrix elements with eigenstates of the nonlo-
cal model Ha, mi, ltonian. These two procedures lead
to different results, and which gives an answer
closest to the exact oscillator strength is a ques-
tion that must be answered by detailed computa-
tions in a particular situation.

Since the length form of the interaction is the one
implied by gauge-invariance arguments, the length
form of the dipole oscillator strength is the form

that occurs naturally. The velocity form must be
obtained by a transformation based on the commu-
tation relation in Eq. (6.5). Thus a valid point of
view is to consider the deviation of the length form
of the dipole oscillator strength from the true val-
ue, if known, as a measure of the accuracy of the
theory. The deviation of the velocity form of the
dipole oscillator strength from the length form is
then taken to be a measure of the nonlocality of the
model Hamiltonian.

This paper has not solved the problem for the
case of a local Hamiltonian of which form of the
dipole oscillator strength gives the best numerical
result. It has shown on the basis of gauge invari-
ance that it is the length form of the inIeraetion

I

that must be used. For a nonlocal Hamiltonian on-
ly the length form of the oscillator strength makes
sense. For a local Hamiltonian the velocity form
of the oscillator strength must be derived from the
length form using an exact commutation relation.
In this sense the length form of the dipole oscilla-
tor strength is more fundamental than the velocity
form.
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