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Correlation functions of the two-mode ring laser
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The intensity and amplitude correlation functions of the optical field of a ring laser at line center are
calculated, under conditions when the two pump parameters corresponding to the counter-rotating traveling
wave modes are not necessarily equal. This represents a generalization of earlier treatments by M-Tehrani
and Mandel {1978)and Hioe (1978). The laser is assumed to be at rest. A perturbative technique is used to
express the correlation functions for a small di6'erence c of pump parameters in terms of the solutions for
e = 0. It is found that the cross correlations are unchanged to the first order in e, whereas the
autocorrelations both of the light amplitude and of the light intensity are modified. Curves are presented to
illustrate the behavior.

I. INTRODUCTION

The theory of the nonrotating two-mode ring
laser, ' which is a particular example of a general
two-mode laser, has recently been developed suf-
ficiently to yield expressions for the correlation
functions' of the optical field. The analysis was
based on the solution of the master equation for
the laser field, which has the form of a Fokker-
Planck equation for the probability distribution of
the field, and was a generalization of an earlier
calculation by Grossman and Richter. '. The treat-
ment has since been further generalized to an N-
mode laser by Hioe. '

Unfortunately, all the time-dependent solutions
of the multimode laser problem obtained so far
have a common restriction: they are limited to
equal pump parameters for all the laser modes.
Although, superficially, it might seem that the
two ring laser modes, which correspond to waves
propagating clockwise and counterclockwise around
the ring, would have similar losses, in practice
slight asymmetries are generally present. As a
result, the pump parameters of the two modes are
usually slightly different also. In some recent
experiments in which the light-i. ntensity fluctua-
tions of the two modes of a particular ring laser
were investigated, ' it was found that the two pump
parameters differed by about 0.8, and that this dif-
ference remained approximately constant as the
pump parameters were varied. It is therefore im-
portant to be able to generalize the theory for a
laser with unequal pump parameters.

This turns out to be a nontrivial problem. As a
first step towards its solution we use a perturba-
tive technique to generate the solution for a small
difference e of pump parameters in terms of the
previously obtained solutions for equal pump pa-
rameters. We show that, to the first order in e,

cross correlations between the two modes of the
laser are independent of c, but that the autocorre-
lation functions of the light amplitude and the light
intensity both vary with e. Curves are presented
that illustrate the effect of the asymmetries.

II. FORMULATION OF PROBLEM

We start as in Ref. 2 from the coupled equati ons
of motion for the slowly varying complex ampli-
tudes E,(t) and E,(t) of the two laser modes.
These equations, which were first derived by
Lamb, Aronowitz, and others, ' are supplemented
by the introduction of random Langevin forces
q, (t) and q, (t), corresponding to spontaneous-emis-
sion fluctuations, and take the form

Here a, and a, are the pump parameters of the
two modes, which correspond to the two counter-
rotating waves of the ring laser. The mode cou-
pling constant ( depends on the detuning b,&u of
the cavity from the atomic line center, and is
given by

$ =1/[1+ (a(o T,)'], (2)

(q,*. (t )q, (t ')) = 25, &5 (t —t '), i, j = l,. 2 .

where T, is the lifetime of the atomic transition.
The coupling constant t becomes unity at the line
center. The ring laser itself is assumed to be
nonrotating, and the frequencies of the two counter-
rotating modes are taken to be equal. The Lange-
vin noise terms are taken to be statistically inde-
pendent, 5-correlated, Gaussian random processes
with
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If we write

E, = ~y, e'~~ =x, +ix„E,= vI, e'~2=x, +ix, (4)

expression'

N = v'I'[a exp( ,' a—')(1+erf-,'a) + 2/~v] . (7b)
then the laser field is described by the four-di-
mensional vector x(t).

One can write a Fokker-Planck equation for the
probability density p(x, t } of %(t), which corre-
sponds to the two coupled Langevin equations (1)
and takes the form

BP
& B 4

(A,P)+-.' (&;,P), (5)Bt
» ~ Bx» ',

& Bx»BX&

with the drift vector X given by

A, = [a, —(x,'+x,') —g(x', +xg]x,

A, = [a, —(x,'+x,') —&(x', +xg)x, ,

A, = [a, —(x', +x',) —$(x,'+x,')]x„
A, = [a, —(x ', + x ',) —$ (x,'+ x',)]x„

and the diffusion tensor D,.~ by

(6a)

(6b)D. . =25»).

The steady-state solution p, (x) of Eq. (5) is read
ily found to be'

p, (x) = (1/N) exp (—,'a, I', ——' I, + ,' a,I ——' I, ——'$I,I ), —

(Va)

in which I, and I, are the instantaneous light in-
tensities defined by Eqs. (4) and N is a constant
that ensures the normalization of p, (x). In the spe-
cia) case a, =a, =a and $ =1 it reduces to the simple

The general time-dependent solution p(x, t) can be
shown to be of the form'

or

a, +a, =2a, ai —a2

1 1
Qg =a+ E a2 =a 2E (10)

in terms of which the differential element becomes

d'x= —,'ududvdP, dP, ,

the differential equation for g, „„~(u,v, P„P,) takes
the form

[2(u, v, 6) +e Z|(u, v)]gi „p =Xi „egg (12)

Here g and 2, are differential operators defined
by

p(x, t) = g c,„„,4p, (x) g, „„,(x) exp(-X, „,t),
l yminyP

(8)

in which the coefficients c, „~ are constants deter-
mined by the initial conditions, and the g, „~(x)
and A. , „~ are orthonormal eigenfunctions and
eigenvalues of a self-adjoint differential operator.
Kith the help of the change of variables

I, +I, =u, 0«u, (I, —I,)/(I, +I,)=v, —1«v«1, (9)

and

B B 4 B 1 B ]. B
Z(u, v, e) =—-4u, —8—+2a —(3-~8m')u+-,'u(a-u)'+ — -(1-v'), +2v ——

BQ BQ u ev' ev 2(1+v) ey,' 2(1 —v) ay',

g, (u, v) -=-,'uv(a —u) . (14)

Once the general time-dependent solution is
found, we also have the Green function of the pro-
cess, which is the particular solution for which
the initial probability density has the form of a
5 function. The Green function is also the con-
ditional probability density G(x, t +7 lx', t) that the

optical field is characterized by the vector x at
time t + v if it was x' at tiine t. This immediately
allows us to write the joint probability density
p, (x, t + r; x', t ) for the field at two times t and
t+~, and we find, in the steady state, '

p (x t + 5 %t)= G(x, t +'Tlx, t)p(x ) = [p,(x)p, (x')]" g g,*„„,(x)gi...(x') exp(-&i...171) .
l, m, n. P

(15)
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With the help of p, (x, t + 7;x', t ) any two-time cor-
relation function of the optical field can be eval-
uated, once the eigenfunctions g, „p(X) and eigen-
values A ) p are known.

In the special case of equal pump parameters
a, =a, =a, or c =0, and when the detuning Ace = 0, or
g =1, the problem simplifies. The eigenfunctions
and eigenvalues then satisfy the simpler differen-
tial equation

~(us vl 0)Zlmnp = ~!mnp8! mnp

where the label (0) serves to remind us that e =0.
It can be shown" that in this case the variables
u, v, P„P, are separable, so that g,"&

p factorizes
and may be written

Zimnp(ui » 0'i~ 0'2) =Sinp(v) 4~mnp(u)

x(e'" ~/~2w)(e' '/v'2p), (17)

in which each of the functions is separately nor-
malized. If we put

S,„p(v) =4M,„p (1+v)" '(1 —v)P PP'" (v),

where M, „p is a normalizing factor, then P,+'"' is
found to obey the differential equation

~
d'

(1 —v'), PP'"'(v)+ [n-p —(n+P +2)vj—
O'U dv

xPp '"'(v) + [p,„p
——,'(n+p)(n+p +2) jpp""'(v) = 0,

which becomes identical with the differential equa-
tion satisfied by the Jacobi polynomials' PP ' "'(v)
if we put

P, „p
= l(l+n+P +1) + ,'(n+p—)(n+p+2) .

Accordingly we write'

g, '.„,(u, v, y„y,) = (M, „,)' '(1 v)p —'(1+v)""Pp"" (v)R, „„p(u)e'"'~e""/2s, l, m=0, 1,2, . .. ,

if n=-l, -l+1, ... , -1,0, 1, 2, . .. , p =0, 1,2, . .. ,

=(M )' '(1 —v) P '(1+v) 'P,'+p+ "'(v)R, „„(u)e'n~'e'P~2/2n, l, m=0, 1,2, . . . ,

(19a)

if n = -I, -1+1,.. . , -1,0, 1,2, . .. , P = -E, -1+1, ... , -2, -1, and E+ n+p ~0.

(19b)

For convenience we use Eq. (19a,) in the subse-
quent analysis, with the understanding that this is
to be replaced by Eq. (19b) whenever p becomes
a negative integer. We shall find that only the
terms with p = 0 are actually needed. The normali-
zing factor is given by'

fore to the same eigenfunction R, „p and eigenvalue
If we denote by 4 the combination

I =-2l+n+P,

the potential becomes

VI(y) =[L (L+2)+ —,'j/y'+ 2a+ (-,'a'-3)y'
2l+n+P+1 l!(l+n+p)!

!np 2n+p+1 (l+n) ~ (l+P) t
(20) —ap +W4 I (25)

d
[+~i". p Vi.p(y) j4i .p(y) = 0

cfg

in which

(21)

The functions R, „p(u) and the corresponding eigen-
values X,"'„p are expressible in terms of the solu-
tions of the one-dimensional Schrodinger equation

and this clearly depends only on the one index L,
which has a degeneracy (L+1)'. Accordingly, we
henceforth replace the three labels l, n, P on V,„p,
g,„„p, R,„„p, X", ~„p by the single label L, and write
V~, g~, R~„, A~". As the Schrodinger equation
is one-dimensional, we may take the eigensolu-
tions R~ (u) to be real functions from now on.

&i .p»= zy"'R& „p(y'), (22)

and the "potential" V,„p(y) is given by

V,„p(y) =[4l(l+n+p+ 1)+ (n+P)(n+ p+ 2)+ —,'j/y'

+ 2a+ (-,'a' —3)y' ——,'ay'+ —,'y'. (23)

Although all three indices l, n, p appear in this
expression, it is clear that certain combinations
of them give rise to the same potential, and there-

III. LASER VfITH UNEQUAL PUMP PARAMETERS

%e now consider the case when the pump para-
meters a„a, are not necessarily equal, but the
difference a, —a, =—E is small, so that terms in
E', E', etc. , may be neglected. To this degree of
approximation the differential operator 2(u, v, e)
given by Eq. (13) is independent of e, and will
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We now make the ansatz that, for small E,

grmnp(ut 1 ~1t p2) gtmnp( 1 1 4'rt 4'2)

KlmnP( t t P1) 42) t

(0) (1)
~lmnp Lm+ ~ lmnp r

(27)

(28)

henceforth be denoted by R(u, v). If we assume
that gr„„p(u, v, Q „(P2) depends on (tt„(())2 through
the oscillatory phase factors exp(in/, ) and
exp(iP(())2) as before, then 8 (u, v) becomes

Q2

2 (u, v ) = -4u, —8—+ 2a —3u+ ~u (a —u)&I' I
S2 Q n2 p2

+—-(1-u')t, +tva +1(1 )+1(1 )).
(26)

where g'r~» and X'r"» remain to be determined. On
substituting Eqs. (27) and (28) into Eq. (12), using
Eq. (16), and dropping terms of order e', we ob-
tain

(29)

Next we multiply both sides of this equation on the
left by g'r,"*,„,~ and integrate. AS 2 —XL" iS a
self-adjoint differential operator, we have

( grmnp — Lmgr m n p d &

(0) g (1) (O)
gl'm' n'P' (~lmnP ~1)g tmnpd X

and, with the help of Eq. (16) and the orthonormal-
ity of the g', "„p functions, this becomes

&(o) &(0)h «)+ (» a4 «(» ~ ~ ~ ~ «) 4 P.("I'm' "Lmt gl'm'n'pglmnpd 'X "lmnp l 16m''m6n'n6p p 'gl'm'n'p elm'np

We now substitute the explicit forms of gIor„p and 2, given by Eqs. (19) and (14), respectively, into this
equation, and obtain

(0) (0) (0) g (1) 4(~L m -~L ) Sr mn p@ npdX

1

=yI„"„P61,16„,„6n,„5P,P-(Mr, „pM„P)'I2 dv(1 —v)'p'(1+v) "'I', ,
'"' (v)PI' ''"' (v)v5„, „5p.p

»1

x -,'g (a —u)RL, „,(u)RL„(u) nu du . (30)

The e integral can be transformed with the help of the recurrence relations among Jacobi polynomials, '

2(l+n)(l+n+p) (P„'&( 2(l+1)(l+n+p+1) rp„r( 2(l+n)(l+p)

2(l+1)(l+p+1) rp„r( )(L + 1)(L+ 2)
(31)

When we substitute this into Eq. (30) and make use of Eq. (20) together with the orthogonality of the Jacobi
polynomials, we find

(o) (0) i (o) g (1) d4 (1)
~

—&L ) gr .pgr np-&=~r .P61 r6m 6nn6P p

l(l +n) (l+ 1)(l+n+ 1)-2 -a- ~ + 1+2 DL~ Lm&r r&n'~p p

(l+ l)(l+n+P+ 1)(l+P+ 1)(l+n+1) ' '
(L+ 1)(L+2)'(L+ 3) L+2 m'Lm l' l+1 n' n P'P

2
l(l+n+p)(l+p)(l+n) 'r'D

L2(L 1)(L 1) I;2 m'Lm 1' l-1 n' n (32)

in which we have used the abbreviation

—,'ua-e&, u&L u ~8dg. 33

n'=n, P'=P on both sides of the equation, and find

2l(l+n) 2(l+ 1)(l+n+ 1)
rmnp ImLm '

Equation (32) allows us to obtain the quantity
1'r"„p immediately. We simply put l'=l, m'=m,

Therefore, X'r"„p is given in terms of the same
eigenfunctions R L„(u) that were encountered for
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the symmetric ring laser. In practice, in order to
evaluate the most important correlation functions
of the laser field, it suffices that A.,"'„p is known
for n=0=p and for n=1, p =0 or n--0, p=1, as we
shall see. In the first case, when n=O=P, it
follows immediately from Eq. (34) that

(35a)
so that, from Eq. (28)

~IGLOO
= XL + 0(e'), (35b}

and the eigenvalues are unchanged from the sym-
metric ring laser. For the other cases it is
generally sufficient that the factors D L ~ are
known for a few smal. l values of I,m. Some
values of D~ I are given in Table I below.

From Eq. (32) we also find, when

mmmm',

E(l+I) (&+1)(~+&+1) DIm ImAl'm'n'p' — O&o) g &) d g = -2 — + —

+ 2 ~(p) (0) l' l n'n O'p

(&+1}(&+z+p+1)(l+p+1)(l +n+ 1) '
2DLenm Im

(f +1)(L +2)'(&+3) &L'e2 —&La

f(f+n+P)(f+P)(f+II) ' 2 L 2m Im 5
2( )(~ 1) (o) ~(o) l' [ 1 11' ll f (36)

'This gives us a "representation" of g,'"» in terms
of the complete set g',"„p. For with the help of the
completeness property

gEmnl(X) = g'+, lmnlt
' gI m n P (X»

l' f m' f n' f P'
(38)

in which the coefficients A', ™&"'Pare just the
quantities given by Eq. (36), so long as m&m'.
We note that the nonvanishing contributions to
A,' „p" P are all real. When m =m' and l=l' the
corresponding coefficients cannot be obtained in
the same way. However, it follows from Eq. (27),
when we take the squared modulus of both sides

(37)
we find immediately, on multiplying both sides of
the equation by gI"„f(x') and integrating,

and integrate, and then make use of the normal-
ization of both the g, „f and g', "„ffunctions, that

g [mnf 0 (&2) (39)

Almoo = 0 for all l, m', m .
IV. INTENSITY CORRELATIONS

(40)

From Eq. (9) it follows immediately that the
two-time intensity (auto- or cross-} correlation
function of the field is given by

so that A', "„Ppmay be taken as zero to the usual
degree of approximation. Equations (36) and (39)
together suffice to determine the principal correla-
tion functions of the laser field, as we now show.
Indeed, we shall find that the only contributing
coefficients A', „&"~ are those for which l, l', n,
n', P, P' = 0, 1 and that the others are not needed.
A drastic simplification occurs in Eq. (36) when
n' = 0 =n, P' = 0 =p, and l = l', in which case we find

(1, (i)1 (i+e)) = fwt'[1- (-1), v'] [ wt(t-1) v](t, (x', i+e;x', t)d'ed x', with )r, h' = t, t,

and with the help of Eqs. (15), (27), and (38) this becomes

(I,, (t) f,(t+ I)) = —,
' uu'[1 —(-1)"'n'][1 —(-1)'v] g [p,(x)p, (x )]'In

lf fn, n, P

+ed', "„,(x') Q d,"w""d].'„". v(x))exp(-t, wit[)d'xd'x
)I fft ~ ffd Pl

(41)
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We now introduce the explicit expressions for p, (x) and g, „~(x) given by Eqs. (8) and (19), respectively,
and obtain, after using Eq. (11) and integrating with respect to the four phase angles, to the first order
in 6,

7r2
ao ~i

(I„,(t)I,(t+ T)) = . ~ du du'u'u" exp( —,
' au ——,

' u'+ —,
' au'- —,

' u") dv dv' [1—(-1)' v'][1 —(-1)"v]

& Q M„,P,""(v)P," 0)( v')R~„(u) R~„(u')[1 +, —',c(uv+u'v')]
l~ m

+P]' "(v')p,""(~ )R, „.(e)R „(a. ').])exp(-X, „„]v]). (42)

1

[1—(-1)'v]P, (v)dv =25„-—,'( 1)R6„,
wl

(43a)

In arriving at this expression we have expanded
the exponential exp(a uv) to the first order in &,
which requires that ca be small, since u is of
order a for large positive a. Now M, oo ~+ Qp and

P,""(v)=P, (v), which is the Legendre polynomial.
Also, from the properties of the Legendre poly-
nomials we have'

[1—(-1)'v]vP, (v)dv '=-,' [&„—(-1)"(t),0+ —', &„)]~

(43b)

When this is inserted in Eq. (42) and we make use
of the orthonormality of the Legendre polynomials,
together with Eq. (35b), we find

(I, (t)I,(t+T)) =—'v'g (Ii"')'exp(-&0."~7 ~)+-, (-1)"'(K")'exp(-X'0'~ T~)

(2) l 'oo

tn~

+a+ (-'(-1)"K'*'K"'.&' '"— K'*'K"'.x' '"
axp( —x"']v])( 1)A ( 1)R'

2m 2m' lmoo 2m Om' lmoo 2m
el'

—,—', e[(-1)'+(-1)'][a,".'Z,".' exp(-~,".'
J
T

] ) +Z,".'Z,'„"exp(-],".'
f
T

f )],
in which we have introduced the following abbreviation for the u integrals:

&)0

K~"' =
J

u" exp( —,
' au ——,'u')R ~ju) du.

VtV 0
(48)

However, from Eq. (40) it follows that several of the coefficients A vanish, so that finally, with the help
of Eq. (36), we have

(I„,(t)I,(t+ T)) = —,', w' Q (Ko„")'exp(-Z,"'
~

~
~
) +-,' (-1)""'(K,'")' exp(-X,"„'

~

T
~
) +-,' c[(-1)'+(-1)"']

m=o

x g KJ''K"', ,„,
' „„exP(-x,'„']v])+K"„!K'„"., „,'"''"„,

)
axP( —x,'„']v]))

Om' 2m I-

——,', ~ [(-1)'+(-1)'][Z'&'.) Ro&."exp(-]&&J ~

7 ))+R,".'R &;„'exp(-X,".'
~

T ~)] .
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TABLE I. Some selected values of DLmLtn'

a Dip D DI,p IiLi z 21,2 DL31,3 D1,4L4

a=4
L=O 0

. 2

6
8

10

L=1 0
2
4
6
8

10

L=2 0
2

6
8

10

—1.00
—1.00
—1.00
-1.00
—1.00
—1.00

—1.29
-1.18
—1.09
—1.04
-1.03
—1.01

—1.59
—1.38

1 ~ 21
—1.11
—1.06
—1.04

—1.31
-0.89
—0. 36
-0.04
—0. 01
—0. 01

-1.62-
-1.18
—0. 61
-0.17
-0.05
—0. 03

—1.92
-1.45
—0.85
—0. 33
—0.12
-0. 07

—1.82
1 0 33

—0. 62
0. 52
1.55

. 1.26

—2. 11
—1.58
—0, 82

0, 30
1.27
1.15

—2. 39
—1.83
—1.04

0. 06
0. 99
1.07

—2. 34
—1.80
—1.09
-0.20

0, 70
1.13

—2. 62
—2. 04
—1.28
—0. 28
1.14
2. 01

—2. 90
—2. 28
—1.47
-0.38
1.28
2. 95

—2. 86
—2. 26
—1.52
—0. 58

0. 82
2. 98

—3.14
—2. 50

1 ~ 72
—0. 73

O. 56
2.47

—3.41
—2. 74
-1.91
—0. 86

0.44
1.78

0.6'

0.4 '

O2 ', ~iiL 04

—~/ 0.0

ooi
V=v-0.2 E'

0.0
r

0.5

FIG. 2. Normalized intensity correlation function

p&i (T) as a function of ~ for several values of ~, with
average pump parameter a = 4.

0.6

04'

0.2 '

o.oi
0.0 0.5 l.o

go.4

I 0.2
yo.o g

g-0.2 y
&0.4

l.5

FIG. 1. . Normalized intensity correlation function
pif i {v') as a function of & for several values of , with
average pump parameter a = 0,

The first two terms correspond to the solution
that was obtained previously'4 for the symmetric
ring laser, whereas the remaining terms re-
present a correction when the pump parameters
are unequal. If we are concerned with the cross
correlation of the two mode intensities, so that

( 1)k 1 o' 0
kWk', then the remaining terms vanish because

+(-1) =0. Hence the asymmetry has no

effect, to the first order in e, on the cross cor-
relation of the light intensities. However, it does
modify the autocorrelation functions. The con-
stant N is given by Eq. (7b) to the first order in

9' may obtain some useful approximations,
both for the eigenvalues Xi,' and for the coef-
ficients K an DI 0 an D

$ p$ p appearing in the leading
~ ~ ~

term in Eq. (46) for large pump parameters a,
by noting that the eigenfunctions Rio(u) are found
not to depend too much on L for large positive a,
and to be approximately equal to R»(u). Now the
zeroth order eigenfunction R«(u) is proportional
to the square root of the steady-state solution
given by Eq. (8) (with )=1),

R„(u)= (2'i' v/N'i') exp(-,' au —-'u') (47)

d2(i (0) L(6+2)
+ 1„— . +f(&,y)) 0 .=0, .

whe 1 eas $00 satisfies a s imilar diffe rentia1 equa-
tion with eigenvalue X' '=000

d '40d,"+f(a,X)4«= o.

The similarity of Pi, and $00 for large a then
suggests that ~i,' should be well approximated
by

=f.(L, +2)/a (48)

which is strongly peaked in the neighborhood of
u=a. However, from Eqs. (21) and (25), $i ( ),
which is simply related to R~ (u) (u=y') satisfies
the differential equation
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the autocorrelation function yields, for large a
but with ea still small,

(I,(t)I,(t+ ~)) = —,
' a' [1 + —,

' «a+ —, exp( —8v/a) ~ ~ ~ ~ ].
2 2

(51)

Figures 1-3 show the variation of the normalized
autocorrelation function p„(7)—= (I,(t) I,(t+ r))/
(I,)' —1 as a function of 7', for several values of
the average pump parameter a and the asymmetry
parameter e. Increasing asymmetry produces a
relatively small effect near threshold, but a much
larger effect well above threshold, as is to be
expected from the fact that the light in the stronger

modebecomes coherent and that in the weaker
mode becomes incoherent. The approximation
given by Eq. (51) is shown by dotted curves.

V. FIELD AMPLITUDE CORRELATIONS

We now calculate the autocorrelation function
of the complex field of one of the laser modes,
whose Fourier transform yields the spectral dis-
tribution. The cross correlation function
(E,*(t)E,(t+r)) vanishes, because the phases of
the randomly fluctuating Langevin forces were
assumed to be independent.

From Eq. (9)

(E,*(t)Z,(t+ ~)) = -,'- [uu'(1 yv)(1+v')]' 'e' "& '))p, (x, t+ ~; x', t)d'x d'x',
J

and, with the help of Eqs. (15), (27), and (38) as before, this becomes

(E*(t)E,(t+~))= —,'[uu'(1+v)(1+v')]' 'e'") '~' Q [P (x)P (X')]'I'
l, m)n~P

l't m'g n', P'

l', m', n'
y
P'

On substituting for P, (x) and gIO~(X) from Eqs. (8) and (19) and integrating over phase angles, we obtain

pl
(E~+(t)E,(t i T)) =

J du du'(uu')' 'exp( ,' au ——,'u-'+ ,' au' ——,
' u"-)

Jl dv dv'(1+v)(1+ v')
0 1

&&+ M„,P, (0(v)P '(o(v')R~ (u)It~ (u')[1y-'e(uv+u'v')]
l~m

+Xe P (M„,M, „)"p,""(v)p,". "(v 4,".",',"X„.,(e)X„,(e )) exp(-xl, m

We now make use of Eq. (31) together with the orthonormality of the Jacobi polynomials expressed by

J
1 1

(1 —v)~(1+v)"P,' '"'(v)P,~'"'(v)dv = 6»
-1

(52)

(53)

and choose n =1,P =0, l'=0. As Po""(v)=1, the integrals in Eqs. (52) can be evaluated immediately, and
we find with the help of Eqs. (36) and (39)

(x'(v)x ( v))= —'tee' (K'''")' 'eK"v"xv"~v ——'e ' ''"„, K" ' ~)eexxp(-x, „„(v(), (54)
D

m=0

where K~("' is defined by Eq. (45) as before.
The first term agrees with the expression found

previously" for the symmetric two-mode ring
laser when & =0, whereas the term in a represents
a correction when the two pump parameters are

unequal. (Note that the eigenvalue Xo» was de-
noted by A., » in Ref. 2). We emphasize, how-
ever, that the new eigenvalues X0 „differ from
the corresponding eigenvalues A.,' ' for the sym-
metric ring laser, as is clear from Eqs. (28) and
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(34). We find for large pump parameter a, with
the help of the approximation given by Eqs. (46)
and (50), for the first eigenvalue in the expansion,

(55)

provided za is small. With the help of Eqs. (49)
and (50) the leading term in the expansion (54)
then yieMs

&E,*(t)E,(t+ r)& = ~ a(1+ —,', aa}

xexp[-(Bvia}(1-—,
' &a}]+ ~ ~

(56)
'I

Some curves illustrating the variation of the
normalized correlation function

r„(r) &E=,-*(t)E,(t+r)&l&f,&

given by Eq. (54), with increasing difference s
of the pump parameters, are shown in Figs. 4-6.
The other correlation function &Ef(t)EB(t yr)& is

of course given by a similar expression with 6
rep1aced by -&. The effect of increasing asym-
metry is most noticeablewellabovethreshold, but
is relatively small in the neighborhood of the
threshold. The approximation given by Eq. (56}
is shown by the dotted curves and is seen to be
an excellent approximation for large pump pa-
rameters.

%e have, therefore, solved the general problem
of determining correlation functions for the field
of a ring laser with unequal pump parameters,
at least for small differences. In practice the
difference is due largely to an asymmetry in the
diffraction losses and is usually small.
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