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Optical properties of photon echoes stimulated by three frequencies

C. V. Beer and R. L. Sutherland
Department of Physics, Ohio State University, Columbus, Ohio 43210

(Received f 2 December 1978)

A gaseous atomic or molecular system with four energy levels E, & Eb & E, & Ed which is- stimulated by
resonant laser pulses at frequencies co, m„„co,=co,„, eo3 co„, is considered, The six photon echoes which

are stimulated by first and second pulses at frequencies co„co„co3are discussed. For wave fronts which are
described by e' ~ "' the echo phase is described by y~ = X(2y" —q') at the sum frequency co, + a2 + c03

with m = 1,2,3, at co, + co, with m = 1,2, at co, with m = 1, etc. For waves in the z direction where

y = v(x,y,z) + kz the gradient of the phase y&elds the wave-vector direction k~ = X(2k" —k') in a

physically thin sample. A probe pulse at co, and ~3 after the second pulse can generate a probe-pulse echo at

co, with phase q&
——X(2q" —q') —y, —y3, etc. , for. other frequency arrangements. Transverse phases

v (xy) can be added and subtracted, but no application is suggested for this novel feature. When all v

except one are zero, phase conjugation or phase-adaptive optics can occur.

I. INTRODUCTION
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FIG. 1. States a, b, c, d
and the near-resonant fre-
quencies vi, A@2, u3 are de-
fined in this figure. ab, bc,
cd, ad are electric dipole
transitions and gc, bd are
electric quadrupole transi-
tions.

Recent development in quantum optics and non-
linear optics have provided methods for manipu-
lating the phase of light waves. Phase-adaptive
optics'' and phase conjugation" are recent
applications. ' Parametric image conversion
was an earlier application. ' Although some as-
pects of holography occur on a short time scale,
nonlinear optics can provide additional optical
effects. Many of these nonlinear effects are due
to coherent space-phase information which is
stored in the off-diagonal density-matrix elements
and can become observable via the electric polar-
ization. This paper examines some of the optical
characteristics of the waves formed by laser rad-
iation at frequencies ~» co» ~, interacting in a
nonlinear medium. Resonant interaction with the
four states a, b, t.-, d which are shown in Fig. 1
are given primary consideration and hence include
optical nutaticn, free-induction decay, and photon
echoes.

A simple example for photon echoes shows that
for thin samples the radius of curvature z~ of the
echo at the sum frequency ~~ = ~j+ ~, + ~, is re-

lated to the radii of curvature of the first and sec-
ond pulsps by

For mor general wave fronts the space phases

y of the eikonal e"~ "can be added and sub-
tracted. A new pulse at a new frequency can be
formed which depends on the product of the elec-
tric fields of the stimulating waves. Thin sam-
ples provide a large number of possible arrange-
ments and as the samples become thicker this
number is reduced by phase-matching restrictions.
Although e' '+ '" can be formed where y is a sum
of the various space phases of the interacting
waves, it is not clear that this necessarily pro-
vides useful optical information. This is appar-
ent for the simple single-frequency photon ech-
oes." It is possible to change awave e'"e" g ""
into e""e""' "and for a single point source
this changes the apparent radius of curvature by a
factor of 2. For a more general wave ve'"
=pe'~, where. e'"~ describes a spherical wave
with origin m in the object plane, the new wave
front v' e""=(ge'"~)' becomes quite complex. A
new virtual source is formed for each pair of
source points in the object plane. This can be
compared with the echo experiment4 in which
ve'" is changed into ve "and the superposition
principle applies, Information is contained in both
the amplitude v and the phase e". In forming the
nonlinear product v,v,v, e'"j' '2 '3' it will be
shown in subsequent sections that the phases can
be Inodified. The conjugate e '" can be formed
experimentally if 1 and 2 are plane waves so that

and v, are constants and Kj K2 0 then super-
position can be used. Examples of this type are
discussed. For the resonant phenomena discussed
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in this paper more important examples have al-
most constant amplitudes across the wave fronts.
This corresponds to radiation which originates
from three real or virtual point sources and
which is subsequently phase deformed. In this
sense each wave corresponds to the eikonal ex-
pansion in which almost all the optical informa-
tion is in the phase.

Three-wave resonant effects are considered
since the sum frequency is an allowed electric
dipole transition for gases, isotropic liquids,
and cubic solids. Earlier developments have con-
sidered two-wave effects, and, since the allowed
electric quadrupole effects are weak, the obser-
vations have been made usually by probe radia-
tion.

If the density matrix element is denoted by 0' „
for a molecule in the sample, a common feature
for all these coherent phenomena is that
(o e '~') can be of the order of unity for excita-
tion by coherent waves as the average is taken
over position and velocity. A new wave e'~ is
generated and g, denotes the value of the eikonal
at the molecular position. Thus excitation by
three waves at frequencies co„v„co,stimulates
electric dipole transition waves at the sum fre-
quency ro, +&u, +&u, via(&„e '"); at&a, via (o„e ' ~);
at &u, via (o~e ' 2); and at ~, via(o~, e ' s) .
(o e ' ») and(o~, e '"») also have macroscopic
values, but are observable only in the quadrupole
approximation. These coherent density-matrix
elements occur for the resonant interactions, that
is as optical nutation for laser radiation which is
turned on suddenly, as free-induction decay when
the radiation is turned off, and as photon echoes
for multiple pulses. Even after a pulse is turned
off quantities like o„(t) persist until destroyed
by relaxation mechanisms. Thus if a pulse is
turned off at t, as shown in Fig. 2 and probe pul-
ses are applied at &u, and &u, then o~, (t, ) with its
inherent phases in exp iP(t, ) can be used to gen-
erate a new wave at co,. If a probe pulse is ap-
plied at &o, then o (t, ) with its inherent phase has
the spatial coherence of a traveling wave and
generates a new wave at v, . For two-wave radia-
tion or two-photon effects, probe radiation has

II. THEORY

A. General theory

The theory of four-level resonant interaction is
considered first. For simplicity the atomic or
molecular states are denoted by a, b, c, d, and
when necessary the state ~a) implies the quantum
numbers ~aZ, m, ), etc. An energy-level diagram
is shown in Fig. 1. An electric dipole interaction
V(t) =- P E(t) is used and the Hamiltonian in the
rotating-wave approximation can be written

with

If =If, +V(t), (1a)

been used to make the effects observable. ' Probe
radiation was used to observe the spin-flip Raman
echo" in n-type CdS; to observe the two-photon

. echo in Na vapor"; and to observe two-photon
optical free-induction decay" in Na vapor.

Focusing of single-wave photon echoes4 and
phase conjugation' has been suggested and has
been observed recently. ' This phenomenon is ob-
served in the forward direction for conventional
echoes, optical nutation, and free-induction de-
cay. These are all pulse phenomena. Steady-
state effects can be observed and have the wave
front characteristics of optical nutation or free-
induction decay. Three-wave mixing at a single
frequency ~, = ~, = ~, and on a single transition
has been used recently for phase-adaptive optics."
Only the pair of states a and b are used in Fig. 1,
but the waves travel in different directions. If
two saturating waves e""' " and e """and
a signal wave ve "~ "are superimposed in the
nonlinear medium, a counterpropagating wave
v'e" ~' ",is generated by 0„,. This type of phase-
adaptive optics has been observed in such nonlin-
ear media' as liquid CS„Na vapor, and Ge.

The theory developed in this paper is primarily
for physically thin gaseous samples where the
index of refraction is not important. As the sam-
ple becomes thicker the index of refraction cannot
be neglected. Since pulsed resonant transitions
are considered the indices of refraction for the
three frequencies are not clearly defined. This
may introduce an experimental problem for thick
samples.

t2 ts

FIG. 2. First set of pulses I at frequencies (d| 602 M3

occur during interval t~-0 and the second set of pulses
II occur during t3-t2. The photon echoes occur near
tg t3=t 2 t g.

V(t ) =I [ [ b)(a(v, e'~~ + [ c)(b(v,e'~2+
[ d)

x(c~ v,e'~~+H. c.j.
The eikonal phase

4.=e.+(i. —~. )t

and where m=1, 2, 3 and

hv, = (bl &I a) u,s, ,

(1b)

(2b)
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etc. , for v, and v, . Bracket notation is used and
(bla) =6,~. The eikonal approximation is used and
for a molecule at position r„(t) the space phase
y[r„(t)] in the absence of collisions can be written
y+j t. y„ is the phase at the initial position
r„(0) and the Doppler shift is given by

jg = (grady) r„. (2c)

onance

~Z = ~aa ~i+VZ )

ca &y +2+ Vy + %2

('la)

(7b}

I

etc. , for h„$ can be written in matrix form as

'u, is the polarization and E, the amplitude of the
laser field at frequency u&, . If the operator A(t)
is introduced where

0

U2+ 0

V 4 U*

0 v,* 0 0

(8)

A(t) =e'

and

(Sa) 0
Laa

0 v,

the interaction V(t) becomes time independent

VI =At(t)V(t)A(t) . (4)

and the states are labeled a, b, c, d for rows
and columns. Matrix elements of e'~' can be
found by finding the roots A,, of the $ matrix and
then by using the expansion theorem

ei Kt eight l'

agr Ak- Al

The transformed Schrodinger equation can be in-
tegrated for a constant 5. With ( defined as

(5)

the time evolution of the system is described by

The essential features for the formation of photon
echoes can be discussed by considering resonance
and making all 6„=0. For real v„ the four roots
follow from

U(t, i„)=A (f )e ' "" ' ' At(t„) .
Discontinuous or abrupt changes in either U„or
g„can be treated with this unitary matrix. The
position of At(t ) keeps the phase correct.

With E, =0 and with the notation for off res-

(6) =~(V2+V2+V2}k [ ~(V2 yV2+V ) —V V ]

(10)

where ~„=—~, =~, and ~ =- ~, =~ . Direct
use of the expansion theorem yields,

e' =(A. —A, ) [(A. cosA. i —A. cosA, t) —i)(A A 'ginA. i —A A. 'g'nA. t)

+P(cosA t —cosA i)+i $'(A, 'sinA, t —A, 'sinA, t)];

o„(t)=(dlo„(t)la) . (14)

The electric field generated by these oscillating
dipoles follows. in the usual manner, ' ' and with

P and $' follow from Eq. (8) by matrix multiplica-
tion.

Evolution in time of the density matrix for a
molecule at position r follows from

(12)

and the electric dipole moment of the radiating
molecule is

d„=TrPa„(t) .
Thus the quantity of primary interest for echo
formation at the sum frequencies is

the brackets ( ) denoting an average over mole-
cular positions and velocities

EH(r, t) = (iHNlp/e, A)(o„e '~&~)

x ei( P@ -(df~ t) c.c.

(f $ ) e (Hp(f km&/ (16)

The matrix elements for the density matrix
which is given by Eq. (12) are relatively simple
even for multiple pulses at resonance. Off-res-

where v~, and pg„are evaluated at r„(t), N is the
number of molecules/m', l is the sample length,
A is the wavelength, and P = (alPld). Since the
pulse amplitude is reduced to zero between pulses,
it is convenient to introduce the evolution operator
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onance numerical solutions follow in a direct
manner. A single damping constant can be intro-
duced by allowing all density-matrix elements to
decay as e &'. A more correct theory with differ-
ent damping constants for off-diagonal and diagon-
al density-matrix elements requires the same de-
gree of sophistication as the two-level problem. "
The 4&4 density matrix must be converted to a
1 x16 column matrix and these column matrices
are then related by a 16x16 matrix. Although
greater detail is included in this "vector model, "
there is a loss of clarity and only numerical sol-
utions can be obtained.

B. Photon echoes at ~E GL)|+ (A) 2 + cJL) 3

For the two-pulse sequence which is shown in
Fig. 2, the time evolution 0~, follows from Eq.
(11)with

U(t, 0) = U (t, t )U«(t, t ) U (t, t )U)(t, 0). (17)

Of the many terms which contribute to v~, the
photon echo depends on

With these definitions of y~ and y~~ and

&ge= (&ra ~s+%sn) i (21c)

the average over only molecular velocities can be
written as

(o e '~s~) =(e' &&" 's 'I+'x'e"~f ) (22)

At time t —t, =t, —t, =7 the average is independent
of the Doppler effect h~ and is the usual condi-
tion for an echo at interval T after the second
pulse.

The direction of the wave vector for arbitrary
r is given by

(23)

For nonparallel plane waves the echo direction
follows from

(24)

and some of the many interesting features which
can occur are discussed in a subsequent section.

There remains a phase term

o„, (~) = e"s~f„,
where the amplitude

e„=Q (j'„' —(p'„)(t, +t,) (25)

fu, = (die '&n'» [a)(a~e

'~t'gaia)

x (a) e't| "~[ d)(d( e'~ii'«[a),

and the eikonal phase

4'z „—-- e~, (t t, —t, + t,—)

(19a)

(19b)

(21a)

This implies that the Doppler term for the mole-
cule with velocity r is

psn=Q (2%n~ 4' )n ~ (21b)

where &u~, = (Z~ —Z,}/k. The time intervals v,
=t, —0 and 7;, =t, —t„and f, , and $«use the val-
ues of A„„and v„~ which are appropriate for the
first and second pulses for the molecule at r„(t).
In the absence of collisions the eikonal can be
written in the form which is given by Eqs. (2a)
and (2c). Since the initial position r„(0) and the
velocity r„are statistically independent vari-
ables the average over position and velocity can
be taken separately in Eq. (15). As the average
over initial molecular positions is taken,

(o e Ilk@~) (~ 4»~s-4@ )0f ) (20

the average is large when the geometrical optics
of the echo is described by

and

x [A. ~si»A. v —A, ~sink. g],

(»is'~ ia) = (A.
' —A2) ' [A,'cosA. r —A. cosX 7

(26a}

+v', (cos&, r cos& 7—)]. (26b)

The influence of the first pulse depends on the
product of these two matrix elements and the in-
fluence of the second pulse depends on the ab-
solute square of Eq. (26a). An optimum choice
of the pulse strength ~7 is no longer the conven-
tional 2X, r, = v/2 and 2&» 7» = m for the two-level
system. Furthermore the dependence on the
three laser intensities permits many options. If
equal amplitudes for the interaction are selected,
that is v, =n, =v, then the roots are X', =2 (3 + 5' ')v'.
A simple choice is considered. Let 2~ v = ~ m for

which limits the angle between the first and sec-
ond set of pulses. This is the dominant term and
the coefficient of t, has been omitted. A thermal
average (e"}over molecular velocities yields a
decay' exp[- v(«8vT/A)'], where T is the interval
and 8 is a typical angle between pulse directions.
This yields the most rapid decay and other terms
in the average can decrease the decay rate.

The optimum pulse amplitude and direction de-
pends on the matrix elements which follow from
Eq. (11)

(d~ e'"~ a) =i(v,v,v,}(x' —x') '
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the first pulse and m for the second pulse and then

(d(e'~'~a} =+i 0.2'7 or +i 0.95,

(a[ e'~'~a) =+0.38 or

(2'7a)

(27b)

where the first value of each matrix element is
for a & n pulse and the second value for a z pulse.
This sequence yields an echo amplitude of 0.10 and
as off-resonance terms are considered should be
a good choice. Even so the intensity will be 0.02
of that for the usual two-level echo.

C. Photon echoes at u&, u2, and u3

There are photon echoes at frequencies (0] 402,
and cu, which occur simultaneously with the sum-
frequency echo discussed in the previous section.
Echoes at these frequencies are generated by the
electric dipole moments which are due to o„ for
~„o„for ~» and o~, for ~,. Direct evaluation
of the density-matrix element for the echo at coy

yields

v„= e "s~f„, (28)

where f~, is given by Eq. (19a) with d replaced
by 5 With n. =1 )ls„ is givenby Eq. (19b) with co,„
cps by E q. (21a), ps~ by Eq. (21b), and hz
=- ((d„—()), +(p&„}, The geometrical optics of the
echo is described by

ps =2@i —1» (29)

and the focusing effects for such a pulse sequence
has been discussed and observed' for a single
pair of levels.

At frequency v, the echo is generated by

e lz)zS ~f (3o)

e (z)'@~f (31)

where the state sequence for f~, in Eq. (19a) is
dccaaddc and n =3 is used throughout.

These echoes differ from the usual two-level
echoes in the product of the matrix elements and
therefore only in the echo intensity. For equal
v„and the pulse strengths which were used for
Eq. (27), the echo at &u, is 100 times more intense
than the sum-frequency echo cv, +co, + co, . The
echoes at ~, and m, are 0.02 of the sum echo. A
small change in the pulse strength can quite easily
change these ratios and can even reverse them.
Also as molecules of off-resonance are averaged

where f,~ is given by Eq. (19a) with the state se-
quence daaaadda replaced by cbbaaccb. + =2 in Eq.
(19b) for 4's„and the discussion is similar to that
for cr„with @ =1 replaced by n=2, . i.e., y~ =2@,"
—cp,'. At frequency ~, the echo is generated
by

to form the echo, these terms will be less sen-
sitive to the value selected for the pulse strength.

PE=2(A +9'2 ) (9'i+&a) z (32)

for uE=u~+ar, and with subscripts 2 and 3 for
COg = (d2 + 403.

Even though macroscopic coherence occurs for
the density-matrix elements they are not obser-
vable in the electric dipole approximation. If the
electric dipole which is stimulated by Tr Pe'"' '
o is considered, then the quadrupole matrix ele-
ments (c( D k~a) and (d~ D k(&) are nonzero and
generate an echo. This echo will be quite weak.

E. Focusing, phase conjugation, and related effects

Let the phase of a spherical wave qy =0&
=g((d/c) r, where p, is the index of refraction
and then for an almost plane wave in the z direc-
tion use the Fresnel approximation

—x )'+ —y„)'
q (z, Z, z) —

)((z -z,)+
0

(33)

for a center of curvature at xo, p„zo. Direct
substitution of this approximation into Eq. (21a)
yields the phase of the echo in terms of the known
centers of curvature x„', y„', etc. For gases or
vapors it is convenient to let the index of refrac-
tion p, =1+5, where 5 is usually less than 10 4.
The gradient of Eq. (21a) yields the wave-vector
direction and for a thin sample located near
z =0, and the coefficient of x' in Eq. (21a) or xx
in its gradient can be used to show that

(34)

where & =1,2, 3. z~ is the radius of curvature of
the echo at z =0 in terms of the radii of curvature
of the wave fronts in the first pulse z„' and the
second pulse z'„'. In forming the average over
position in Eq. (20) this choice of z~ makes the
phase independent of &~ and p „. The location of
the off-axis center of curvature follows from

D. Photon echo at col+ ~2 and M2 + ~3

There aredensity-matrix elements o„and o„,
which have the correct features to produce an
echo at the sum frequencies ~, + ~, and ~, + cu3.

These matrix elements have the typic31 form of
Eq. (18). f„ is formed by the state sequence
caaaacca and f~, by dbbaaddb in Eq. (19a). 4~„
and the subsequent discussion uses + =1 and 2 for o„
and + =2 and 3 for o„. The geometrical optics
are described by
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either the coefficient of x in Eq. (2la) or from
x grad of this phase equation and

The arguments used for Eqs. (20)-(22) can be re-
peated. The phase q, follows from

(35} (39b)

If the centers of curvature do not lie in the same
plane there is a similar equation for pE. Equation
(35}is one of the usual phase-matching conditions
for small 5 and for centers of curvature in the s
plane, 8„=x„/z„. The dependence of the phase in
Eq. (20) on x„ is removed by Eq. (35) for thin
samples.

As the sample becomes thicker there is distor-
tion introduced as one replaces z~ by z~ —z in
Eq. (34). A more important effect is the z-depend-
ence of the phase or z grad and this phase match-
ing condition is

and implies a Doppler effect of

pin=9'za Q(p 2g + 9' )n ~ (39c)

where
'S~ n +da (d1 +2' (Os + Cion '

Equation (15) can be repeated and the amplitude
of the wave e"~i &" is proportional to the aver-
age over molecular velocities of {o,, 8 '~~&)

With Eqs. (38) and (39)

o(t) =Uz(t, t')o(t ')Uzt(t, t ') . (3V)

Consider first the radiation generated by v~, (t')
which is given by Eq. (18). Direct substitution
for a~ yields

o„=e' ~(b(e "z""'(d) f~, (a)e'~&" ' ')a),

(38}

where

=p, -g[(I(„(t'}—(I('„' (t, ) —(I'„' (t,)+(t'„(t,)]

—(g~, (t ' —t~ —t2+ t, }. (39a)

(36)

For planar optics 8„—= x„/z„and more generally
8'„-=(x'„+y'„)/z'„. Again in the average over posi-
tion in Eq. (20} the phase becomes independent of

g„ for q=0. For ql &1, where 1 is the sample
thickness cancellation of the echo begins to occur
as ql grows. Since the radiation is near reso-
nance there is some difficulty in knowing the in-
dex of refraction in even the low-density vapor.
A thickness estimate can be made by choosing
8'I/A. & 1.

For more general waves the echo wave front in
the medium v~8'~~ is used with Kirchoff's formu-
lation of Huygens principle and the Fresnel ap-
proximation to find the wave front at subsequent
positions along the z axis.

l

F. Generation of a new pulse by e«(t') for a probe pulse at
t') t3

If a signal is applied at the time t' after the
second pulse, the change in the density matrix is
given by

For radiation with amplitudes v, and v, at fre-
quencies ~, and ~, and applied at time t ', a wave
is generated at frequency ~, with phase q, even
though the amplitude v, =0. The radiation at ~,
with phase y, even though. the amplitude v~ =0.
The radiation at ~, occurs for t' —t3 t2 tg OI
t' at the time of the echo. The radiation at ~,
persists for a time whi;ch is dependent on the
time interval t- t' and the average over y„em-
phasizes a select group of velocities such that
the decay interval is similar to that for free in-
duction decay.

It should be noted that v, and y, could have been
omitted, but the notation is less cumbersome and

v, =0 can be introduced at the end of the formula-
tion. The bd matrix element of Eq. (38}depends
on P, or on the product v,v~z and determines the
amplitude of the effect. At resonance Eq. (11}
can be used, but with v, =0 it should be noted that
A,
' ( = P, etc. Again unusual phase or focusing ef-

fects occur for these new waves. For spherical
waves Eq. (33) can be used with Eq. (39b) to de-
termine the focusing effect for thin samples or
the phase-matching conditions for thick samples.

The off-diagonal density-matrix elements o (t')
can generate new signals. If f~, in Eq. (38) is re-
placed by f which is described in Sec. IID,
radiation with amplitude v, at frequency ~, gen-
erates a wave with phase y, at frequency ~, via
o„The sum in Eq. (39}is over n =1 and 2. Rad-
iation at frequency co, generates a wave with y,
and a&, via o,~. In a similar manner o~, (t') or f~,
when stimulated by radiation at ao, generates a
wave at frequency u, via o,~, and when stimulated
by co, generates a wave at g via o„,. The focusing
effect for thin samples and phase matching for
thick samples follow from the gradient of Eq. (39b)
with suitable pairs of values for n.
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G. Optical nutation and free-induction decay

For completeness optical nutation and free-in-
duction decay are included in the notation of this
paper. Optical nutation occurs after the radiation
is turned on at the three frequencies and optical
nutation can occur for all frequency combinations.
At the sum frequency cv„=u, +~, +co„one has

v„, (t) =(die "'Ia)(ale'e Ia)e"&

where 4'„„=gg„(t). The modulation or nutation
is due to the matrix element terms as the average
over cp„ is taken. The phase of the coherent wave
generated by o„, is

Ar =g Vn ~

n

Phase matching is necessary for a thick sample
and for plane waves k„=k, +k, +k, is required.
For a thin sample one has for spherical waves

(41a)

(41b)

Thus for thin samples the wave front of the sum
frequency is directly related to the sum of the
wave fronts for the three stimulating waves.

Optical nutation at frequency v, is given by q„which
may be obtained from Eq. (40) by replacing d with
6 and a 4~ which depends on y, and ~, . This
differs from the two. level nutation in that the roots
~~ depend on all amplitudes v„. Similar arguments
apply to 0« for co, and ~ca for ~,.

There is also a coherent excitation generated by
~gy at f~~q~~~~y ~, +~3 an«„at ~, +~„bu«»y
quadrupole nutation can be observed.

Free- induction decay occurs as the radiation
at the three frequencies is turned off. At the sum
frequency ~~ =~, +~, +co, a coherent wave is
generated by

uua (t) = (die +"I&)(&Ie'"'I a)e'~&" (42)

where +~„=-&o~, (f —f, )+gP(t, ). Following the
procedure which was used for Eqs. (20)-(22) the
phase of the free-induction wave is given by Eq.
(41a) for optical nutation and the Doppler term by
bz„=- (u~, —&oz+rjF„) Averaging . over v)~„ for
all terms yields the amplitude, and its dependence
on the interval t- I;, . The effect of the decay
times on the decay of a„, is not apparent in our
formulation.

If during this deca, y a probe signa, l' " is turned
on as discussed in Sec. IIF, o„(t') can be ob-
served. All of the arguments of Sec. IIF can be
repeated. Thus

o&. =(lie '"" ' 'Id)o (t') (~l~*"" ' 'i~)e""

(43)

generates a coherent wave with phase y, —~,t.
The eikonal of interest is

4'~+4'~ —p, „=g,(t)+Q[g„'(t,)- g„(t')]

—v~, (t' —t, ) —g, (t }.

Independence of position requires a phase of

(44)

The Doppler effect leads to a term of the type
[~~, —&uF +Qy„] (&' —&, }. As an average is taken
over j„the amplitude at the interval I;- t' de-
pends on o«(t') and on a decay time typical of
free-induction decay.

III. DISCUSSION

2 - —-- l2

2

FIG. 3. Threeglane-wave coplanar pulses with wave
vectors k~, k2, k3 and three collinear plane wave
pulses k&, k2, k& form six plane-wave photon echoes
with wave vectors kz which follow from Eq. (24) and the
gradient of Eqs. (29) and 32). Thus the echo at the sum
frequency is given by kz=,~ (2k~ —k~) where the sum
is over m=1, 2, 3, at cu& with m=1, at co&+co2 with m
=1, 2, etc.

A general feature of photon echoes which are
produced by stimulation of the nonlinear medium
by three plane waves is shown in Fig. 3. The
first pulse is a superposition of three noncollin-
ear but coplanar waves with wave vectors k,', k,',
k', . The second pulse is a superposition of three
collinear plane waves k'„'. The wave vector k, is
at frequency w„. Equations (21a), (29), and (32)
yield the echo directions. Equation (24} can be
used for the echo direction at the sum frequency.
For the small angles with the 3-direction which
must be used these equations reduce to I9~ =
—Q ~„8„/a&s, where the second pulse is used as
the reference direction and vz ——+co„. The echo
at the sum frequency ~~ = co, + ~, + ~, is an electric
dipole transition and occurs at the angle

8s = —((d~ 8~ + (d~82+ 0038~)/(d@.

Echoes occur at angles —8„—8„—O„at fre-
quencies &u„&u„v,. Quadrupole echoes occur
at the sums of pairs and the echo at ~, + ~, occurs
at 8s = —(~, 8, +&u, 8,)/(~, +&a,), etc. , for the other
pairs. All of these possible echoes are shown in
Fig. 3. Pulse duration and amplitudes can be used
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FIG. 4. Three diverg-
ing waves at co~, co» m3
form the first pulse I and
three plane waves form
the second pulse II. The
six photon echoes stimu-
lated in the nonlinear
medium M are converging
waves and come to focus
at the positions shown. 1
implies the photon echo at
su~, 123 the photon echo
at coq+co2+co3, etc.

to enhance the intensity of a particular echo. As
thick samples are considered, the phase matching
condition which is expressed by Eq. (36) must be
included. It should be noted that quadrupole matrix
elements can be large. This occurs for the
2D-2S transition in Na."" The interaction
strength depends on (c[ 0~a) k and for noncollinear
waves is nonzero. Even so the interaction is
liriear in 8 and is quite small for the milliradian
angles under consideration.

Photon echoes which are generated by spherical
waves with centers of curvature x„, y'„, z'„and
x'„', etc. , for the first and second pulses at fre-
quency co„have a center of curvature which is
given by Eqs. (34) and (35) for the echo at the
sum frequency. If the sums over & are limited to
one frequency these equations can be used for the
echoes at co„. The sum over any two indices can
be used for the echoes at ~, +~„etc. Since six
echoes occur it is difficult to place this informa-
tion on a figure similar to Fig. 3. For the special
example of a second pulse which is composed of
collinear plane waves and a first pulse which is
composed of coplanar spherical waves Eqs. (34)
and (35) reduce to 1/zz = —[g ~„/z„']/Q&u„, and

xz/zz = —
L Q m„x„'/z„']/g e„. If diverging waves

are used for the first pulse, then the echoes come
to focus at x~ =x'„, z~ =-z'„ for e„; at the values
of x~ and z~ which follow with & =1,2 for the echo
at co, +u„etc. An example is shown in Fig. 4 for
a selected set of k„.

Since the general optics of optical nutation and
free-induction decay are simpler than the optics
for photon echoes, they are considered next.
Equation (40) describes the effects at the sum
frequency and yields a term for the electric pol-
arization which is proportional to

v v v 8"+' ~2' 3'e "
1 2 3

If spherical waves at frequencies ~„have centers
of curvature x„p„, z„ then the spherical wave
generated at the sum frequency has a center of
curvature x„, p„, z„which is given by Eq. (41).

Thus I/z„=Q(cu„/z„)/&u„and x„/z„=Q(&u„/~„)(x„/
z„), etc. for both optical nutation and free-induc-
tion decay. For more complex wave fronts a
more careful analysis is needed.

In most of our discussion the source has been
represented by ve'~ where v and y are functions
of x, p, z in the nonlinear medium. For multiple
sources in the object plane it is convenient to use
the Fresnel approximation and for the x-z plane
this becomes

\

elk(» -»o) ~V eA(x -@fat) /2(» -»0)
m

m

near z =0 in the nonlinear medium. Each term in
the sum is a suitable eikonal but now v can have a
rapid spatial variation. The wave generated at the
sum frequency is the triple product of tPe sums at
each frequency. Each term in this triple sum is
the same as the simple example of three sources
and is equivalent to a virtual source at x„, p„, z„
for each set of x„, g„, z„. Since thenumber of terms
in the triple sum or the number of virtual sources in-
creases at the products, N2+„ it is apparent that
overlapping of virtual sources will occur as the num-
ber of sources in the object plane increases. This
complex pattern may not be useful and can be avoided

by making two of the three wave fronts, plane
waves. Then for the third wave co„, one has for
a simple source z„=(&u„/&u„)z„and x„=x„. Super-
position can be used to describe more complex
wave fronts and yields a magnification of &s„/&u„

at the sum frequency ~„. This result is similar
to that reached for two-wave mixing with crystals
in parametric up-conversion. The steady-state
component which has not been considered in our
development has these same features for three-
wave mixing.

Even in the example with two plane waves the
wave front generated at the sum frequency need
not be a good reproduction with magnification
&u„/w„. Both optical nutation and free-induction
decay are transient phenomena and as the matrix
elements of e'~' are evaluated in Eqs. (40) or (42)
the effects of saturation are apparent in the roots
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Saturation occurs in the resonant example
which is described by Eq. (26). The amplitude
oscillates as 7 varies and the magnitude of the
matrix element cannot exceed unity. Thus the
amplitude of the generated wave front may be
poorly related to the amplitude in the object plane.

Other optical arrangements can be used. A
source or object can be formed by illumination
with one of the three frequencies. If a converging
lens is placed a focal distance f from the object,
then the transverse Fourier transform

eik(g -f ) ~ 8- fk(x~/f ) x

occurs in the nonlinear medium at a distance f
after the lens. A beam splitter can be used to
mix the parallel beams at the other two frequen-
cies with the Fourier transform. An image can
now be formed by placing a second lens of focal
length f ' a distance f' after the nonlinear medium,
and then a niagnification cu„f '/co„f occurs for the
radiation at the sum frequency. Firester' has
discussed the optical advantages of this arrange-
ment for a thick nonlinear medium for parametric
up conversion with two frequencies.

The comments just made for optical nutation
and free-induction decay for the more complex
wave fronts are applicable to photon echoes. The
spatial dependence of the amplitude in the non-
linear medium is a limiting feature for transient
effects. For this reason the discussion is now
limited to waves which undergo phase distortion
along their optical paths. Thus a plane wave
undergoes the deformation

~84kc ~ ef K(x y 7 ~ k ) efk4

as it passes through an almost transparent med-
ium. The amplitude is almost constant and for a
near nonlinear medium remains almost constant.
The dominant feature is the phase and these
phases can be added in the sense which is given by
Eqs. (21a), (29), (32) for photon echoes, Eqs. (39b)
and (44) for new pulse s, and Eq. (41a) for optical nu-
tation and free-induction decay. For the photon echo
formed by a single frequency the phase conjugate or
with a suitable optical arrangement the phase conju-
gate of the Fourier transform canbe formed. More
generally the transverse phases can be changed

2K —K

Since the gradient of the phase yields the wave
vector or the wave normal, the gradient of Eq.
(hla) yields Ett. (dd) wllere the a„tare aew taae-
tions of x, p and this yields some information
about the echoes generated by more than one fre-
quency. This same concept can be used for the
generation of a new pulse which was discussed
in Sec. IIF. The wave vector of the new pulse
follows from the gradient of Eq. (39b) and at each
x, Y in the sample k, for the new pulse is

k, = —(k, + k, ) + 2 (k, + k +k, ) —$, + k ' + k '
) .

The photon echo at ~, and the new pulse at ~, can
have different directions. This equation describes
the two-frequency effects which were previously
suggested" with &, =0. With plane waves and k,'
=%," and E,' =k, , the single-frequency photon
echoes occur along either k, or %,. The sum fre-
quency or quadrupole echo occurs along k, +k, but
is too weak to observe. A probe pulse k, yields a
new pulse with k, =-k,'+k, +k,. Both the- single-
frequency echoes and the "two-photon echo" or
probe-pulse echo have been observed. Phase-
matching conditions favor the probe-pulse echo as
the angle between k, and k, increases.

If the first and second pulses are collinear plane
waves and the probe pulse described by (p

+ k'p, then the new pulse has a phase y, =- &,

+&,z and is in a sense the phase conjugate of the
probe pulse. For three waves the new pulse has a
phase cp, = (~, + ~,)+&,z and depends on the sum of
the phases and generates a wave which in a sense
is the conjugate of these two waves. If in Fig. 2 a
probe pulse is turned on after the first pulse then
a new pulse is generated and by Eq. (44) at each
x, g in the thin sample k, =k', +k,'+k', -%~ —' k~.

In conclusion one can add and subtract the trans-
verse phases I(.

' in single-frequency photon-echo
and Carr- Purcell photon-echo experiments for
waves with almost constant amplitude. For pulses
at two and three frequencies similar addition and
subtraction operations are possible for photon
echoes and probe-pulse echoes. A useful applica-
tion which is known as phase adaptjve occurs when
linear superposition can be used. It is with some
regret that the authors cannot present a general
use for the novel feature of being able to add and
subtract the phases of wave fronts.
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