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Classical theory of the free-electron laser in a moving frame
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This paper presents a fully classical theory of the free-electron laser. The theory is formulated in a moving
frame where the pseudoradiation field due to a static wiggler magnet is in resonance with the laser field
imposed by an optical cavity. The basic amplification process is then one of elastic scattering. In this frame
both fields are treated classically, as is the electron motion. When the laser and wiggler fields are taken to
be constant during the interaction period, it. is shown that the laser operation can be described by the
classical pendulum equation. This is used to evaluate the unsaturated gain and momentum distribution. For
the saturated situation numerical results are given, which have been obtained by the use of the Jacobi
elliptic functions. The new features found are singularities in the momentum distribution and their evolution
with intensity, saturation enhancement of the gain and the possibilities of bistability and hysteresis entailed
by it, and the possibility of discussing and interpreting the various features in a unified way. Finally, a
detailed discussion of the approximations and their validity is given.

I. INTRODUCTION

A free electron in vacuum cannot radiate en-
ergy. Indeed such a process would not conserve
both energy and momentum, which is necessary
in every physical process.

On the contrary, when the electron travels
through a static peribdic structure, such as a
static magnetic field, emission of radiation ean
occur, provided that the periodic structure pro-
vides the necessary momentum. In the laboratory
frame, this process can be described as a scat-
tering process of a quasiphoton of the periodic
field into the radiation field.

Recent experimental results' were obtained by
utilizing a relativistic electron beam traversing
a periodic magnetic field (wiggler) to obtain co-
herent radiation in the infrared region. The use
of relativistic electrons is expedient because then
a periodic structure of macroscopic dimensions
(centimeters) can be used to obtain optical or in-
frared frequencies.

This process ean be regarded in the laboratory
frame as magnetic bremsstrahlung from the peri-
odic field. In a series of papers' Hopf et a/. have
written a classical Vlasov equation for the elec-
tron cloud, and used this to solve for the basic
properties of the scattering process. Relativistic
considerations of the motion of the electrons have
been given. '

j

A different approach has been used by the pres-
ent authors. ~ In a properly chosen reference frame

the wiggler field has been treated as a radiation
field (referred to as pseudoradiation field) This.
approximation, known as the WeizsKeker-Williams
approxiaaation, tur~s out to be valid for ultrarela-
tivistic electrons. Then the process has been de-
scribed as a stimulated scattering process from
the pseudoradiation field into a true radiation field
traveling in the same direction as the electron
beam. For a physically appealing description of
the process, a moving frame has been chosen in
such a way that the periodic structure transforms
into a (pseudo) radiation field whose frequency co-
incides with the frequency of the stimulating field.
Thus the process is essentially a laser process,
where the source of radiation comes from a scat-
tering process, rather than a stimulated emission
process as in previous operating laser devices.
To be consistent with a classical picture of the
fields, . the stimulating (laser) field has been as-
sumed to be large, so that fluctuations can be
neglected.

There are several reasons to choose that ref-
erence frame for the description of the laser pro-
cess. First, the physical processes of scattering
from one field to the other and vice versa become
apparent. Indeed, in that frame, the two fields
are treated on the same step, although they are
quite different in the laboratory frame. Second,
relativistic calculations ean be avoided. In fact,
in that frame, the electrons have nonrelativistie-
velocity, and the momentum exchanged with the
fields is not sufficient to give the electrons a rel-
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ativistic velocity. Third, in the limit in which the
laser operation can be described in terms of en-
semble averages over independent single particles,
it becomes possible to follow the history for each
electron in the field with simple equations of mo-
tion. These equations, for a wide range of oper-
ations reduce to the pendulum equations, which are
not Lorentz invariant and are valid in that frame
only.

In this work we describe the free-electron laser
(FEL) as a single-particle process, in contra-
distinction to the approach chosen in Ref. 2. We
have shown elsewhere' how the two approaches
can be reconciled starting from a quantum-mech-
anical density-matrix description of the system.

Recent theoretical results by the Stanford group'
present an extensive investigation of the properties
of a free-electron laser. They use a different ap-
proach to evaluate the laser interaction; where we
have independently derived the same properties,
there seems to be full agreement between our re-
sults.

In this paper we formulate the fundamental model
to be used in-describing the FEL. We use the mod-
el to obtain the basic operating characteristics of
the laser to show the agreement with earlier work;
the new results of the paper concern the strong
signal behavior of the FEL. It is shown that the
present model can be used to calculate the gain
and final momentum distribution of the operating
laser. The latter is of great importance for the
operation of a real device, because the laser field
causes a momentum dispersion greatly exceeding
the gain, over most of the range of operation of
the laser.

In Sec. II the moving frame is defined in some
detail; this part of our paper gives the basis also
for the work presented in Refs. 4 and 5. The Ham-
iltonian to be used in the completely classical mod- '

el is given in Sec. III and also its basic conserva-
' tion laws. The corresponding quantum-mechanical

expressions are discussed in Ref. 5. Laser oper-
ation well above threshold is considered. In this
condition the fields are assumed to be classical,
so that their fluctuations can be ignored. There-
fore we can expect that each electron contributes
only little to the total laser intensity and follows
the fields adiabatically. Under this approximation,
which is introduced in Sec. IV, the behavior of the
FEL can be described by the pendulum equations.
A perturbation approach is used in Sec. V to obtain
the small signal gain and the lowest-order mo-
mentum spread. These results agree with those
earlier derived in Ref. 2. In Sec. VI we show how
the electron equation of motion can be solved ex-
actly in terms of the Jacobi elliptic functions.
These expressions can be used to evaluate the be-

havior of the system numerically for any laser
intensity. The results of such calculations are
presented in Sec. VII and some implications for
the laser operation are discussed.

II. FRAME OF REFERENCE

In formulating the fully classical theory of the
FEL we assume the laser field to be large enough
to allow a classical description. This excludes
operation very close to threshold where quantum
fluctuations of the laser field are important. The
field is chosen to be a circularly polarized mode
of a ring cavity. Thus we can assume a traveling
wave eigenmode with wavelength A~.

The static magnetic field provided by the wiggler
magnet, with s'patial period A., = 2m['g, ' is taken to be
circularly polarized with the components

B[B,cos(k, z), B,sin(k, s), 0] . (2.1)

Our assumption that B, is a constant can be valid
over a limited region only because the field must
satisfy the relations

V B=O, vxB=O. (2.2)

X* =X,(1+P,), (2.3)

where P, is the ratio of the axial velocity of the
electron to the velocity of light. For an ultrarel-
ativistic beam, P, -1 and

A.*= 2k, . . (2.4)

LASER BEAM

( INPUT )

/

WIGGLER MAGNET LASER BEAM

IOUTPUT I

RON BEAM

FIG. 1. Experimental layout.

It can be shown' that assuming the electron trajec-
tories to be confined to a region much smaller than

X, around the wiggler axis, we can neglect the spa-
tial variation of B,. A schematic diagram of the
experiment is shown in Fig. 1.

The particles of an ultrarelativistic electron
beam traverse the wiggler with an axial velocity
very close to the velocity of light e. In the rest
frame of the electron the wiggler field transforms
into an electric as well as a magnetic component
with the ratio close enough to c to justify treating
it as a, radiation field propagating towards the elec-
tron beam. This will be equivalent to a pseudo-
radiation (PR) field, which in the laboratory frame
has wavelength



19 CLASSICAL FREE-ELECTRON-LASER THEORY IN .MOVING FRAME 2015

A.~ = (1 + V/c) A.~y = 2A.~y, (2.7)

and the wavelength of the counterpropagating PR
field into

(2.8)

The factor of 2 in Eq. (2.4) can be understood in
a very natural way. In the rest frame the wiggler
passes the electron with nearly the velocity of
light, and the interaction time is a =I,/c, where

(2.8)

and Lo is the length of the wiggler in the laboratory
frame. Transformed back to the laboratory frame
the wiggler field appears as a squared pulse of
duration

r, = (I,/c)(1+P, ) = 2L,,/c.
Because the number of periods along the wiggler
is an invariant, Eq. (2.6) shows that the effective
frequency is halved which directly gives (2.4).

In the laboratory frame, the electron beam prop-
agates towards the PR field and scatters its ener-
gy into the laser field which propagates in the same
direction as the electrons. From the point of view
of the PR field, this is backward scattering. The
laser field has a wavelength much shorter than the
wiggler fieM, but their frequency difference is
compensated by the Doppler shift due to the motion
of the electrons.

It proves expedient to formulate the theory in
such a frame that the scattering of radiation oc-
curs at resonance. We perform a Lorentz trans-
formation to a frame moving with velocity V in the
direction of the electron beam. The relativistic
Doppler effect transforms the laser wavelength
into

p, &~/c= i'(r'-I) ' (2.13)

Relating the laser wavelength to that of the wiggler,
we find in the laboratory frame the relation

~, =X,/2y', (2.14)

where Eqs. (2.10), (2.7), and (2.8) have been used.
The spontaneous emission by the electron will take
place at the frequency determined by the wiggler
field in the rest frame of the electron; the spon-
taneous emission in the laboratory will be cen-
tered at wavelength

X„.„,=(1-p, ) X, =-.'~,(1-p.')&X, (2.i5)

by the use of (2.13) and (2.14). If the velocity of
the electrons entering the wiggler is kept constant
the transition from spontaneous to stimulated ra-
diation can be recognized by a red shift of the
emerging radiation.

In the rest of this paper we wiQ discuss the the-
ory of the FEL in the frame moving with velocity
V. In this frame the radiation scatters elastically
and the wave vectors have the same modulus

sible to find one where (2.11) is satisfied assuming

(2.12)

which is well satisfied for optical frequencies. In
this paper, we make the additional assumption that
V is close enough to the velocity of the electrons,
to allow a nonrelativistic treatment of the problem
in the removing frame chosen.

We will find that in order to achieve amplifica-
tion of the laser field through stimulated Thomson
scattering the electrons must move faster than the
reference frame, i.e., their velocity in the moving
frame must be positive. Consequently the factor
P, of Eqs. (2.3) and (2.5) must satisfy

where we have assumed V= c and
k = (o/c = 2m/x' = 2n /x~, (2.i8)

which by (2.7) and (2.8) gives

V=c(l —2Z /X )~' '(2. 11)

This is the basic relation defining our frame of
reference. The velocity V of this frame is deter-
mined solely by the ratio of the laser wavelength
to the period of the static wiggler field and not by
the velocity of the electron. When we tune the
laser frequency by changing the external cavity,
the frame must be changed, but it is always pos-

(2 8)

Scattering of energy from one field to the other
appears at resonance if we choose the frame such
that

(2.10)

but the two fields travel in opposite directions. In
Appendix A we present a table where we express
the physically interesting quantities for the labor-
atory frame in terms of their values calculated in
the moving frame.

III. HAMILTONIAN

In the reference frame described in the previous
paragraph, we assume the validity of a nonrela-
tivistic description of the amplification process in
the FEL. The axial velocity V of the electron in
this frame is much smaller than c, but its trans-
verse velocity can become very large (even rela-
tivistic) because of the large wiggler field. This
effect can be taken into account in our nonrelativ. —

istic formulation by simply redefining the value of
the mass m, which enters the equations. In place
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of electron rest mass m, we have a mass param-
eter which depends on the parameters of the static
magnetic field. The detailed justification of this
replacement is given in Appendix B.

Our nonrelativistic approach in the moving frame
is justified for laser action throughout the ir region
of the spectrum; in the optical and especially the
near-uv region its validity must be reconsidered.
For extremely large magnitudes of the laser or
wiggler fields additional relativistic effects may
become important.

We describe the interaction between the electron
beam and the radiation fields in the Coulomb gauge,
where the vector potential A is transverse. In the
geometry of the FEL this property is invariant with
respect to Lorentz transformations along the direc-
tion of the beam. The static Coulomb potential y
can be set equal to zero, when we neglect the
space-charge effects due to electrostatic interac-
tion within the electron beam.

In this situation it is possib1e to write a com-
pletely classical single-particle Hamiltonian for
the system

aetly zero throughout the interaction period. The
only nonzero component of the momentum is p, ,
and consequently the electron motion can be treated
as one dimensional.

The two circularly polarized oppositely traveling
fields, namely, the laser and wiggler fields, can
'be expressed in terms of the transverse x and y
components as

P' = (1/W2)(Px —(u Qy) (3.3)
q =(1/~~) ~Qx+(1/~)E;~.

This description holds for both fields.
The classical Hamiltonian system (3.1) has three

degrees of freedom, and implies a system of six
first-order equations of motion. It is possible to
find simple and physically significant integrals of
the motion by the use of a contact transformation
of the Hamiltonian. The new dynamic variables of
the fields are the actions I and the corresponding
phases Q.

For each field the transformation is generated
by the function

E(Q, y, t) = ,'vQ'eot-g((ot+y). (3.4)

(3.1)

The radiation fields are represented as harmonic
oscillators in terms of the canonical variables Q'
and P' of the laser (I ) and wiggler (W) fields T.he
first term of the Hamiltonian contains the energy
of the electron and its interaction with the fields.
The mass parameter is assumed to depend on the
static field.

Expressing. the vector potential A in terms of
the canonical variables of the fields we write-

l.l2
A= — co L+ ~ coskz —pL —9' sinkz

(3.2)

where the circular polarization of the fields are
introduced and the frequencies cv and wave vectors
k of the fields coincide in the frame chosen; see
(2.16). Both fields are taken to consist of plane
waves propagating in opposite directions. Hence
the Hamiltonian does not depend on the transverse
coordinates x and y, and the corresponding mo-
menta p„and p, are constant of the motion. An
initial transverse momentum of the electrons en-
tering the wiggler will be conserved and make the
electron drift out from the axis of the wiggler while
traversing the interaction region. Then the elec-
tron would experience a wiggler field different
from (2.1). Hence precautions have to be taken,
that the electrons are injected into the wiggler
properly. We shall assume p„and p, to be ex-

P = (2I v) ~' cos(&et + P),

Q = (2I/a&) ~' sin(&et+ Q),

and the Hamiltonian is given by

(3.6)

H' =II + = + [I~ +Iv+ 2(Iv Ir, )+8 E P 27kFoc'
Bf 2' (0V

x cos(P~ —P~ —2hz)],

(3.V)

where r~ is the classical radius of the electron
(e'/me'). From (3.6) it follows that the energy of
the field

—,'(P'+ aPQ') = a)I (3.8)

is expressed very simply in terms of the action. .
In the quantized field formulation, ' the action I
corresponds to the photon number. Henceforth
the prime on the new Hamiltonian will be dropped.

The use of the new form of the Hamiltonian, (3.V)

is exactly equivalent with (3;1) and introduces no
approximations except those inherent in our basic

Making use of the standard transformation formu-
las relating the old and new coordinates, we write

P = =vQ cotg(&ot+Q),
8g

(3.5}
BE (d

9$ 2 sin'(a&t+Q)
'

Solving for the old coordinates, we find from (3.5)
t at
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model. The following noteworthy features are thus
rigorous consequences of our basic approach.
First, the Hamiltonian is time independent; hence
energy is conserved during the interaction. Sec-
ond, the phase variables of the fields and the elec-
tronic coordinate z appear only in the argument g
of the trigonometric function, viz. ,

interaction time the same.
The average change of the electron momentum

gives us directly a measure of the transfer of en-
ergy from the PB field to the laser field because
of (3.11); the optical gain is directly proportional
to the averaged momentum change.

4=4m -4w-2k& ~ (3.9)
IV. ADIABATIC APPROXIMATION

This fact leads to additional conservation laws.
The canonical equations of motion are

BH
2

BH BH BH - BH
az sq' ' ey, 8)' ~ eq'

(3.10)

where (3.9) has been introduced. Combining these
we find the relations

p, —= p+k(I~ -Iv) =const (3.11)

I -=I +I =const. (3.12)
I

Relation (3.11) expresses the conservation of longi-
tudinal momentum and relation (3.12) the conserva-
tion of the transverse field energy im our frame
where the scattering is elastic. These conserva-
tion laws have been discussed in the frame of a
quantized theory by Bambini and Stenholm. '

Relation (3,11) shows that diverting energy from
the PB field into the laser mode requires the elec-
tron to provide the necessary momentum. Relation
(3.12) states that no energy is needed for this; we
obtain gain for the laser field by losing on the
wiggler.

We can use the constants of the motion to derive
a single equation of motion for the longitudinaI. mo-
mentum of the electron. Denoting the conserved
value of the energy (3.7) by Z and using (3.10)-
(3.12), we find

p' = [(4',c/~V)] ' [(kI,)' - (p —i )']

H p'/2m +C cos(p~ —Q~ —2k'),

where

(4.1)

C =(4vxoc'/(oV)(IiI~)'i

is a constant.
We introduce the scaled momentum variable

(4.2)

In the theory of the atomic laser, it is possible
to assume that the field changes slowly enough that
the electronic state can follow its instantaneous
value adiabatically. A considerable simplification
occurs in the theory of the FEL if we assume an-
alogously that the fields do not change appreciably
during the interaction time of one electron. Each
one sees the wiggler field pass in the time v =I./c
(see 2.5), and it contributes little to the energy of
the field once the laser is enough above threshold
for the classical description to be valid. If the
ti.me constants of the laser system are consider-
ably longer than ~ we can assume the fields to re-
main constant throughout the interaction. This ap-
proximation assumes a large laser field, a low
loss cavity, and a low density of electrons, but
these are the assumptions needed for a simple de-
scription of the FEL operation any way. For the
slowly varying amplitude of conventional atomic
laser theories, the corresponding approximation
is adopted almost without exceptions.

Dropping the conserved energy of the fields
(2vr, c'/&oV)(I~+Iv) from Eq. (3.7) and assuming
the product I~I~ to be a constant, we find the sim-
plified Hamiltonian

—4k [E —(p'/2m +2vrocIO/&uV)]'. (3.13) W = (2k/m) p, (4.3)

So far no approximations have been introduced;
(3.13) is a rigorous cons~uence of (3.1). The val-
ues of the constants of the motion are defined by
their initial values when an electron enters the
wiggler at t=t, with g =g, and p =p, . Integrating
(3.13) with these initial values we get an exact
trajectory for the electron through the wiggler.
As the FEL operation involves an assembly of elec-
trons, it is impossible to fix the initial phase vari-
ables and the laser gain must be evaluated as an
ensemble average over the full range of the phase

From (3.9) it follows that this is equivalent
with introducing the electrons at random positions
s, within. the length of the wiggler, but keep their

and the interaction frequency 0 defined by

n' =(16m,/m) [(~I,/V)(~I, /V)] '". (4.4)

In terms of these variables the Hamiltonian (4.1)
leads to the equations of motion

.dW, . dg
dt ' dt

=Q' sing, ——= -W (4.5)

because the variable g in (3.9) is essentially the
position coordinate canonical to W. The motion
described by (4.5) corresponds to that of a classi-
cal pendulum, and forms the basis for our treat-
ment of the FEL in the rest of this paper.

For small values of g the pendulum oscillates



A. BAMBINI, A. RKNIERI, AND S. STKNHOLM

p(g„W ) =(1/2m) 5(W, -'W ). (4.6)

The gain is determined by the shift of the average
momentum from W, after the interaction time,
namely,

Q= — d odSoP oyW'0 W ~ oyW'0 -Wo

harmonically with frequency Q. From (4.4) follows
that this basic rate of change depends on the laser
amplitude as Q ~E~ ' which provides the mechan-
ism for saturation.

Figure 2 shows the well-known phase-space
trajectories of the pendulum. T%'o types of motion
occur, the closed paths with periodic motion in
both W and g (region I) and those where W is still
periodic but g increases steadily with time (region
II). The two regions are separated by a separatrix
on which the motion is aperiodic in both W and )I).

This depends on the value of.the laser intensity
through the parameter 0'eE~; when this increases
the region I grows and occupies a larger area in
the phase plane. Given an initial distribution of the
electron ensemble over the phase plane, the behav-
ior of the laser operation will change when this is
transferred from region II into region I.

We assume a sharp initial momentum distribution
for the electrons centered around +;= 8'0 but a. to-
tally unspecified initial phase go. Then the proper-
ly normalized initial distribution of the assembly
of electrons is given by

assembly after the interaction has taken place.
This can be obtained by summing the measure of
all those values |()o which lead to a, given momen-
tum W'. This is achieved by writing

p(w, w„,.) = f n(w-w) ',

where

(4.8)

(4.9)

is the final momentum of the electron having the
initial coordinates go and W, . Inverting this re-
lation to give

to=to(& Wo W} (4.10)

and changing the variable of integration in (4.8) we
find

P(W, Wo, v) = — 5(W -W) o dW

2~ dT d, (4.11)

where the initial phase is eliminated by the use of
(4.10) with W =W to give the distribution function
in W with W, and o as parameters. Relation (4.11)
has already been used to evaluate the distribution
numerically'; the perturbation treatment of Sec. V
allows us to obtain analytical expressions for these
quantities of interest for the FEL.

'W» OWO-&0- (4. I)
V. UNSATURATED MOMENTUM DISTRIBUTION

RE EGION I

PARATRlX

Another quantity worth evaluating is the dis-
tribution of the final momentum over the electron

The adiabatic equations for the FEL describe the
laser operation as a pendulum motion, which pro-
vides gain until the laser amplitude grows large
enough to smear the electron distribution into a
region where the losses cou'nteract the gain and-
the operating point is stabilized.

When saturation effects are neglected we can
obtain analytical expressions, which partly have
been obtained earlier. ' ~ In this section we re-
derive these results partly to prove the consist-
ency with earlier treatments but mainly because
we can display how the ensemble average over the
initial phase is carried out explicitly. It is also
possible to see why the unsaturated gain remains
much smaller than the momentum spread. The
ensuing explicit expression for the momentum
distribution has not been published earlier.

By introducing the initial phase go explicitly into
Eqs. (4.5}, we write

dW =0' sin(g —(I)o),

F&G. 2. Pendulum phase-space trajectories.
dP
dt
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Using an expansion in the parameter Q', we write find

&I&
—

q
& & & + y

& 2 & +. . .
w =w + w&'&+ w&'&+ "~,0 (5.8)

dg'
+ R(l) 2- 20 sln21H, t

where Wq is the initial value of the momentum.
Equation (5.2} immediately gives

q&'&= w f

and (5.1) implies

W&" = n2-sin( W, f+q,},

(5.4)

(5.5)

which with the proper initial condition integrates to

W" & =(Q'/W, ) [cos(W, t+g, ) -cos(,]
= -(&'/W, ) sin(-'W, f+&,) sin(-'W, t) . (5.6)

To the order 0'/W, there occurs a modification of
the momentum distribution, but when we average
over $0, we find

w&'& = dq w&'& =01
2r q

0
(5.V)

(~W)..„=(m'/W, ) sin-.'W, t . (s.8)

In order to obtain the mean-square deviation we
calculate the average

(~w'),„=((w -w, )') „-
=[(2n'/W, ) sin(-.'W, t)]'

and no gain appears in this order; the distribution
is symmetric. The maximum deviation in momen-
tum is obtained for those values of g, which make
~ sin(2W, t +(,) j

= 1 and then

=(~W.,„)'. (s.i2)

g" & = (0'/W, ) [cosg, —cos(W, t+g,)],
which gives

(s.i4)

0 t cos(, — sin(W, f + g, ) +
0 0 0

(s.is)

with the correct initial condition g' '(0) =0. From
Eq. (5.1) we find the perturbation relation

d
dt

(W'" + W"') =0' sin(g'" +g"' —p )0

As the function W is periodic in g, each value of
(d W/dg, ) is reached twice and hence we multiply
the derivative in (5.12) by 2 and introduce it into
(4.11) to obtain

p(W, W„T) =(1/v) [(~W.,„)'-(W -W,)'] "'.
(5.12)

This shows the exact nature of the end-point
singularities obtained numerically in Bambini. and
Stenholm. ' Integrating (5.13) over W from -bw, „
to +bw we find that (5.13) is correctly normal-
ized.

In order to obtain the lowest-order contribution
to the gain we have to calculate W"'. From (5.2),
we obtain

x(sin'( —,'W, f+(0)),„
= (20'/W', ) sin'-, Wo t,

which gives the earlier known result'

((~W'),„)"2 =(&2n2/W, ) sin-,'W, t .

(5.8)

(5.10)

=0'[sin(g'" -&tI,}+g"'cos(('" -g, )

+0(lb&2&)'+ ~ ~ ~ ] . (5.16)

Using Eq. (5.6} to eliminate the lower-order terms,
we obtain

(~W) /((~W2))"'=&a, (5.11)

which shows how much of the momentum spread
resides near the center of the distribution.

In order to obtain an explicit expression for the
momentum distribution we need the derivative
d W/dg, according to Eq. (4.11). Using (5.6) we

Both measures of the width, (5.8) and (5.10), con-
tain the factor sin&9'0 t, but with different coef-
ficients depending on the definition of the spread.
The special feature of the classical model is that
the momentum spread is exactly confined within the
limits set by (5.8). This is in agreement with Ref.
5. The ratio of the widths is the constant factor

x cos(W, f +(,) . (s.iv)

This can be written

4

cos&1&, f cos(W, f+&I&,)
0

sing, cos(W, f +g, )
8'0

sin(2W 5+2 })&2W'0 (s.i8)

Integrating this we obtain

W'"=
W

t cosp, —
W

sin(w, t+p, ) +
0 0 0
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(,)
04 cosg0 cos(W, t+g0) sin(0 sin(W, t+g 0) cos2(W, t+g0) 4+cos2tt0W"'=, cos(0t sin W0t+g0 + ' ' ' +

W
+

4W
. —

40 0 0 0 0

(5.19)

which has the correct initial value W"'(0) =0.
Averaging this function as in (5.7) we use

(sin(0sin(W0t+(0)), „=—, cosW, t,
(cos(0 sin(W, t+g0))„=2 sinW, t,
(COB/0 COS(W0t +P )0),„= 2COSW0t 1

which gives the averaged momentum change

(5.20)

0
(W -W0) =(W' ') =, [W, t sinW, t

2 W~3

—2(1 —cosW, t)] .
(5.21)

(,)
04

G = -(W"')„=2, [2(1 —cosW, t ) -W, t sinW, t ]
0

Q4 8 1-cosW, t
2 BW, Wo

a sinzW, t
~Wo Wo

When we insert this into the gain (4.7), we obtain

VI. NUMERICAL EVALUATION OF THE ELECTRON

DISTRIBUTION

In the papers of Ref. 4, Eqs. (4.5) were directly
interpreted numerically assuming given initial val-
ues (0 and W, . The gain (4.7) was then evaluated
by an explicit summation over initial phases g0.
In the region where the amplification is strongly
saturated it turns out to be more advantageous to
replace the basic equations by their exact solution
in terms of the Jacobi elliptic functions. '

Equations (4.5} give immediately

W=-0'W cosy=-0'W[1 (W/0')']". (6.1)

Multiplying by W and separating the variables we
can integrate once and obtain

W =+[0~ ——,(W'-W'+20'cos( }']' ',
which can be transformed into

Wo t dx
y 2 [(a2 ~2)(b2 +~2)] 1/2

1 g (hw')
2 BW

(5.22)

where

a dx
[(+2+b2)(a2 +2)] 1/2 y0 t

which agrees with results derived earlier.
%e form the ratio

~w»
((gW2) )

1/2 8 W (( )}

0' 2(1 —cosW, t) -W, t sinW, t
2 &2W20 sin —,'Wo t

Q
=W2 2 [sin2W, t —2W, t cos2W, t] .

0

(5.23)

a =[1+(40'/W', ) sin'-'. y,]"',
b =[(40'/W', ) cos' —2'g0 —1]

a dx
y0 [(~2 + b2)(a2 ~2)] 1/2

Using Ref. 8 we can write this in terms of the
Jacobi elliptic function cn as

@=a n[c( +ab')"'y+ n'c(a '~m) ~m],

where

(6.4)

(6.5)

If we introduce the dimensionless saturation pa-
rameter (0/W0)4, we find that the ratio (5.23) is
proportional to its square roots. Consequently, in
the limit when our unsaturated expansion in 0' is
justified, the ratio (5.23) must remain small; the
momentum spread dominates the gain. Using the
relation (5.11) to, express the result (5.23) in terms
of the maximum momentum spread, we find that
the present results are in agreement with the nu-
merical computations of Ref. 4 and the analytical
derivation of Hefs. 2 and 3.

m = a'/(a'+ b'),

(a'+ b2)" -40'/W'
(6.6)

(6.7)

As a check on the validity of (6.5) we set y =0 and
find, indeed, x=1 as required.

The parameter denoted by 5' is positive only if

cos'2/0& W', /40'. (6.6)

This region is called region I and is characterized
by closed orbits in the phase plane (see Fig. 2).
H|.re the electron will change the sign of its mo-
mentum during the interaction, thus leading to
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(W, )
=20 cos-', P„ (6.9)

and hence an increase in intensity of-the laser
(0 -E~ ') forces more and more electrons into
region I where their contribution to the gain dis-
appears. This is saturation in the laser.

In region II me write

5 =[1—(4A'/W', ) cos' —,'q, ]'~',

and find

(6.10)

partial absorption even for electrons with gain
initially.

Those values of g, and W, which do not satisfy
(6.8) fall within region II. Here the electronic
momentum is not changed much but oscillates
periodically with little decrease in gain.

The separatrix between the two regions is given
by

~ =(2n/W, )2. (V.2)

The dimensionless laser intensity is given by
&' o. I~ and can be used as the saturation param-
eter. The parameter used in Bambini-Stenholm'
is given by

~2 ~2/25

It is easy to understand this because the interac-
tion width is determined by Q, which is the fre-
quency of small oscillations and 8', is a measure
of the initial momentum of the electron measured
in frequency units determined by the corresponding
Doppler shift, see Eq. (4.3). When the interaction
strength starts to equal this Doppler frequency we
have a strongly saturated laser. The unsaturated
region is determined by the condition &' «1.

We define a gain ratio by writing

dx
y [(+8 +2)(+2 t 2)] I/2

G Gg(t )= 2 Ilm
e~o

(V.3)

d"
[(II2 Q)(g2 f 2)] li2 +yo I

which in terms of elliptic functions gives

~=sdn[sy+dn '(I/~IIII') Im'],

(6.11}

(6.12) g'(~ }=Co+ ~ g'x+ ' ' '
~ (V.4)

For low intensities this remains a constant, which
is normalized to unity. Deviations from constancy
signal the onset of saturation. For small enough
intensity me can expand

with

m' =(a' -5')/a'. (6.13)

The two results (6.5) and (6.12) can be used to
evaluate the 'final momentum as a function of the
initial phase. Because the behavior of the elliptic
functions is well known it turns out that our choice
of parametrization of the solution allows for con-
siderably shorter computations than the direct
integration of motion. We have evaluated the gain
and final momentum distribution for various val-
ues of the intensity parameter (0/W, )'. It is also
possible to use the Jacobi elliptic functions to dis-
cuss the solution analytically; this will be carried
out in a forthcoming publication.

In Fig. 3 we show the value of g for the interaction
period TV, t = 2.4. Because the variation with ~'
occurs over a large range of intensities, the scale
is chosen logarithmically. We can see that g re-
mains constant up to about e'=—0.4 (0 —= 0,4W, ) in
agreement with our general considerations. After
this point the gain decreases, but only very gently.
The laser field at which g=0.5 is around ~2=30,
namely, a very large one.

The steady-state operation of a free-electron
laser can be described by Fig. 3 mhen we dram a

VII. RESULTS AND DISCUSSION

As we have already mentioned it is possible to
integrate the equation of motion for arbitrary in-
tensity and interaction times, and we can obtain
the quantities of interest for the laser operation.
We define the dimensionless laser field amplitude

0.8—

2C
2/ +EJ, o
o/m

(V.l} 0.2-

where p, is the initial longitudinal momentum of
the electrons entering the wiggler and C is the
magnitude of the interaction part of the Hami1. -
tonian (4.1). Using (4.3) and (4.4) we write

I ~' & I I I I I I I I Il I I I II I I I II I I0
10

'
10

'
1 10 10

FIG. 3. Gain ratio vs laser intensity (TVot =2.4).
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horizontal line and solve the equation: g(e') =loss-
es (in suitable units). We see that there occurs an
intersection between this line and the gain ratio as
soon as the losses are smaller than unity in these
units. This defines both a threshold and the steady-
state operating intensity. It is, however, an es-
sential feature of the FEL that interaction occurs
for a finite time only. Consequently a real operat-
ing device must be described in a dynamic way.
As the amplification time is of finite length much
shorter than the repetition time of the pulses, it
may be that time evolution during the interaction
must be scrutinized more closely. Then these
considerations can be used to obtain only quali-
tative information about the laser operation.

In Fig. 3 we have a saturation which decreases
the gain, i.e., the coefficient g, of (V.4) is nega-
tive. When the interaction period becomes longer
than W, t=3.V there is a change of sign in g, and
saturation at first increases the gain. Such a case
is illustrated in Fig. 4 for W, t=4.4. The linear
gain (5.22) varies rapidly in this neighborhood,
and we find this to be near the position of maximum
linear gain (see Bambini-Stenholm'). This appears
to be a favorable operating point wPen large losses
occur. For losses equaling the linear gain the
small-signal theory can give no laser operation,
but from Fig. 4 we see that there occurs a stable
operating point at about ~' =—4, which is a large
intensity. For slightly larger losses there also
occurs an unstable operating point, and hysteresis
behavior is possible. It may hence be difficult to
reach the stable operating point for large losses,
but positive saturation contribution to the gain
helps push the laser operating point from the re-
gion where saturation se(s in around e'-0.4 —e'-4,
viz. , a factor of 10 in the laser intensity. In con-
trast to our expectations we find that saturation
helps to increase the gain in this region. Unfor-
tunately the (unsaturated) momentum spread is
still about 80% of its maximum value when the
gain is at its maximum. If refocusing causes dif-
ficulties the most advantageous operating point

10
' 10' 1 10 10~

FIG. 5. Gain ratio vs laser intensity (Wpt =5.8).

must be chosen elsewhere.
It is possible to obtain an even larger saturation

induced gain by going close to the region where the
linear gain drops down. In Fig. 5 we show the gain
ratio for W, t=5.8, very near the point W, t=2n
where the small signal gain vanishes. Here we
have a gain peak of more than 3 times the unsat-
urated value. In this case saturation starts to in-
crease the gain as early as e' =0.02 but laser op-
eration occurs mainly around e'=10. This is the
optimum region when one wants to observe satur-
ation and bistability, because they are dominant
effects here The .linear gain is small, only 43%
of the maximum gain, and the momentum spread is
about 24% of its maximum. Our program can be
used also for periods W, t &2m but the results lack
practical interest. There appears a repetition of
the general behavior but with a lower value of the
gain. Also large negative gains (losses) are pos-
sible.

It is also possible to use the program to evaluate

30-

20-

10-

I I I I I I 1I I I I I I I I I I II I I I II I I0
10 10 1 10 10

FIG. 4. Gain ratio vs laser intensity (9'()t =4.4).

2 f l I I I I I I I I

3.4 3.6 3.8 4 4.2 4.4

FIG. 6. Final momentum distribution (no saturation)
e2=0.0625, Wpt =3.2.
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I7-'

l

0.5

FIG. 7. Final momentum distribution (weak saturation)
e =7.56, YVpt =3.2.

the distribution of final momentum by the method
shown in Sec. V. In Figs. 6-8 we consider an in-
teraction period W, t = 3.2 near the maximum width
of the distribution [the vertical arrow indicates the
position of the initial sharp momentum distribution,
see Eq. (4.6)j. First, in Fig. 6, we look at the low-
intensity result for c' =0.0625. As we can see from
Figs. 3 and 4 this is iri the weakly saturated region
and the general behavior of the distribution agrees
with the result (5.13). The weakly singular end
points are seen, as first reported in Bambini-
Stenholm4 and the distribution is nearly symmetric
indicating only a very small gain.

The singularities in the momentum distribution
are due to zeros of d W/dg, , see Eq. (4.11). In
this they are analogous to the van Hove singulari-

ties in solids. When the final momentum W, as a
function of initial phase g„acquires more wig-
gles there appears new peaks in the momentum
distribution. In Fig. 7 we have e'=V. 56 and we
find from Figs. 3 and 4 that this is the saturation
region. Here we can see both the emergence of a
new maximum and a distinct asymmetry. For this
intensity it is no longer time to say that the gain is
much less than the momentum spread. When the
intensity is increased further the peaks develop in-
to real singularities, which however remain inte-
grable. In Fig. 8 we have ~'=15.9 and there oc-
curs one real singularity. The asymmetry is pro-
nounced. We have evaluated the density of states
for large intensities (e'&10), where the gain ratio
has dropped to about 0.5, see Figs. 3 and 4. The
result is a series of several sharp singularities
carrying most of the weight of the distribution.
Their presence in a real laser must be considered
doubtful because they will be easily smeared by
technical perturbations.

In the present section we have shown that. the
classical theory of the FEL operation is able to
obtain both the strong signal gain and the momen-
tum distribution for all parameter ranges of inter-
est for the operation of a real system. In addition
the possibility of saturation enhancement of gain
has been discovered and the possibility of bistability
in laser operation has been indicated. The latter
property suggests a large number of interesting
observable consequences (see Ref. . 9}. Because of
the dynamical nature of the FEL operation it is,
however, not clear if it is possible to measure
these phenomena. Only the detailed design of the
operating device will determine their observabil-
ity.

VIII. CONCLUSIONS

5.2-

4.4-

2.8-

1.2-

0.4 I I

- 1.5 -1 -0.5
I

0.5

PIG. 8. Final momentom distribution (strong satura-
tion) a~=15.9, Wpt =3.2.

In this paper we have presented a classical the-
ory of the free-electron laser. By choosing a mov-
ing reference frame we can present the basic laser
amplification process as resonant scattering of
pseudoradiation energy from the wiggler field into
the laser field. Both fields are described by clas-
sical harmonic oscillators, and the frequency of
radiation is taken to be such that the electron can
be described by nonrelativistic dynamics in the
moving frame. By assuming the field amplitude
to stay essentially unmodified during the interac-
tion period we can introduce an adiabatic approxi-
mation, which reduces the. problem to that of a
classical pendulum equation. A straightforward
perturbation expansion in the dimensionless
quantity e gives previously known results for
the unsaturated region. The interpretation of ~ is
that it measures the ratio of the small-signal-
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(kk/p, ) ~1, (8.1)

which is the condition obtained in Ref. 5 where a
detailed estimate of the quantum corrections is
given. From this condition we see that near the
zero of the small-signal gain, p, = 0, it is not pos-
sible to use any classical model. As the momen-
tum exchange of one basic interaction event Ik is
comparable to the electron momentum p„quan-
tum fluctuations are dominant. If one wants to ob-
serve their mfluence, this region is favorabl. In
this situation we also have a strongly' saturating
system, see {V.2). (c) For very strong laser and

oscillation frequency (Rabi flipping) against the
Doppler shift determined by the initial electron
momentum. For strong signals it is possible to
use the Jacobi eQiptic functions to evaluate the
FEL behavior exactly. Some detailed illustrations
of the numerical work are given and commented
upon.

The main new results of this paper compared
with earlier theories" are the following.

(i) The definition of the moving frame which
simplifies the treatment and can be useful also in
other, investigations. In fact this frame has been
used in the papers. 4'

(ii) We can identify the dimensionless saturation
parameter as (a power of) 0/W„which has a
simple physical interpretation.

(iii) The details of the final momentum distribu-
tion are clarified. Even the analytically given un-
saturated result (5.13) has not been presented
earlier. The numerical work shows that the mo-
mentum distribution can be obtained for arbitrary
intensities and interaction times.

(iv) The gain is evaluated for arbitrary inten-
sities and interaction times. It is found that sat-
uration sets in very slowly, and can in a certain
region be used to enhance the gain in contradis-
tinction to the atomic laser. This also suggest the
possibility of bistability and hysteresis as in the
case of a laser with a saturable absorber. The
practical possibility to utilize this feature of the
system must await the realization of an operating
device, whose technical details will determine
what features are observable.

The basic approximations and limitations of the
present approach are (a) The laser field is as-
sumed strong enough so that only the scattering
stimulated by the laser field itself is considered,
while the spontaneous scattering in the laser arid
all other modes are ignored. (b) The quantized
nature of the motion of the electron is neglected.
As each step involves a change of electron mo-
mentum of magnitude I'k, we require this to be
small compared with the electron momentum p -p„
aQ in the moving frame. We obtain the condition

APPENDIX A

Lab frame

Laser wavelength

PR wavelength

Laser energy density

Moving frame

p1

2y

PH energy density

Interaction time

(VIE
Y

Electron energy ~c p 1+

Electron density

p is defined by Eqs. (2.9) and (2.11); z' is the
frequency of the laser and PH fields in the moving
frame; v =2mc/X'; Iz and I~ are the laser and PR
field action; V is the mode volume; ht is the in-
teraction time in the moving frame; m is the rel-
ativistic electron mass in the moving frame (see
Appendix B); p is the longitudinal electron mo-
mentum in the moving frame; N is the number of
electrons in the mode volume V. It is worthwhile
to note that we need some care in transforming the
PH wavelength and energy density. We must re-
member that this field is not a true radiation field.

wiggler fields the transverse motion may require
a more detailed treatment than we have carried
out here (Appendix B). (d) For laser frequencies
in the blue or uv range the electron motion in the
moving frame may need a relativistic treatment.
The ensuing complications are, however, mell un-
derstood. (e) If the dynamics of the fields during
the interaction time must be considered, the adi-
abatic approximation of Secs. IV-VII cannot be
used. It is then possible to utilize the exact con-
stants of motion of Sec. III to follow the dynamics
by Eq. (3.13). (f) Finally we want to point out the
use of a pseudoradiation approximation (Weizacker-
Williams). If energy depletion or quantum fluc-
tuations of this field become of considerable im-
portance, we meet a phenomenon that cannot have
any physical reality in the laboratory frame. It
must hence be due entirely to our approximation,
and the calculations must be reconsidered without
this. For the large wiggler fields used in prac-
tice we do not expect any problems of this nature,
but it is essential to remain aware of the possibil-
ity.
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APPENDIX- B

In the moving frame the transverse kinetic en-
ergy of the electron can be relativistic, if the
wiggler magnetic field is sufficiently strong. In-
deed, the constancy of the transverse canonical
momentum of the electron implies that the kine-
tic transverse momentum is proportional to the
vector potential A, i.e., ignoring the laser field
vector potential, to the wiggler field B, . How-
ever, it is possible, in the moving reference
frame, to account for relativistic corrections to
the transverse motion of the electrons.

The relativistic Hamiltonian for the electron is
given by

= f[p —(e/c) A] ' c'+ m'c') ~'

The transverse motion of the electron is caused
by the strong static magnetic field of the wiggler;
therefore we consider only the vector potential of
that field. In the laboratory frame its components
are

g'""' = -(8 /y, ) sir@;,e'""'
~(lab) — (~ /P ) cosy 8(lab)

Transformation to the moving frame does not alter
the amplitude of the transverse potential. There-
fore, in that frame

The longitudinal motion is still assumed to be
nonrelativistic. Then, to the first order in p', the
Hamiltonian (B1) takes the form

p'
+

' Therefore, we can account for a relativistic trans-
verse motion of the electron by simply replacing
the rest mass m of the electron by an "effective"
mass

m„„,=(1+K)'~'m,

where

K =e'Bo X,'/4m'c4m' =x,/mc'(X, ~,/2n)'.
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