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We present results of various model calculations for the density-matrix elements of hydrogen excited by
electron impact. These density-matrix elements are discussed in terms of expectation values of physically
understandable observable multipole moment operators and their time derivatives, thereby enabling us to
isolate and understand central features of the collision dynamics hidden in the off-diagonal density-matrix
elements. The strengths and weaknesses of these various scattering models, including plane-wave Born,
distorted-wave Born, Glauber, classical trajectory, quasiclassical close-coupling, and close-coupling
approximations are pointed out. The effects of angular momentum barriers, the impulsive nature of
excitation, the mixing and splitting of degenerate energy eigenstates of the final state manifold, and the
various ranges and times of the interactions occurring durng the collision are described. We observe that
perturbative scattering models are inappropriate to describe certain of these multipole, even at very high
energies. Experiments which determine these multipole-moment parameters are discussed.

I. INTRODUCTION

The study of collision phenomena has, to a great
extent, been restricted to the determination of
cross sections. For example, in perhaps one of
the simplest collision systems, electron-hydrogen
atom scattering, the theoretical and experimental
determinations of cross sections for elastic scat-
tering, excitation, and ionization have been of con-
tinuous interest since the early days of atomic
physics. However, scattering amplitudes contain
additional information (their phases) concerning
the collision processes. In this paper we analyze
this additional information concerning the nature
of the collision dynamics in terms of a recently
developed physically understandable parametriza-
tion of the scattering amplitudes® and compare sev-
eral calculational techniques for treating the colli-
sion dynamics for electron-hydrogen impact exci-
tation.

It is important to note that we stress the need for
a physically understandable parametrization of this
information. The amplitudes contain a full de-
scription of the collision. However, these complex
numbers, except for their magnitudes, are difficult
to understand and interpret in terms of a physical
picture of the collision-dynamics. Considerable
insight is gained when the coherently excited state
of the system is described by its multipole mo-
ments and multipole-moment time derivatives.
These parameters are easily visualized quantities
which improve our perception of the nature of the
final state and allow a greater understanding of the
collision dynamics.

In Sec. II we briefly review the multipole moment
representation of the final state for an electron hy-
drogen atom system after a collision event has oc-
curred. In Sec. III we present the results of calcu-
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lations for electron excitation of the hydrogen atom
using various approximate collision models. I de-
scribe the energy and angular dependence of the
coherence multipole moments and illucidate the
collision mechanisms responsible for these behav-
iors. The deficiencies and the relative strengths
of these collision models are pointed out. Predic-
tions of these various scattering theory calculations
for experiments which determine the coherence
multipole parameters are given in Sec. IV, In Sec.
V a summary and conclusion are presented.

Il. COHERENT MULTIPOLE PARAMETERS

We first discuss electronic excitation of hydrogen
to the n =2 state,

e+H(1s)~e’+H(n=2), (2.1)

and let us initially neglect spin. The coherently
excited n =2 state may be written as a linear com-
bination of standard orbital angular momentum
states of n=2 (incident electron direction is taken
as the z axis),

[Gox) = 20 Apim(E,, Q) |nlm) . 2.2)
im

The magnitude squared of the ampltidues A,,,
the probabilities for producing the states (nim)
with electron energy E, and scattering angle Q,.
To exploit the symmetry properties of the collision
it is convenient to discuss the excited state in
terms of the density matrix®

0= Vex) (Do

are

=3 2 Am(Ey Q)AL i (B, Q,) [ nlm) (ni'm’|

Im 1'm'

=3 D timiimt (B Q) [ mIm)n'U'm’ ], (2.3)

m 1'm’
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FICG. 1. Density-matrix representation for the n =2
manifold, Py, ;7 mt (Ee, Q)=(n=2,lm|p(E,, Q)|n
=2,l",m’).

thus defining p,,, ;1m/(E,, Q,). Figure 1 shows all
the elements of this density matrix for the » =2
state and contains 16 elements. The four diagonal
elements are simply probabilities, but the twelve
numbers comprising the off-diagonal elements (p
is Hermitian) contain additional information and
are more difficult to understand and interpret

physically.
The average value of an operator @ is given by
Q=Tr[pQ]. (2.4)

Table I lists the relationships between the density
matrix elements for the » =2 manifold and the
average values of the multipole-moment operators
and their time derivative operators Q'=i[H, 7,
defined by Gabrielse and Band.!*® (Actually we use
linear combinations of the multipole-moment op-
erators here.) Subscripts of the expectation val-
ues in Table I indicate that only part of the n=2
density matrix is used in taking the expectation

TABLE I. Multipole moments for n=2.

(1)s=ps, s0
(1) 5=Pp1, 11 + Ppo,50 + Ppt, p-1

(x)=3V2 [Re(pgg, p1) = Re(0gp, py)]

(9)=3V2 [Im(pgp, py) = Im(pgg, 5_1)]
(z)==6Re(pg, p9)

(’?) =C [_M(Pso,ﬂ) + Inl(pso, p-l)]; C=4.5x10"
(9)=C Re(ogy, p1) + Re(ogg, p4)]

(zo>= C ‘/_2— [Inl(pso,po)]

(Ly) = V12 [Re(pyy, p1) +Relpy, p9)]

(Ly)=V12 [Im(pyg, 1) "Im(Ppo’p-i)]

(L)=VE (o1, p1 —Pp-1,p-1

(322 = 72) =12(py1, p1 = 2Pp, po + Pp-t,p-1)
(xz)==6v2 [Re(ppy,p1) —Re(ppo p-1)]
<yz>= —6V2 [Inl(ppo,p1) + nn(ppo,p.].)]
(22 =3%)=—24Re(0y, 54)

(xy)= 12 Im(ppj,p.i)

value, namely the block of the density matrix
identified by the subscript.

For measurements of the excited state which do
not determine the electron scattering angle, the
angle averaged density matrix, given by

o= 16e) (burl a2,

= ZZfdQeAnlm(Ee’ﬂe)

im 1'm!

XA (B Q) [nlm) (nl'm’ |

=Z Z (nim|pnl'm’) |nlm) {nl'm'|, (2.5)
Im 1'm?

must be used in Eq. (2.4). It is this context, in-
volving a mixture of pure quantum states, where
the notion of the density matrix (or equivalently,

' the multipole moments) becomes essential. Such

an angle averaged state is symmetric under rota-
tions about the incident beam direction, and under
reflections in any plane containing the beam direc-
tion. Because of these symmetries, the angle
averaged density-matrix elements with m +m’ van-
ish, [dQ,pim 1m/(EeR,)=0, and [dQ,pm ;rm:
=fd93p,_m,,,-,,,,. This leaves three probabilities
along the diagonal for producing the s, p0, and pl
states, and one complex off-diagonal density-ma-
trix element, py 0=/ d2, 000,100 e)-

It is difficult to determine even the sign of the
real and imaginary parts of pg, ,, let alone the
magnitudes, from considering the general proper-
ties of the collision mechanism. It is in this con-
nection that the multipole-moment description of
the density matrix plays a vital role. It is clear
that the full information concerning the excited
state is contained in p;,, ;1 (E,, 2,). However, as
described in an earlier paper,’ when the density-
matrix elements are related to average values of
position and angular momentum operators, and
higher moments constructed from these operators,
it is easier to interpret the density matrix ele-
ments physically. It therefore becomes easier to
extract the information they contain regarding the
nature of the collision. For example, the =2
density matrix element p, ,, is interpreted in
terms of the average values of the position vector
(z) and its time derivate (). This physical inter-
pretation will enable us to understand central fea-
tures of the dynamics of the collision process and
allow us to point out the strengths and difficulties
of the various scattering models.

The diagonalblocksinZ, I =1’, of the density ma-
trix could havebeen given solely in terms of products
of angular momentum operators.?* However, to
provide a complete specification of the off-diagonal
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blocks in £ as well as the diagonal blocks, an ad-
ditional set of operators with even and odd behavior
under parity and time reversal are needed. We
have chosen the electric and magnetic multipole-
moment operators as well as their time derivative
operators. These operators have the proper be-

. havior under rotations, parity, and time reversal
transformations in order to.completely specify the
density matrix. :

However, the expectation values of the time de-
rivatives () vanish identically for energy degen-
ate energy levels. Thus the multipole-moment
time-derivative operators must be modified for
describing such coherently excited degenerate
states. Nevertheless, average values of these op-
erators provide a complete description of the den-
sity matrix for coherently excited states which are
nearly degenerate. Thus the constant C, relating
expectation values of (%) to the density- matrix ele-
ments in Table I, is related to the energy differ-
ences of the n= 2 nearly degenerate states. This
difficulty with the time-derivative operators can
be circumvented by taking products of multipole-
moment operators with the correct behavior under
rotations, parity, and time reversal. Operators
such as

[Qns1,4 oo * [‘éQIHl,q]kq ’ (2.6)

where £, g denotes rotational properties of the ten-
sors, and [ ] indicates the coupling to a specific
tensorial representation, have the proper form and
do not vanish when average values among degener-
ate states are taken. Such parametrizations will
be discussed elsewhere.® Nevertheless, it is im-
portant to note that the multipole-moment opera-
tors of Table I have the advantage of being easy to
relate to our intuitive ideas concerning classical
position, velocity, and angular momentum vari-
ables. Another advantage of the multipole moments
is that, unlike the density matrix elements
Pim,itme» they are independent of phase conventions
of the spherical harmonics (here Y,, are taken as
real) and the radial wave functions [here R, () are
taken as positive near the origin].

The multipole-moment parametrization in Table
I can clearly be extended to »=3 and higher states
with a corresponding increased number of multi-
pole moments and their derivatives. In what fol-
lows we shall plot the density-matrix elements di-
rectly (normalized as cross sections by a kine-
matical factor which relates the diagonal density
matrix elements to cross sections), but we shall
refer to the linear combinations of the density ma-
trix elements which form the multipole moment
expectation values for physical insight.

III. COMPARISON OF SCATTERING MODEL
CALCULATIONS

We investigate the predictions of various scat-
tering models for the density matrix of excited
states of hydrogen produced by electron impact.
First we describe briefly these models and the
relevant physical concepts that they incorporate.

A. Plane-wave Born approximation (PWBA)

This approximation treats the interaction as an
impulse to the hydrogen atom during which the
bound electron has no time for rearrangement.
The incident electron is described in terms of an
incident plane wave, undistorted and unaffected by
the presence of the target atom. After the impul-
sive transfer of momentum, the scattered electron
is described by a plane wave with the asymptotic
electron momentum and energy. Generally the
PWBA cross sections are reliable for sufficiently
high incident particle energy, since at high energy
the incident and exit waves of the projectile elec-
tron are not strongly affected by the presence of
the atom.

The reliability of PWBA at high energies is not
nearly so good when used to calculate density ma-
trix elements which are not cross sections, i.e.,
those not diagonal in J. We will show that even
when the incident particle velocity is much larger
than the internal velocity of the bound electron, the
distortion of the projectile plane waves is very im-
portant in the calculation of coherence multipoles.
Even more significant is the neglect in PWBA of
the mixing of the nearly degenerate hydrogen
states brought about by the projectile electron as
it departs. Hence the transition amplitude phases
produced by a first-order perturbation expansion
of the transition amplitudes are not accurate.
Keeping higher-order terms in the interaction po-
tential |X—T|!, as in typical second Born approx-
imations, will not significantly improve the re-
sults.

The PWBA amplitudes for excitation from the 1s
state are given by

Aym(B, Q,)=(2m)7° ffd37’1d3721/):1m(?1)
X el h [F -5, [y o),  (3.1)

where g is the momentum transfer, =K, -k;.
Notice that both the effective potential, which con-
nects the initial and final states, and the initial 1s0
state are invariant under simultaneous time-re-
versal transformation (7') and a parity transforma-
tion (P). All of the multipole moments and multi-
pole-moment time derivatives produced by this
potential from the 1s0 state must therefore be in-



variant under PT transformations or vanish. Thus
half of the off-diagonal multipole~-moment param-
eters vanish identically according to PWBA, at all
angles and energies. The off-diagonal density-ma-
trix elements are either pure real or pure imagin-
ary, depending upon their PT transformation char-
acteristics. Another way of reaching the same
conclusion is by observing that the only dynamical
variable in PWBA is the momentum transfer vector
q, which is PT even. It is therefore not possible
to construct a PT odd tensor in PWBA, Average
values of all PT odd tensors must therefore van-
ish.

B. Distorted-wave Born approximation (DWBA)

The DWBA incorporates the distortion of the mo-
tion of the projectile electron due to the presence
of the target into the calculation of the transition
amplitudes. The plane waves in the initial and
final channels of the PWBA are replaced by dis-
torted waves. The excitation is once again con-
sidered to be impulsive. The bound states of the
atom are treated as if they are unaffected by the
presence of the external charge in the vicinity of
the atom. The major deficiency of PWBA remains
since the various nearly degenerate excited states
are not further coupled by the interaction potential.

The DWBA transition amplitudes for excitation
of the H target are given by

ntm(Ee"Q) rfdsrlda'rzd)nzm(rl)lﬁ( b

X (rz)lrl‘ rzl d)lso(rl)‘p(ﬂ(rz)
(3.2)

ng )(1’) is the wave function for the initial electron
which evolves from the initial projectile electron
state with momentum k| in the presence of the
static potential U,(») of the ground-state hydrogen
atom. g§.’ is the outgoing plane wave distorted by
the atomic potential U,(»). When exchange is in-
cluded, this expression must be- approprlately
symmetrized.

We have performed numerical calculations with
different choices of U, and U, with and without in-
clusion of static polarization potentials. We find
that at electron energies above 100 eV all choices
give similar results. At these energies the ex-
change contributions are small (<1%). For high
angular momentum components of the wave func-
tions (L = 100) which contribute to the transition
amplitudes we employ an analytic approximation
to the radial integrals, [~F,(k»)F,.(kr)r™*Var,
obtaining, aside from a Coulomb correction factor
(which is unity for the hydrogen atom case con-
sidered here), the analytic Born approximation re-
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sult.’ For smaller angular momentum, the long-
range part of the radial integrals (the parts without
an exponentially decaying radial factor),
f;maxFL(kr)FL,(k,r)r'””’dr, is treated using an
asymptotic expansion method similar to that of
Belling.® At energies above about 100 eV, th?
scattermg phase shifts are small, so that 4;* and
lhi deviate little from plane waves, and the am-
plitudes in the DWBA approximation are close to
the PWBA amplitudes,

Calhoun, Madison, and Sheldon” have published
e - H n =2 differential and integral cross sections
using DWBA. Our n=2 cross-section results all
agree with their results as corrected in Ref. 7. In
this paper we focus only upon the much less stud-
ied coherence multipoles.

C. Close-coupling approximation (CCA) 7

The CCA is a much better approximation than
either PWBA and DWBA, largely because it is not
a perturbation expansion in powers of the interac-
tion potential. As already pointed out, an essential
feature of the excitation of H atoms by electron im-
pact is the ability of the projectile to strongly mix
the nearly degenerate levels of the hydrogen atom.,
All bound states are fully coupled to all orders in
the interaction r;;'. This accounts not only for the
mixing of degenerate levels, but their distortion
as well. Furthermore, the CCA allows for distor-
tion of the incident particle motion, resonance
phenomena, and a systematic treatment of ex-
change. :

The CCA involves expansion of the wave function
for the two-electron system for each initial chan-
nel in terms of wave functions for the bound one-
electron atom y,, times continuum wave functions
8, (whose form will be specified’ momentarily),
plus bound-state wave functions for the two-elec-
tron system &,.5-° The latter functions represent
resonance states formed in the collision. Thus for
each channel i/, the wave function becomes -

w1, 2)= 2‘_;4,i(1)9,.(2)+ Z;cp,(l,z)cj. (3.3)

The full Schrodinger equation is then solved for the
continuum wave functions ¢, and C;. The details of
the calculational methods are discussed in Refs. 8
and 9, hence we will not labor them here.

The CCA results reported here were computed
using the published 1s-2s-2p coupled R matrices
of Burke, Schey, and Smith® which were computed
for partial waves 0 <L <7. For larger-L partial
waves we have used PWBA partial-wave ampli-
tudes (a serious liability). No bound-state func-
tions @, were included. Also, no continuum chan-
nels for y,(1) were included. Since many continu-
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um channels are open this may be a serious liabil-
ity.

D. Glauber approximation

" The Glauber approximation assumes that the
projectile electron wave function can be treated in
a WKB-like fashion, that the electron motion is
along a straight line trajectory, and that the mo-
mentum transfer to the electron is perpendicular
to the trajectory. The interaction potential is not
treated perturbatively. Because of the WKB-like
nature of this approximation, the Glauber ampli-
tude contains the potential as an argument of an
exponential. The Glauber amplitude is given by

Ayn(E,, Q,)=(21)"3 f [dr,drze’E‘TZV(Fl, )

X exp [‘i [Z V(Fl’ F) d’}"]
X Phn(F o), (3.4)

where § is the momentum transfer, V=t | -7,
and the z axis is taken along the straight-line tra-
jectory perpendicular to . Several derivations of
the Glauber (and Eikonal) amplitudes have been
published.!® However, the physical implications

of these approximations are not completely clear.
The Glauber amplitudes we use were calculated for
us by Chan.!! :

E. Classical-trajectory approximation (CTA)

As discussed in the previous paragraphs, the
central features of the e-H interaction which are
neglected in the PWBA are the mixing of the nearly
degenerate hydrogenic levels by the projectile and
the distortion of the projectile motion from plane
waves. The CCA incorporates both these aspects
of the collision dynamics. However, at sufficiently
high energies (2200 eV) the CCA is expensive to
calculate. To complement the low-energy CCA,
yet incorporate both of these features, we use a
CTA similar to the approximation used in nuclear
physics to describe Coulomb excitation.” For a
given impact parameter, the projectile electron
trajectory R(#) is calculated using a suitable atomic
potential (see below). The atom sees the time-de-
pendent potential due to the projectile electron fol-
lowing its classical trajectory. The time-depen-
dent Schridinger equation for the amplitudes of the
atomic states q,(¢), j=1,..., I,

ia,(t)= ﬁ; Vol expl—iEx - E)t]ag(d),  (3.5)

where

Vialt)= fdsrw(r)uﬁ(t)-?;-I-R'l(t)]zpk(r) (3.6)

is solved for {a,(t==} for each impact parameter,
with proper boundary condition for the amplitudes
at ==, The transition amplitude (i —~j) is given

by

Al,i(Ee’ Qe)z E [M

5(0,) sing,

1/2
2] e ant=w,
e

(3.7)

where 5, is the classical (WKB) phase shift for
trajectory with impact parameter 5(9). In the elec-
tron-atom collision, the potential for the relative
motion is monotonic, so there is only one trajec-
tory 5(9,) for any scattering angle ¢,. In making
the classical trajectory approximation we neglect
diffraction effects (i.e., we neglect the fact that all
angular momenta, and therefore all impact param-
eters, contribute to scattering into a given angle
8,). Furthermore, it is well known that extremely
forward scattering is poorly represented by clas-
sical trajectory calculations.? These deficiencies
are less important in considering angle-integrated
results, because the angular integration tends to
wash out diffraction effects and compensates by
weighting the small angles with sing,.

The criteria for validity of the CTA!3+** clearly
include the necessity that the trajectories for the
relative motion in the different internal states of
the atom be comparable. This is the case when the
kinetic energy of relative motion is large compared
with the differences between the static potentials
for the different internal states. We found that the
amplitudes were insensitive to the choice between
trajectories calculated using the initial- or final-
state atomic potential.

In the calculations we report here, we used a
1s-25-35-3p-3d basis. Including higher excited
states does not significantly affect the reported

. results. The numerical Schrodinger equation was

solved using a scaling integration grid GEAR meth-
od. Possibilities for treating continuum states via
Sturmium bases are presently under study. Also
being developed are methods which incorporate
diffraction effects into the treatment of the relative
motion degrees of freedom.!*'* This generaliza-
tion of the CTA amounts to making a quasiclassical
approximation to the full close-coupling equations.
This improved approximation, to be called quasi-
classical close-coupling approximation (QCCA) re-
moves a serious liability of the CTA in the angular
distributions for AM #0 transitions. The error in
the CTA due to the large angle approximation for
the spherical harmonics, which must be made to
obtain the CTA from the QCCA, is particularly
poor for AM #0 transitions. %
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Our confidence in this approximation is bolstered

by the fact that the CTA results extrapolate back
to CCA results at lower energies. The CTA takes
about a factor of ten less computing time than does
the DWBA. This makes it possible to do various
numerical experiments mentioned above and others
discussed later. More importantly, the CTA in-
corporates the important features of the collision
dynamics which are left out of the DWBA approach.
It is important that the potential is notf treated
perturbatively. We thus have an approximation
which incorporates the mixing (and the shift in en-
ergies) of the target states. Projectile distortion
is incorporated by using curved trajectories.

F. Results using the various scattering models and qualitative
physical interpretations

I present and compare the results of these vari-
ous scattering models for electron-hydrogen-atom
excitation tothe »=2 and n=3 states. The energy-
and angle-dependent features of the results will be
used to point out the dynamical effects which give
rise to these dependences.

We begin by presenting the energy-dependent
trends of the multipole moments when the scattered
electron is not detected. The collision symmetry
for excitation permits five nonzero independent
multipole moments (or density-matrix elements)
for the n=2 states; (1),=p,,, (1),=p,,, (32°-73),
(z), (&). Multipole moments not symmetric about
the incident particle direction vanish. Further-
more, the magneticdipole moment (L,) vanishesbe-
cause it is odd under reflections in any plane pas-
sing through the incident particle direction. For
the n= 3 states there are 15 independent nonzero
angle-integrated multipole moments, as discussed
earlier.

All of these multipole moments have common
features in their energy dependence. Near thres-
hold they rise sharply as a function of increasing
energy. For those multipole moments involving
nonzero angular momentum states, there is an ad-
ditional angular momentum barrier to overcome in
order to create the nonzero angular momentum
state. All the multipole moments rise to a maxi-
mum magnitude and then fall off with increasing
energy (perhaps after changing sign as in the case
of the quadrupole moment (3z% - 2);,) due to the
shorter effective interaction time of the projectile
electron. These features are illustrated in all the

figures of the energy dependence of the angle-inte- -

grated multipole moments.

A commnon feature of multipole moments which
are PT even is that at sufficiently large energies,
‘the PWBA and DWBA results are not significantly
different from the results using nonperturbative

(\CCA +c®

DIPOLE DENSITY-MATRIX ELEMENT

A

E L 1 1 L I} 1 1 L
9 200 400 600 800 1000
EXCITATION ENERGY (eV)

DIPOLE TIME DERIVATIVE

FIG. 2. (a) n =2 dipole density-matrix element
Re pgg, po Vs incident electron energy. Scale at right
gives (). (b) n=2 dipole time-derivative density-
matrix element Im 0, ¢-

methods such as Glauber and CTA. On the other
hand, PT-odd multipole moments vanish in PWBA
for all energies and are small in DWBA. Nonper-
turbative approximations yield results quite differ-
ent from the first-order perturbation results. As
an example, consider the »=2 electric dipole mo-
ment and electricdipole momenttimederivative
which are plotted as afunctionof energy in Fig. 2. The
dipole moment (z) is zero at all energies according
to the PWBA. The DWBA approximation gives a
small dipole moment. This smallness is shown
more clearly in Fig. 3, which plots tan™(Imp, ,,/
Repg, ), the phase of py, ,,. The PWBA phase in
Fig. 3 is =90°. The DWBA phase is very nearly
—90°, The values at low incident energies for the
dipole moment and time derivative plotted in Fig.

30 T T T T
-40°% 4
2
g -50° :
- CTA
['4
~_ -0 e
§ o
& 107 4
E CTA
<= |
I CTA W/O M b
o
< DWBA
= —DWBA ]
id PWBA
1 2 1 1 A 1 1 14 1
0 200 400 600 800 ¥"5000

ELECTRON ENERGY (eV)

FIG. 3. Comparison of tan™t[Im p,;, ,o/Re 04, 5ol VS
incident electron energy.
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FIG. 4. (a) n=3 dipole density-matrix element
Re pg, 50 Vs incident electron energy. (b) »=3 dipole
time-derivative density-matrix element Im pgy, 5.
Dashed curves indicate negative quantities.

2 are small. As already mentioned, this is partly
due to the angular momentum barrier for creating
-the p state of the hydrogen atom near threshold.
Since a dipole moment is possible only by having a
superposition of different angular momentum
states, and the p state is suppressed even more
than the s state near threshold, the dipole moment
is small. As the energy is increased above thres-
hold these moments grow in magnitude. The CCA
dipole moment is far from zero. In fact Rep ,
is larger in magnitude than Imp,, ,,. At higher en-
ergies, where CCA R matrices are not available to
us, we use the CTA. We find that the CTA results
for p,,, , (and for cross sections and other multi-
pole moments) extrapolate smoothly to the low-en-
ergy CCA results.

The n =3 dipole moments and time derivatives
show similar energy dependences. In Fig. 4 we
plot the » =3 dipole-moment term Re(p,, ,,) and
time-derivative term Im(py, ,). The time-deriva-
tive term as calculated in all the approximations
are similar, whereas Re(p,, ,) is very sensitive
to the scattering model employed. A striking fea-

ture of Fig. 4(a) is the similarity of the CTA and
Glauber results, especially when compared with
the DWBA and PWBA (which is zero for all ener-
gies). The similarity of the dipole- moment time-
derivative terms and disparity of the dipole- mo-
ment terms as calculated in the different approxi-
mations for sufficiently high energies are displayed
in Figs. § and 6 for n=3, p, 4 and p, 4, respec-
tively. In Fig. 5(b) we see that below about 400 eV
the dipole-moment time-derivative term Im(p, 4)
is very sensitive to the approximation used to cal-
culate it, but at higher energies all the approxima-
tions yield similar results. Figure 6(a) shows
that, contrary tothedipole-moment term, Re(pso'”),
Re(p,y, ) 1s radically different as calculated in the
CTA and Glauber approximations.

As another example of these general features, we
plot in Fig. 7 the energy dependence of the scatter-
ing-angle integrated electric-quadrupole moment
Repy, 4 and its time derivative Impy, ,. The PWBA
time derivative Imp, ,, is zero for all energies.
Again the DWBA gives small deviations from the
Born result. At low energy (lower than the ener-

o OWBA .
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FIG. 5. (a) n=3 dipole density-matrix Re 0,9, 49, VS
incident electron energy. (b) =3 dipole time~derivative
density matrix element Im p,,, 40- Dashed curves indi-
cate negative quantities.
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suppressed by the angular momentum barrier so
that near threshold for the n =3 excitation, pg, 4, iS
small. A rapid rise above threshold is again pres-
ent. Even at the highest energies the CTA result
for Imp, 4 is not converged to the PWBA or DWBA
values. The Glauber values are plotted in Fig. 7
for Repg, 4 and Impg, ,,. The Glauber values for
Imp,, 4 differ from PWBA character dramatically.
The Repg, 4, for which the PWBA symmetry al-
lows a nonzero value is similar in all the calcu-
lated approximations for energies above 200 eV.
This is reminiscent of the dipole time derivatives
Impgo, yoy IMPyo, 40, a0nA Impy, 4, .

Other quadrupole-moment contributions tothen =3
state are proportional to [ p(3p1) — p(3p0)] and [2p(3d2)
—p(3d1l) — p(3d0)]. These PT-even momentsare
plotted as a function of energy in Figs. 8 and 9 for
DWBA, Glauber, and CTA. Again we find that the
disparity of the results below 300 eV is quite large,
but for sufficiently high-incident electron energies
the differences between the results are not sub-
stantial.

In order to determine the nature of the radically
different behavior of the PT-even and -odd multi-
pole moments we perform a numerical experiment
with the CTA. By repeating the CTA calculation

ELECTRON ENERGY

(eV)

FIG. 7. (a) n =3 quadrupole density-matrix element
Re pgg,q¢ Vs incident electron energy. (b) » =3 quadru-
pole time-derivative density- matrix element Im pgq 40.

Dashed curves indicate negative quantities.
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FIG. 8. Contribution to the » =3 quadrupole moment
from the diagonal density-matrix elements (cross sec~
tions) of the 3p states [0p1 p1—Ppo, pol. See Table I (that
factor 12 is different from the » =2 result. Also, for
angle integrated cross sections Ppy,p1=Pp-1, p-1).
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from the diagonal density-matrix elements (cross sec-
tions) of the 3d states, [2p45,49=Ps1,a1 =Pa0,a0l-

setting terms in the Hamiltonian which mix the de-
generate excited states equal to zero, we find that
the n=2Impy, , (and the cross sections PT even)
are not radically affected, but the »=2 dipole mo-
ment Repy, , (PT odd) is orders of magnitude
closer to the PWBA and DWBA values. We con-
clude that the dipole moment is very sensitive to
the final-state mixing of the degenerate energy
eigenstates of the atom brought about by the scat-
tered electron as it leaves the hydrogen atom (such
calculations are denoted in the figures by CTA W/O
M). If inaddition we setto zero the energy shifts in
the various states induced by the presence of the scat-
tered electron (we call this a distortion effect), we
obtain an »=2 dipole moment Rep, , even smaller
than the DWBA value, and the dipole time deriva-
tive Imp,, ,, approaches the PWBA and DWBA val-
ues (see Fig. 2) (such calculations are denoted in the
figures by CTA W/O M or D). Thus the mixed-I co-
herence multipole moment p, ,,is sensitive not only
to the mixing of the degenerate atomic states, butalso
to thedistortions of the targetbound states produced
by the projectile electron. Since both final-state
mixing and target distortion are large effects oc-
curing between nearly degenerate states, Born and
similar perturbation methods are completely inap-
propriate to describe such phenomena. Even at an
incident electron energy of 5000 eV we see from
Fig. 3 that the phase of the p,, ,, multipole moment
is not converged to the DWBA value, and shows
very poor convergence trends as the energy is in-
creased further. The very long range of the inter-
actions responsible for these phenomena insure
their manifestation even at very high energies.
These features are corroborated in all the energy-
dependent multipole moments shown in Figs. 2-9.
We now turn to investigate the angular dependence
of the coherence multipole moments at given fixed
electron energy. ‘A word of caution is in order
concerning the limitations of the approximations
as far as angular distributions are concerned. At
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FIG. 10. n =2 diagonal density~-matrix element (cross
section) Pp1,p1 VS electron scattering angle for 200-eV
incident electron energy.’

large scattering angles, all the approximations
employed here have severe limitations. The large
angle scattering region contains the strongly inter-
acting portion of the scattered flux. Perturbation
methods are least capable of describing this region
of strong interactions. Furthermore, a basis set
description of this strongly interacting region
which truncates all but the lowest-energy basis
states must be viewed with caution. The part of
the scattered flux which would go into the higher
excited states and into ionization is not properly
treated with a truncated expansion. The region of
strong interaction may have a substantial portion
of the flux in this excitation region. All the meth-
ods employed herein are basis-state methods and

2po

(aoz/sr)

CTAW/OM
T T T T v 1
0° 60° 120° 180°
LAB SCATTERING ANGLE

FIG. 11. ppg, po cross section. See Fig. 10 caption.
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must therefore be viewed with a certain skeptic-
ism.

An important model-dependent feature of the
CTA is its incorrect treatment of the small-angle
region of the angular distributions.!* This is par-
ticularly true of multipole moments involving non-
zero azimuthal quantum numbers, where the angu-
lar distributions must vanish, and where the CTA
results may not have this property. The origin of
this difficulty is the large angle approximation to
the spherical harmonics made to obtain the CTA
result. Figure 10 illustrates this difficulty in the
2p1 cross section. Figure 11 shows the 2p0 cross
section, illustratingthat alargedisparity at small
angle for Am =0 transitions is not present. As al-
ready mentioned, the QCCA corrects this liabil-
ity.13:14

There are many common features in the angular
distributions we are about to display. The angular
distributions are all forward peaked. However,
those moments involving nonzero azimuthal quan-
tum numbers must vanish at 0° (and 180°). Such
moments (i.e., 0;,, (2), .4, etc.) are observed to
rise in magnitude very rapidly away from 0°,
These features are present in all the computed
angular distributions regardless of scattering
model.

There are clear model-dependent features of the
multipole moments. All the multipole moments
calculated using PWBA are expected to be poor at
large momentum transfer (i.e., large angles).
Cross sections calculated using PWBA are orders
of magnitude smaller at large angle than other ap-
proximations. DWBA and CTA (even without final-
state coupling) fill in the large angle cross section.
In general, the PT-even multipole moments as cal-
culated in the various approximations are similar ex-
ceptat verylarge and small scatteringangles. Asal-
ready noted, afeature of the DWBA is the vanishing of
the PT-odd multipole moments for all angles. For
the PT-odd moments the nonperturbative results
are vastly different from PWBA and DWBA.

Figure 12 shows the angular dependence of the
n=2 dipole moment (z) and its time derivative (z).
Recall that the PWBA Rep,, ,, vanishes for all
angles. The nonzero DWBA result indicates the
angular distribution of the dipole moment induced
in the hydrogen atom by virtue of the distortion
(deflection) of the motion of the projectile electron
due to the presence of the target from the plane-
wave character. Thus the DWBA predicts a change
of sign of the dipole moment due to this projectile
electron deflection. The CTA without mixing or
(target) distortion predicts a similar angular dis-
tribution. With the inclusion of these effects the
bound =2 electron cloud (once the =2 states are
excited) is forced away from the projectile elec-
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FIG. 12. (a) » =2 density-matrix element Re (05, 5¢)
vs electron scattering angle for 200-eV incident electron
energy. (b) n=21Im (pg, pg)-

tron, thus contributing an additional contribution
to the dipole moment.

Another example of this feature is shown in the
angular distribution of the »=3 quadrupole moment
(322 - 72) and its time derivative (d/dt(3z% - »2))
(see Fig. 13). Here again, the final-state interac-
tions strongly affect the PT-odd quadrupole time
derivative, as evidenced by the large effect when
these interactions are turned off in the CTA model.

We present in Fig. 14 the angular distribution of
Pso,p1 With scattering angle 6 for zero azimuthal
angle, e.g., scattering in the x-z plane. The
Re{pw,pl} is proportional to a quadrupole moment,
whereas the Im{p,, ,,} is proportional to the mag-
netic-dipole moment in the direction perpendicular
to the scattering plane. These quantities are re-
ferred to as the alignment and orientation of the p
states. In the PWBA Im{p,, ,,} is identically zero.
The DWBA goes through zero at about 40°, whereas
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' FIG. 13. Same as Fig. 12, exceptn =3 quadrupole mo-
ment and time-derivative moment pgg,4¢-

the CTA (and the QCCA, to be presented else-
where) has no sign reversal as a function of angle.
Note that the mixing and distortion effects do not
significantly effect the orientation, since the CTA
results with and without these effects are similar.
The alignment (Rep,, , ) Within the PWBA and
DWBA are similar in the forward direction, but
significantly different at larger angles. However,
the CTA result has a change in sign at about 50°
(the change of sign in the QCCA is at larger scat-
tering angles), whereas the PWBA shows no such
feature. The diffraction effects left out of the CTA
and the other improvements of the QCCA will resultin
substantially changing the angular distribution.!* In
particular, small angle results are not reliable
(since AM #0),

We have described some of the physical phenom-
ena giving rise to the general trends observed.
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. FIG. 14. Same as Fig. 12, except (a) » =2 quadrupole
moment Re Py, 1 (b) 2 =2 magnetic dipole moment
Im ppo,p1- ‘

These include angular momentum barriers at low
energies, the impulsive nature of the excitation
from the ground state to the final state, the mixing
and distortion of the nearly degenerate final states,
and the importance of the interaction time for the
final-state interactions. To emphasize these phys-
ical phenomena, we now describe them in a slightly
different fashion.

The PWBA incorporates some aspects of the im-
pulsive excitation process. As already mentioned,
the only dynamical variable available in the PWBA
is the momentum transfer g, imparted to the bound
electron. The nonvanishing PWBA multipole mo-
ments must therefore be constructed from this mo-
mentum-transfer vector, Thus the time rate of
change of the PWBA 2z component of the dipole mo-
ment is proportional to f,(¢%)g,. The z component
of the quadrupole moment is proportional to
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f2(g*)(3q% = g?), etc. Figure 12 indicates that at
200-¢V incident electron energy, the time rate of
change of the n» =2 dipole moment in the z direction
is negative for all scattering angles [thus f,(¢?) is
negative for the g® sampled]. Integrated over all
scattering angles the PWBA n =2 quadrupole mo-
ment, 12[c(2p1) - 0(2p0)], is positive. At0°andat
180° £,(¢?) is positive (by symmetry arguments),
but the functional dependence of f,(g?) on ¢? is not
determined by symmetry and must be computed.
For those multipole moments which vanish by
PWBA symmetry arguments, the DWBA indicates
the departures from the PWBA within an impulsive
model incorporating the distortion of the scattered
electron motion. These departures are illustrated
dramatically in the angular distributions of the
dipole moments Repg, ,, and the time rate of
change of quadrupole moments Imp; ,, as ob-
tained using these approximations. An understand-
ing of these departures of DWBA, or CTA without
coupling, from PWBA, and the departures of these
approximations from the full CTA are in hand. In
the DWBA, the PT-even multipole moments depend
upon the distorted-wave phase shifts through the
cosine of the differences of these small phase
shifts, whereas the PT-odd multipole moments de-
pend upon the sine of the phase shifts. The cosine
of a small number depends upon the number only to
second order, whereas the sine is linearly depen-
dent upon the number and therefore much more
sensitive. The inclusion of mixing and distortion
changes the phases of the S-matrix elements, and
since the PT-odd multipole moments depend upon
the S-matrix phases through a sine function, their
dependence upon mixing and distortion is much
more drastic than the PT-even multipole moments.
The result of the distortion and mixing of the de-
generate excited states produced in a collision that
results from the long-range interaction of the scat-

FIG. 15. Schematic representation of trajectories of
electron scattering into scattering angle 6. Region a
is where excitation of » =2 state is most likely for tra-
jectory A.

tered electron with the excited states can be under-
stood on the basis of electrostatic arguments. At
large distances |R| of the scattered electron from
the atom, we can expand the potential energy of
interaction V in the form

= (=e) s
V(R)-f[6(7)+ p()] TR d3r

=pR)Q™+ER)(D
1 32@
T 1 (31’,37,),=0<3717’1"’2>, (3.8)
where

R)= —%
R RH
foe 8
(32¢ ) - i B

87,87" =0 R5 .

Since the atom is uncharged, the leading terms in
this expansion are the dipole and quadrupole
terms. This expansion for the potential ener-
gy of interaction of the scattered electron with a
given particular excited-state manifold can be
analyzed to qualitatively understand the effects of
the mixing and distortions of the degenerate ex-
cited states of the particular excited-state mani-
fold.

Letus consider the response of thebound-electron
cloud to the (time-dependent) potential induced by
the presence of the scattering electron (see Fig.
15). Consider the classical trajectory A of a suf-
ficiently fast electron (sufficiently fast that a clas-
sical picture for the relative motion has some val-
idity). The chances are that if the ground-state
hydrogen atom is excited, this excitation will occur
when the incident electron is close to the hydrogen
atom. This region is indicated by the letter “a” in
Fig. 15. Upon leaving the region “a”, the bound
and incident electrons will repel, inducing a dipole
moment. Anidentical analysis canbe performed for:
trajectory B. The net result for these trajector-
ies, and for forward scattered trajectories in gen-
eral, indicates that the long range contribution to
(z) is negative and that (2) due to the mixing is
positive. A similar analysis shows that the long-
range contribution to quadrupole moments (3z% —7%)
are positive for trajectories which are forward
scattered and that the contribution to the quadru-
pole moment time derivatives (forn > 3) Im{p,, 4o}
are negative. For thequadrupole moments these con-
clusions are true for backward-scattered trajec-
tories also since the sign of R, does not enter into
(® ¢/ar,ar,),=o. As is clearly demonstrated by the
n=2 dipole moment and the =3 rate of change of
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quadrupole moment, the mixing and distortion ef-
fects are very important in considering some as-
pects of the collision.

IV. EXPERIMENTAL DETERMINATION OF COHERENCE
MULTIPOLE MOMENTS

The coherence multipole moments can be deter-
mined experimentally by monitoring the radiation
of the coherently excited states when they are sub-
jected to external fields. The intensity of dipole
radiation of polarization € from manifold f to mani-
fold f’ at time ¢ after production of the excited state
f manifold, in the presence of external E and M
(time independent) fields is given by

I(&,E, M, f)=Tryne-F U, 0; E, Mp,

x UT(t,0,E,M)ex-F . (4.1)
Here p; is the density matrix for manifold f at time
zero. Actually, the collision-producing event for
sufficiently fast electrons is effectively over
10718 sec after the collision began, whereas the de-
cay occurs in a time scale of about 1078 sec.
Therefore, we consider 107!® sec as ¢=0.
Ul(t, 0; }_’5,1\7{) is the evolution operator of the f mani-
fold which described the precession of the states
within the f manifold as well as the decay of this
manifold. If we denote the (real and imaginary)
components of the initial density matrix by {p,},
the intensity of radiation is expressed in terms of
these components by the sum

1(6,E,M,0)= Y .C,(,E, M, t)p,, (4.2)
v

where the coefficients C, are calculated by evalu-
ating the trace in Eq. (4.1). The methods of calcu-
lating these coefficients for small, but arbitrary
static fields are straightforward but tedious.

Consider as an example the following experiment.
For incident electrons of a specified energy, mea-
sure the Balmer a(x =3 to »=2) radiation of given
polarization €, for light emitted along the y axis,
in coincidence with an electron with 12-eV energy
loss scattered by an angle 6 in the x-z plane, in
the presence of an external electric field E and
magnetic field M. The electron, when it veaches
the atom, must have the specified energy and must
be moving along the z direction. The intensity of
radiation for this experiment is given by

I(gx, E,IVI)=f dtTr{nzz} gx.; U(t, 0; ﬁ, ﬁ)p{":a}
) 0

x Ut(¢, 0,E,M)e, - T. (4.3)
The time dependence of the radiation is not mea-
sured. Here, pi,-5} is the projection onto n=3 of
p(E,,R,), the density matrix for scattering into the
specified scattering angle Q..

Another, in fact simpler, experiment is to mea-
sure the same radiation intensity as above, but not
in coincidence with the scattered electron. Except
for cascading effects (the energy loss of the elec-
tron is not measured) the intensity of radiation is
again given by (4.3), but py,.,; is the angle aver-
aged density matrix of the »=3 manifold. The
beautiful experiment of Mahan and Smith!® is this
type of experiment, performed with zero magnetic
field, with electric field along the z direction, and
with unpolarized light detected. They measured the
Balmer o radiation intensity for 200- and 500-eV
incident electron energies as a function of electric
field in the z direction. Krotkov first calculated
the total intensity versus electric field strength
using PWBA, but neglecting p, 4, terms.*®

With zero external fields the intensity of radia-
tion is proportional (from Eq. 4.2) to the cross
sections, 0s5, 0340, O3p2s O3405 Oaars O3q2s and one
(complex) off-diagonal density matrix py 4. All
other coefficients for the (nonvanishing) density-
matrix elements (0 g 50, Ppo,500 20d Py qp) Vanish,
Note that even at zero-field strength the intensity
of radiation is proportional to an off-diagonal den-
sity-matrix element. With an arbitrary electric
field along the z axis, the radiation intensity is
proportional to all the above coherence multipole
moments!? with coefficients {C,}, which are cal-
culable from the evolution of the atomic states in
the presence of the field. The coefficients {C,} do
not in any way depend upon the production dynamics
of the excited-state manifold. Unfortunately, for
the n =3 states there are six cross sections and
eight coherence parameters involved in the in-
tensity of radiation for an arbitrary electric
field. Given the intensity of radiation as a
function of electric field E,, and knowing the
coefficients {C,(E,):_fo'”dtcv‘(E,, 1)}, it is possi-
ble in principle to determine all the density-
matrix elements. This task can be broken into
more manageable parts by considering the sym-
metric and antisymmetric parts, of the intensity
of radiation as a function of electric field.!”!®* The
symmetric curve /(E,) +I(~E,) is linear in the
even-parity cross sections, and the quadrupole mo-
ment and its time derivative p, 4, wWhereas the
antisymmetric curve, /(E,)-I(E,), is linear in the
odd-parity dipole moments and dipole time deriva-
tives (pgo,p0s Pp0,400 Ppr,a1)e

Figure 16 plots the symmetric and antisymmetric
Ho intensity as a function of electric field for 200~
eV incident electron energy as calculated with sev-
eral scattering models and as obtained experiment-
ally. The concavity of the experimental difference
curve suggests that the dipole moments are com-
parable with the dipole-moment time derivatives,
aspredicted by our CTA calculations. However, the
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(Ref. 15).

experimental symmetric curve is quite far from
the theoretical predictions based upon any of the
model calculations. The symmetric curve is most
sensitive to the cross sections, and not very sens-
itive to the p, 4 density-matrix element (since
the coefficients C, of p, 4 are small relative to
the cross section coefficients). This discrepancy
is at present unresolved.

V. CONCLUSION

We find that certain of the coherence multipole
moments are extremely sensitive to the correla-
tion of the bound electron and the incident elec-
tron. The study of the coherence multipoles is in
fact the only way to extract some of this correla-
tion information. These electron correlations are
in some sense the same phenomena which give rise
to the H™ bound state and doubly excited heliumlike
systems,!®+2° but now studied at energies above the
first continuum. These correlations give rise to
large final-state interactions of the excited hydro-
gen states. The final state interactions between
the bound and scattered electrons can nof be treated
by a perturbation expansion of the interaction be-
tween the scattered and bound electron. Even at
10-keV incident electron energy, when the velocity
of the projectile electron is much greater than the
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velocity of the bound electron, a perturbation ap-
proach fails. Thus a PWBA or a DWBA is totally
incapable of dealing with the collision dynamics
(even at 10 keV) which we learn about from our
study of some of the multipole moments. We pre-
sent calculations which properly incorporate these
dynamical effects. In particular, we find the PT-
odd multipole moments the most sensitive to the
details of the dynamics. The importance of the
mixing of degenerate eigenstates and the distortion
of these energy eigenstates by the incident electron
have been demonstrated. The role of the angular
momentum barriers at low energies, the impulsive
nature of the excitation process at higher energies,
the interaction time for the final state interactions,
and the loss of flux to highly excited and ionized
regions of the spectrum, have been pointed out.

In this paper we have dealt with the hydrogen
atom originally in its ground state. Since the
ground state is nondegenerate, no initial state in-
teractions play a role. Clearly, in dealing with
collisions of initially excited states, the strong
long-range initial-state interactions between the
degenerate initial states will play an important
role. Extensive studies of this phenomena have
yet to be carried out. Also, the role of the phe-
nomena discussed above in electron charged-hy-
drogenic systems (i.e., e-He") has not been exten-
sively studied.

It is the near degeneracy of the eigenstates with
the same principal quantum number in hydrogenic
systems which allow the detection of the mixed-1
coherence multipole moments. In nonhydrogenic
systems these mixed-/ multipoles oscillate with a
frequency too fast to allow their detection. How-
ever, application of carefully chosen time-inde-
pendent and/or time-dependent fields may allow
the determination of these coherence multipole mo-
ments for Rydberg states of atoms and molecules.

The study of coherence multipole moments of
hydrogenic systems produced upon excitation by
ion and atom collisions and upon charge transfer
collisions will be of considerable help in the un-
raveling of the collision dynamics of such sys-
tems. Study of the mixed-/ coherence multipoles
of excited rotational states of diatomic and poly-
atomic systems may also be of interest.

I am grateful to G. Gabrielse for his full colla-
boration in both the calculational aspects and de-
ducing the physical insights of the present work
and to H. Gordon Berry for his continuous interest
and encouragement. Work performed under the
auspices of the Division of Basic Energy Sciences
of the U. S. Department of Energy.
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