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Limitation on the density-equation approach to many-electron problems
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The density equation proposed by Nakatsuji assumes a matrix form when a basis set is introduced. The
matrix equation is shown to have highly degenerate solutions for almost any value of the energy, and thus to
provide little useful information in the absence of N-representability constraints. The imposition of such
constraints is also considered, and approximate constraints are predicted to be of little value.

I. INTRODUCTION

In independent developments, Nataksuji' a,nd
Cohen and Frishberg' have shown that the reduced
density matrices (RDMs) obtained from a wave
function which satisfies the time-independent
Schrodinger equation will themselves satisfy a
series of "hierarchy" or "density" equations. (A
similar approach has also been applied to the in-
vestigation of the properties of spin compounds of
RDMs. '4) Cohen and Fr ishber g and Naksuji used the
independent article ansatz that the many-electron
RDMs are antisymmetrized products of the one-
electron RDM' to provide a nonvariational deriva-
tion of the Hartree-Pock equation. This has been
extended by Schlosser' to the multiconfiguration
self-consistent field case.

Nakatsuji has also shown that if the RDM is X
representable' by a wave function 4 and satisfies
the density equation, 4' will be a. solution of the
Schrodinger equation. Since complete N- repre-
sentability conditions remain unknown, it is not
immediately possible to substitute the density
equation for the Schrodinger equation. Nakatsuji
suggests, however, that a valuable approach may
lie in first solving the density equation with only
simple N-representability constraints and then
examining the solutiom to see which of them sat-
isfy additional N- representability conditions. It
was the purpose of the work presented here to
consider that approach with Qo initially imposed
constraints. Unfortunately, the conclusion is that
in the absence of N-representability constraints
the density equation seems to have no practical
utility. While no definitive results have been ob-
tained for cases in which some constraints are
imposed, plausibility arguments suggest similar
conclusions then, as well.

II. MATRIX FORMULATION

The density-hierarchy equation of interest is
an intergrodifferential equation for the four-elec-
tron RDM. Since even in the simpler case of the

Schrodinger equation for a two-electron atom no
analytic solution is known, it is apparent that
some approximate method of solution will be nec-
essary. The method considered here is a basis
set expansion which could become exact as the
basis set becomes complete.

We begin with a set of x orthonormal spin or-
bitals and, for simplicity, neglect all symmetry
other than permutational. The n-electron basis
can then be taken as („") orthonormal determinantal
functions, and the exact problem is replaced by a
model problem requiring the diagonalization of the
(„")x ("„) Hamlltonlan matrix:

H(")c =-Ec (l)
This equation can be reduced, by methods des-
cribed elsewhere, ' to the discrete analog of the
density-hier archy equation

~D (4 ) g LD (4)

where, symbolically,

&= [f(l)+f(2)+g(l, 2)1L,'

+ (» —2)1-.'[f(3)+g(l, 3)+t(2, 3)]1-,'

(n —2)(n —3) -, „
+ — ----- — -L4 g

L =L42.

We need not be concerned here with the precise
form taken by f and g in the matrix formulation.
(They are the one- and two-electron operators,
respectively, in the Hamiltonian. ) The operators
K and L both involve mappings of the space $4 of
Hermitian matrices defined with respect to four-
electron functions onto the space 8, of Hermitian
operators defined with respect to two-electron
functions. The dimensions of these spaces for
the basis we are using are (,")' and (,")', respective-
ly. It folI.ows that in the discrete formulation K
and L are replaced by rectangular matrices of
(,")' rows and (~)' columns, while D'~' becomes a
(,")'-element column vector.
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Before considering the matrix form of Eq. (2)
further, we note that an extension is possible. '
Instead of the matrix form of the Schrodinger
equation, we could consider the commutator or
anticommutator of H'"' with the n-electron (trans-
ition) density matrix

pEJ = CIC J
(n)

H(n)p(n) + p(n)H(n) (E +E )p(n)

(4)

(5)

We are primarily interested in the case I=J, for
which Eqs. (5) reduce to

Za"&=2E LD«' (6a)

~D«) O (6b)

The operators E, are simply related to E, and
Eqs. (6a) and (2) are of the same form while (6b)
is the special case of Eq. (2) corresponding to
E =O.

The rectangular matrices corresponding to E
(or K,) and I can be partitioned as

K—K=(K' K") L L=(L' L") (V)

where E' and L, ' are the square matrices of di-
mension (,")' and K, I.' are rectangular (,")' x [(,")'
-(,")'] matrices. Similarly

(8)

/K' EL'!~0
d can be chosen arbitrarily with

d' = -(K' -EL') '(K EI")d—
(10)

completing a solution. The degeneracy for each
E is the number of linearly independent d", which
is (4)' —(,")'. If the reducing bases' are used for
8, and h4, I."= 0 and L' is diagonal with positive
diagonal elements, so

(K' —EL, ')c' = 0

is a conventional generalized eigenvalue problem, '
and we expect at most (,")' discrete values of E for
which Eq. (10) will not be satisfied. '

The same argument can be extended to show
that a large family of D"' will satisfy Eq. (6a) for
almost any E, even if the same D"' is required to
satisfy Eq. (6b), although the degeneracy will then
be reduced to (,")' —2(,")'.

where d' is the column vector of the first (,")' ele-
ments of D'4' and d' is the column vector of the
remaining elements. Equation (2) can then be re-
written

(K' —EL')d'+ (K" EI ")d" =—0

and for any E such that

The density equation [Eq. (2)] is linear and homo-
geneous, so the solution vectors D"' associated
with a particular value of E form a linear sub-
space of 84. A, trace constraint

trD&4&= S (13)

must also be imposed. This is readily done if
the reducing basis is used: The component in the
Xo,(4) direction, which we could take to d'„ is
fixed at (,") '~'. ' Solutions of Eq. (2) satisfying
Eq. (13) form a convex set (.'(E) for each value of
E. The dimensionality is reduced by one of the
trace condition. "

The set 0'„'4' of four-electron N-representable
RDMs is also convex. In addition, most of the
necessary N-representability conditions known
define convex sets. Let $ denote a set of N-repre-
sentability constraints and 0'„")(g) denote the con-
vex set of elements of $4 satisfying these conditions.

Nakatsuji suggests that the density equation on
the 6'-representable space is equivalent to the
Schrodinger equation. If this is to be the case,
the intersection (.'(E) 0 (P„") must be empty if E is
not an eigenvalue of H'"' and must consist of a
single point if E =E~ is a nondegenerate eigen-
value of H'"'. If E~ is a degenerate eigenvalue
of H'"', then (.'(Ez) A (P„'~' must be a convex set with
dimension" equal to one less than the degeneracy.
Consider now the imposition of a set of constraints
g which are necessary but not sufficient to assure

J)f representability. Then (p„"'($)z (P„" . We note
also that the definition of ('.(E) suggests that its
boundary moves in 84 continuously with changes
in E.

For simplicity we now consider a nondegenerate
eigenvalue of H'"', E~. Then

6(E ) q (p(4) (D(4)) (14)

Unless the boundary of (P„")($) actually coincides
with that of „"' in some neighborhood of D~"', we
expect that (.'(E) A ()'„(4)(g) will be nonempty for a
range of E about E~, and that, except possibly for
the endpoints of the interval in E, the intersection
will be a convex set of finite extent with dimension the
same as that of ('-(E) We thus hav. e, at least lo-
cally, the same problem we faced in the absence
of N-representability constraints.

III. CONCLUSIONS

In the absence of 1V-representability constraints
the density equation contains no information about
energies. Even if the correct energy were known,
the high degree of degeneracy would make it very
difficult to locate the correct (1V representable)
D' '. If approximate N-representability constraints
are imposed, it seems likely that the same situa-
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tion will arise in the vicinity of each desired so-
lution. In particular, since it is not possible for
two convex sets in a continuous space to inter-
sect in a set of distinct, discrete points, there is

no chance that a solution of the density equation
with approximate constraints would yieM a set of
discrete solutions which could be individually
checked for N representability.
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