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Order-a R „contributions to positronium hyperfine structure
from radiative corrections to two-photon virtual annihilation
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We present the details of our calculation of radiative corrections affecting the two-photon virtual-
annihilation contributions to the positronium hyperfine splitting in order ma (a R„). Our result, which is
obtained in analytic form, is hE,"~(a R„) = —13.13 MHz. We point out the gauge invariance of the result
and demonstrate the cancellation of potential infrared contributions which appear at intermediate stages of
the calculation.

I. INTRODUCTION

Accurate measurements of the hyperfine splitting
of positronium have been available since 1975.
These experiments give''

zv, , =203 384.9~1.2 NLHz,

~v, , = 203 387.0 + 1.6 MHz .
The theoretical calculations, as has frequently
been the case in low-energy quantum electrodyna-
mics, are not as yet of comparable accuracy.

While calculations of the hyperfine splitting' and
the fine structure to the first gonleading order
mn' were performed and verified by experiment"
some time ago, the situation is quite different for
the next terms in the perturbation expansion,
which produce corrections of order mo, 'in& 'and
mo. . Various contributions to order m+'ln~ '
have. been calculated and confirmed. ' "

As far as contributions to order mes are con-
cerned, only a ~ew terms in the perturbation ex-
pansion have been evaluated. "" The fact that
~ma'= 9.3 MHz makes the calculation of the nate'

term mandatory if a sensible comparison between
theory and experiment is to be made.

In an effort to remedy this situation, we have
undertaken a systematic calculation of order-a'
virtual-annihilation corrections to the hyperfine
splitting. In the first stage of this program we
evaluated the contributions coming from three-
photon virtual annihilation. "'6 In this paper, we
present the details of our calculation" of all the
first-order radiative corrections to the two-photon
virtual-annihilation process. In the next section,
the relevant diagrams are displayed and briefly
discussed. In particular, we argue that the set of
diagrams is gauge invariant (to order mo.' ). In
Secs. III and IV we present the evaluation of the
contributions from vacuum polarization and elec-

tron self-energy insertion, while Secs. V and VI
are devoted to the study of vertex insertion and of
the diagrams involving the exchange of a photon in
the momentum-transfer (t) channel.

II. ANALYSIS OF DIAGRAMS

Four typical two-photon virtual-annihilation dia-
grams, representing all those relevant to order
me', are shown in Fig. I. To this order, the cal-
culation of the energy shift associated with radia-
tive corrections to the two-photon virtual annihila-
tion of parapositronium (the S, state) is equivalent
to computing the corrections to the electron-posi-
tron forward scattering amplitude at threshold
when the intermediate state consists of two pho-
tons. However, as will be discussed in Sec. V,
special care is needed in the study of diagram l(d),
which we will call the "box" diagram. By using
the charge-conjugation" operator, "performing
appropriate momentum relabeling, and suitably
changing variables, we can demonstrate that dia-
grams with the crossed photon configuration (not
illustrated in Fig. 1) give a contribution equal to
those diagrams with the corresponding uncrossed
configuration. Moreover, the contribution is the
same no matter where we attach the radiative cor-
rection. (More details in this regard will be given
when the individual insertions are discussed. )

In order to keep track of the low-momentum
singularities which appear at intermediate stages
of the calculation, we give the photon an infinites-
imal mass ~. The box diagram requires particular
attention in this respect tsee the discussion fol-
lowing Eq. (21)].

Before examining the radiative corrections in
detail, it is important that we observe that, to or-
der +8„, the contributions of two-photon virtual
annihilation to the hyperfine structure of positron-
ium are gauge independent. With due regard for
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FIG. 1. Typical diagrams
corresponding to first-or-
der corrections to bvo-
photon virtual annihilation.
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the bound-state aspects of the problem, ' gaugein-
dependence can be established by means of stand-
ard arguments so

Thus we obtain

« le(o) I
«

m2 w 18 (4)

u„(p)vs(p) =- f(l —iy )0y, 2~']„, ,

v (p)u&(p)=[(1+iy, )y, 2 "]&.
(2)

Thus, after evaluation of the traces, the integrand
associated with the four diagrams with the vacuum
polarization insertion is

-15pil (k,
' )/k (k2-2pk)2,

where II&(k') is given by Eqs. 9-65 of Ref. 18.
The integration of Eq. (3) can be performed with

standard techniques. (To spot and correct eventu-
al errors made in the analytical calculation, we
used numerical methods to evaluate all Feynman
parameter integrals throughout our work. ] After
completion of the integration of Eq. (3), we need
the wave function and the Feynman rules factor

-i[(4«)'/(2v)']
~ p(o) I'

to obtain an expression for the energy ~E2~"' .

III. VACUUM POLARIZATION INSERTION

The amplitude associated with diagram 1(a} is

u(P) y" S~(P- k) y"v(P)v(P) y „S~(P—k)

&& y„u( p)D(k)D„(k'),

where D(k) =k and ~ D„(k')=k' ll(k' )k' 2. We
can reduce Eq. (1) to the form of a product of two
traces by noting that, at threshold, we have

IV. ELECTRON SELF-ENERGY INSERTION

The amplitude associated with diagram 1(b) is,
to order ma',

u( p) y"S' ( p —k) y" v( p)v( p) y, Sy (p —k) y„u( p),
(5)

where

S~(p- k) =S~(p —k)Z(p- k)S~(p —k),
with

Z(p) =A+ (i yp+ m)B+ (i yp+ m) 'Z~.

(A and B are infinite constants to be absorbed in
the mass and wave-function renormalization. ) The
expression for Zz can be found in Ref. 18 (especial-
ly Appendix A5-4), but to deal with the low-mo-
mentum singularities it is convenient to use those
formulas as modified by the presence of the infin-
itesimal photon mass. The modified expressions
are

Z, (k) =Z, (k)+ ms„(k)Z, (k),

Z, = (a /2vm)I, , Z, = (a/2mm){I, + 2I /p+ I )

I, = dx(1+x)ln(1+ ),
x(1 —x)p

0 x'+rP 1-x &'
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dx(I - x)»~ I+ x(1 —x)p
x +']I 1 —x

dx (1—x')x
0 x'+q'(I-x) '

with p = (k2+ m2)/m' and q =A, /m .
The amplitude (5) can be evaluated by means of

t

Eqs. (2). Hence the integrand associated with the
electron self-energy insertion is (notice that we
have a factor of 4 since four diagrams contribute
to this process)

-16f'mZ, (p —k)/k'(k —2p) (k' —2pk) . (7)

Before integrating Eq. (7), it is convenient that we
reexpress Z2 in the form

o. ,
)
~]'2+ lng' 1 ' dxx

2wm ']]k 2 - 2pk 2 0 (k - 2pk)(1 —x) + m'x

yx lnx
[(k 2pkMI x)+ m'. ] )2 m

~

2

~
~

~

2 ~~

~

~

~

~
~

2 ~ I

I

(8)

[Equation (8) can be obtained from Eq. (6) by re-
peated integrations by parts and by isolating the
cutoff-dependent terms. After isolating the singu-
lar term we set A =0 in the remainder. ]

Equation (7} is integrated by means of the stand-
ard Feynman parametrization. By multiplying the
result by the appropriate factor, we obtain

+Ee1.selfwn
2y

a 2 a2(0}
a'(0) + [a' —a'(0)]z

+2m'I l - x- 2J ]a' a'(0)& ' (12}

a' = m'x'+k'y(x- y)+(p'+ m')(1 —x)(x- y)

following modifications due to the introduction of
the photon mass ~:

4o.'( @(0)(' n 1 ]]'——+ ——ln2 —2 ln'2
m2 g 2 6

+ (p" + m')(1 —x)y+ X'(I —x),
a'(0) = m'x'+ x'(I —x) .

(13)

(14)
I'I

]
—+a m2)

in 'I"
—In@' ln2 —1 ——

~2)

V. VERTEX INSERTION

The amplitude associated with diagram 1(c) is

u(p) y" S~(p —k) y"v(p)v(p) r„&~(p —k)

xr„(p k, p)u(p),

where

(10)

&.(p', p) = r,(I+I-)+&,&(p', p},
(11)

A„~ (p', p) =-
2

dx dy," + y, Z&~ .
2

In Eq. (11)we use the notation of Ref. 18, with the

I

For diagram 1(c), since p' =-m' and p'=p-k, we
have

a' = k'y(x- y)+ (k' —2pk)y(1 —x) + m'x'+)P(1. —x) .
(13')

Using Eq. (2), we can see that the only contributing
terms are y„C, y„E, and v„,k'. For example,
the term containing g„z is proportional to

u(p)o„„k"[iy(p —k)-m]y„v(p) =-(4m/W)e, „„„k~,
where we used Eq. (2) and the equation of motion

(gyp-m)v(p) =0

(notice that at threshold p= p). After some inte-
grations by parts, followed by setting ~ =0 in all
terms which do not exhibit low-momentum singu-
larities, we. can write the integrand associated
with diagram 1(c) in the form

2n k~ 1 ' dykey(1 —2y}
w k (k —2p) 2(k' —2pk) 2 0 kay(1 —y)+ m2

+ dX —2a+ (k —2p)'
2

(1 —2x)+ (k'- 2pk)

2 2"1 2' g 1 2x(-, y x), (1 —x-~x )a'(o) (15)
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where a' is given by Eq. (13'), and for which we
have decomposed the denominator in such a way as
to reduce as much as possible the number of Feyn-
man parameters to be introduced in each integral.

It is straightforward to show the equivalence of
the eight diagrams with the vertex insertion. In
particular, consider diagram 1(c) and the diagram
with the insertion in the lower right-hand corner.
To prove the equivalence of these two diagrams,
we make the transformations k -2p- k and y-x

—y in the second diagram, and obtain the same
contribution [Eq. (15)] as that associated with dia-
gram 1(c). We now let y- xy and x—y inside the
large parentheses in Eq. (15), so that a' =.yA,
where

A=(k'-2pk)x-(kx- p)'y. (16)

The integrand corresponding to the eight diagrams
with the vertex insertion is therefore

k' 1 '
dy k 'y(1 —2y)

w k'(k-2p)'(k'-2pk)' Y, k'y(1-y)+m'

A ( 2 2I Ay+ — (1 —2y)+ (k'- 2pk)
'

dy & k' (k —2p)'

x y(-,'x-1) 2m'2 Ay(l —y-2y ) ~

m'y'+ A.'(1-y &

Notice that we set X = 0 in A. . The only cutoff-de-
pendent term in Eq. ,

(1'?) is the last one.
Before proceeding further, we consider the box

diagrams, since it is convenient, for computation-
a1. purposes, to combine the integrand of these dia-
grams with Eq. (1V).

i

VI. BOX DIAGRAMS

To evaluate the trace most simply it is advan-
tageous to consider diagram 1(d) together with the
corresponding diagram with the crossed photon
confi. guration. Then the amplitude due to all "box"
diagrams is

2u(p) y„S„(p—q) [y„S„(p-q- k)y„+ y„S~(p- q- k') y„]Sj(-p—q) y"v(p)v(p) y'S~(p- k) y" u(p)

= —16 0"""
I

"" 2pq q'eo& k" —(q2 —2pq)eo„„„q"—2m &O„„„k"I (18)

where

[(q+k)(q+ k —2p).+ (2pq —q' —2qk)] l,A'- 2pk )

D = k 2(k —2P)'(k2 —2pk)q2(qm+ 2Pq)(q~ —2Pq) (q + k)(q+ k —2P) .

In order to simplify the evaluation of the cutoff-
dependent term we added and subtracted

(q+ k)(q+ k —2p)
QPP cf y 2

2py

inside the large parentheses in Eq. (18).
After the integration over d4q is performed, the

contribution of all four box diagrams is propor-
tional to

32im' k'(k —2p) 2(km —2pk)

x 4m'k. r" +21 —+
( w in'' I

'
dy &k' (k-2p)'—

I ~ —(k'- 2pk)y l,A k2

(20)

I

where A is defined by Eq. (16), and I~ is given by

I 1, j,

Iy= dx
0 0

l([(k' —2pk)x- (kx- p)'y]'

[kx+p(1 —. 2x)],
((k'- 2pk)x- [kx+p(1 —2x)]'y]') '

The 1/q singularity that appears in Eq. (20) can be
safely neglected, since it serves to reproduce the
lowest-order m~' result for two-photon annihila-
tion. '4 A similar situation is found in the evalua-
tion of the first-order radiative corrections to the
one-photon virtual annihilation. "To verify this
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TABLE I. Summary of the evaluation of the integrals in Eq. (22). 1,2, . . . represents the
1st, 2nd, . . . term inside the large parentheses in Eq. (22). The entries are all multiplied by
2&'14 (o) I'/~~'.

Constant

4

ir
& ln2 ln 2 f(3) (nonsingular).

2 ln2-~4~2

Ing

-10 4 —4 ln2+2z~

-2+21n2 —i&

7+8

Total

2Z
2

2 12

4

2 ln2 —2

6+4 lri2-+4m 2 —2 ln2+i&

point, we also calculated the contribution of the
box diagrams with the electron and positron off
the mass shell by using the Schrodinger wave func-
tion and making all photons massless ab initio

The two methods of evaluation gave identical re-
sults.

The me energy contribution from all vertex and
box diagrams is given by

~Ebox+vertex
2y

8cPI &f&(0) I' o. m' d kk' /4, ' k'y(1 —2y)
m' m in' k'(k-2p)'(k'-2pk)' (, k'y(1 —y)+ m'

1 1
&& 2 2 „1,—2(—,'in@' —1)+ dx

x [2Ay —(k —2P) '(-; -'2y) + —,
' k'.

(22)

The integration of Eq. (22) is outlined in Table I.
(Useful integrals are given in Tables II and Ill. )

We obtain

~Ebox+vertex
2y

4n'I y(0 ) I' o.

'TABLE II. Trilog i.ntegrals:

f i
2dxf(x) =a~4(3) +a2& In2+a31n 2.

0

A more complete list of trilog integrals can be found in
Hef. 23. See also Table 5 of Hef. 16 for other useful in-
tegrals of this type.

&& [-+w
2 -~8 ln2 ——,

'
m

2 ln2 —2 ln 2 + ~8 ((3)

+i'�(3+ 2 ln2 —8 n ) + In@ (1 —ln2 + 2 in )] .
(23)

In2x

1+x

f(x) g2 In2 ln32

VI. CONCLUSION

Collecting the contributions from the different
diagrams [Eqs. (4), (9), and (23)), we obtain"

aE" (+R„)=-(+It„/2m')[I+ ~8 m'+ (~~+m') ln2

—~~a(3) - i~(5-4 s')].
(24)

In(1 —x) [In(I. +x) —In2]
1-x

I.n2(1+x) —In22

1-x
lnx [Inx —In(1-x)]

1—2x

4

12



l9 ORDER-G(. "R„CONTRIBUTIONS TO POSIT RONIUM HYPKRFINE. . . 1891

TABLE III. Miscellaneous integrals involving logarithms:
1

dxf(x) =b1+bp + ' ' '2

0

See'also Table IV of Ref. 16 for other useful integrals of this type.

f(x) Constant x2 ln2 ln22 f{x) Constant l.n2 1.n 2

Inx In{1-x)
lnx ln(1+x)

In(1+x) ln(1 -x)
x lnx ln(1-x)

x lnx ln(1+x }

x ln(1+x) In(1-x)

In(1 —2x) 2

In(1+x) —ln2
1-x

ln2(1+x)
x2

Inx In(1+x)
(1+x)'

lnx ln(1+x}
(1+x)'

ln(1 —x) —Inx
1—2x

ln(1-x) —lnx
(1-2x)'

2

1.
6

12

24

12

24

0 0 0

Inx (In(1 —x) —lnx)

in& [ln(1+x)+ In(1-x)1
x2

In(1+x) [ln(1+x) —x]
x3

In(1+x) In(1-x)
x2

ln2x lnx
(1-x) (1-x)3+

lnx ln(1-x) lnx
x' x

ln2x 1
(1-x)'. 1-x
lnx fin(1+x) —In2 J

(1-x)'
2 lnx [ln(1+x) —In21 lnx

(1-x)' {1-x)'
lnx [In(1-x) +x]

x' '2x
ln (1+x)- ln (1-x)

x3

3

12

12

6

6

&

~i( -~2

2

The real part of Eq. (24) corresponds to the de-
sired energy shift, while the imaginary part is re-
lated to the radiative correction to the lifetime of
parapositronium by

1maE,",(O'R „)= =,'r„(o'R „). (25)

The agreement of Eq. (25) with the result of Harris
and Brown serves as a partial check on our cal-
culation.

Evaluation of the real part of Eq. (24) leads to
the frequency shift

dv2" (O'R„) =-w 'o.'R„c(13.92) =-13.13 MHz.

(26)
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