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Electron bremsstrahlung angular distributions in the 1—500 kev energy range
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Predictions of bremsstrahlung angular distributions from incident electrons of kinetic energy 1-500 keV
are examined using numerical data obtained from a numerical calculation in partial waves, under the
assumption that the process is described as a single-electron transition in an atomic central potential. For low-
Z elements the Born approximation or the Elwert-Haug approach, modified with form-factor screening, give
good predictions for the shape of the angular distributions, except at forward and backward angles. That is,
the results are good in the main region 'which contributes to the energy spectrum. For high-Z elements such
predictions are accurate within about 15%. Analytic properties of the shape of the angular distribution from
simpler theories suggest a simple way to parametrize the results.

I. INTRODUCTION

The continuing improvement of computational
capabilities has made it possible to obtain fairly
accurate theoretical predictions" for the electron
bremsstrahlung spectrum from incident electrons
with kinetic energies in the range of keV. This
has coincided with increased need for such data,
as in radiation physics and in controlled thermo-
nuclear research. ' There is also some neeg for
bremsstrahlung angular distributions for the same
purposes. Here we wish to report predictions for
the shapes of bremsstrahlung cross sections dif-
ferential in photon energy and angle, to supplement
our previous report' on the bremsstrahlung energy
spectra, for incident electrons of kinetic energy
from 1 to 500 keg.

Again in this report, our results are. obtained
by calculations in partial-wave expansions. ' The
bremsstrahlung process is described as a single-
electron transition in a relativistic self-consistent
central potential. Here we use the Kohn-Sham po-
tential. ' %e have verified that, in the energy
range considered in this report, results are not
sensitive to the detailed choice of the self-consis-
tent central potential. However, for incident elec-
tron energies below 1 keg, this choice, as well
as many-electron effects, becomes increasingly
important.

In Sec. II, we will examine simpler theories for
the shape function S, using the results obtained
from our partial-wave calculations. This shape
function of the bremsstrahlung angular distribution
18 defined as

loss k/T, due to radiation of a photon of energy k,
and the photon angle 8 with respect to the incident-
electron momentum p, . The shape function is nor-
malized so that

Sdg, =1. (1.2)

II. PREDICTIONS FROM SIMPLER THEORIES

%e begin with the case of a point-Coulomb po-
tential model for the target atom, which is gen-
erally assumed in simpler approximate theories,
and afterwards examine the screening effects due
to atomic electrons resulting from a screened
central potential.

A simple result for the shape function" is ob-
tained from the nonrelativistic (NR) dipole ap-
proximation of Sommerfeld'

SNR ~ 1+ 2 a 2P2(cosH), (2.1)

where a, is the particle parameter defined by Eq.
(6) of Ref. 6. The same form, with a more gen-
eral choice of a„also holds for the screened
case in the NR dipole approximation. In the NH
dipole approximation, the bremsstrahlung matrix
element has the simple form

Thus, our results for the shape function S along
with the data for the bremsstrahlung energy spec-
tra da/dk published previously determine the elec-
tron bremsstrahlung angular distributions do/
dkdg, .

In Sec. III, we discuss how best to represent or
characterize the shape functions.

do do
ls M -~ e~ r d'y. (2.2)

For a specific atomic target, the shape function 8
depends on the atomic number Z, the kinetic en-
ergy of incident electrons T„ the fractional energy

That is, jM&; ~' must be quadratic in e, the polari-
zation of the photon. If one integrates ~M~& ~' over
scattered-electron angles, tile only other vector in
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J [Mf '
~

' d0, is p„ the momentum of the incident-el-
ectron. Rememberingthat je (' =1, the only depen-
denceof the scalarciuantity j(M&, 'dQonthedirec-
tion p, is of the form a+& ~p, e ', where a and
k depend on Z, T„and k/T„but not on direction.
This shows that the shape function, even for po-
la,rized photons, only depends on one parameter.
Averaging over photon polarization we have

IP, . &-I'=-,'(i x p,)', (2.3}

so that the general form of the shape functioninthe
NR dipole approximation is given by Eg. (2.1).
Here k = k/k, and p, =- p, /p, .

Corrections to nonrelativistic dipole approxj. -
mation result both from relativistic effects and

from higher multipoles. There are relativistic
corrections to wave functions in Zo. —= Ze'/hc as
well as in the electron velocity p= &/c, so that
in addition to modifications at relativistic energies
there can be modifications in heavy elements per-
sisting to very low energies. For the. bremsstrah-
lung energy spectrum do/dk cancellation' between
higher multipole and relativistic corrections to the
NR dipole approximation occurs for the incident
electron energies T, below about 50 keg, extend-
ing the useful range of the NR dipole result. This
cancellation does not occur. for the angular distri-
bution' at ke7 energies and above, as we shall
see. In relativistic dipole approximation, summing

I

and averaging electron spins, it is clear that the
previous argument for the general form of the
shape function still applies. Hence any deviations
from this symmetric form are due to the inclusion
of higher multipoles.

The multipole expansion is an expansion in pow-
ers of k r. Retra. cing the previous argument with
these additional vectors k, it is clear that the
cross term from the lth multipole will conta, in
additional angular dependence through cos'8,
leading to nonvanishing B's through &„„if the
shape function is characterized by the coefficients
B„ in a Legendre expansion

S = g B„P„(cos8)
1
F fg 0

(2.4)

with &, = 1. In particular, the first multipole cor-
rection will give corrections to the shape function
proportional to k P, =cos6I or

1
S = &,P, ( cso8) . (2.5)

4m

It ha, s only been possible to obtain results in
analytic form that go beyond dipole approximation
for a few limiting cases. The best known such
theory is the relativistic Born approximation of
Bethe and Heitler, '0 recluiring v= Zn/p«1. In
this approximation the shape function has the
form, independent of Za,

, ~ 8(2E', +1) sin'8 2(5E', +2E,E, +3) 2(P', —k') 4E,

4E,(3k —p, E,) sin 8 4Eq(E f + E2) 2 —2(VE, —3E,E2+E2)

In(Q +p )/(Q p ) 4 2k(p', —k')
(2.6)

where

4 PP+P1
M ——-2E1E2, 2 2 + 3 +

P2P1 P1 P2

k 2(E2E2 +p2p2)

~2~1 & pl~2

1 2 ~1
+ I p3 2 p2p2 j

+p pI.=2ln
multiplicative factor (Elwert factor}

e, =2ln(E, +p,),
e, =21n(E, +p,),
n, = E,(1-p, cos8),

=P 1 +~ —2P1~ CO S

As is well knomn, Elwert" found a simple way to
improve relativisti'. c Born approximation, with a

1 —8 2" 1
2fs("u "2) =

~ 1 e-2m~, ~

1
(2.7)

We have discussed elsewhere' some of the reasons
for the success of this factor in improving the pre-
diction of the bremsstrahlung energy spectrum
do/dk. However, such a modification, since it is
independent of angle, has no effect on the Born-
approximation prediction for the shape function.
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Nevertheless, the success of the Elwert-factor
approach to the bremsstrahlung energy spectrum
suggests that the Born-approximation prediction
for the shape function is better than its prediction
for the bremsstrahlung energy spectrum. As we
see later in this section, this is indeed true.

Under the circumstances that 1 T2 +~ 1, Bethe
and Maximon" obtained an analytic expression for
the bremsstrahlung spectrum, justifying and using
Sommerfeld-Maue" wave functions for the calcu-
lation. It is believed that this calculation is valid
for T, & 15-50 MeV, far above the energies cur-
rently accessible in partial-wave calculations, and
consequently there is no overlap with our discus-
sion here. More recently, Elwert and Haug' use
Sommerfeld-Maue wave functions without high-en-
ergy assumptions to obtain a result that reduces to
the Sommerfeld formula for low energies, to the
Bethe-Maximon formula for high energies and to
the Bethe-Heitler formula for low ZII./p. Since the
Sommerfeld-Maue wave function is correct up to
the first order in Zn, the Elwert-Haug result is
expected to fail for high Z. For the energy spec-
trum the Elwert-Haug approximation at inter-
mediate (keV) energies gives predictions no 'better
than those obtained from the Born approximation
modified by the Elwert factor due to the cancella-
tion of relativistic and higher multipole effects.
However, we shall see thai for angular distribu-
tions the Elwert-Haug formula is an improvement,
because for light Z the approximation does remain
valid at low energies and so more correctly rep-
resents the higher multipoles which contribute to

0. I 2

0.Oe

the distribution.
In Figs. 1 and 2, we present the shape functions

S for a low-Z element (Al) and for a high-Z ele-
ment (Au). In each panel of the figures, we make
a comparison of the shape functions obtained from
partial-wave calculations for a completely ionized
atom (EC) and for a neutral target atom (ES) with
the results obtained from the Born (B) approxima-
tion and the Elwert-Hang (EH) approximation at
specified incident electron energy T, and fraction-
al energy loss k/TI. For Al the factor Za is
about 0.095 and so the EH approximation gives
correct predictions for the shape functions and for
the energy spectrum. At T, =5 keV and &/T, =0 9, .
where u, = 0.683 and I, =2.146, oe/IT~ = 0.318 so
that Born approximation fails as would be ex-
pected, while for the shape function Born approxi-
mation ia accurate within about 10%, except at
forward and backward angles (i.e., in the main
region which contributes to the energy spectrum).
Here the bremsstrahlung energy spectrum u is
defined by o' = P', (0/Z')(do/dk). At T, =5 keV b'ut

0/T, =0.4, I, =0.683, but now u, =0.89V and o'3/oac
=0.809; the Born approximation gives a still
better prediction for the shape function in this
lower k/T, case. As T, increases, the Born-ap-
proximation prediction becomes better, as can
also be seen from Fig. 1. Furthermore, as far
as the shape functions are concerned; for low-Z
elements the Elwert-Haug approach is better than
Born approximation.

For Au Zn is 0.576. Thus the Elwert-Haug and
Born approximations, do not give correct predic-
tions for the energy spectrum. ' But for the shape
function both EH and Born predictions are accurate
within Rbout 15%, except Rt forwRrd Rnd backward
angles, as shown in Fig. 2.

The screening effect of the atomic electrons be-
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FIG. 1. Comparisons of the shape functions 8=—(da/
dkdQII)/(da/dk) for Al obtained from the partial-wave
method (EC for point-Coulomb potential, KS for the
screened case) with the point-Coulomb results obtained
from the Elwert-Haug approximation (EH) and the Born
approximation (8). Note that the EH is almost the same
as the EC for this low-Z ease. The arrows indicate the
angle for the maximum of(do/dkdQJ ein 8.
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FIG. 2. Comparisons of the shape functions for Au ob-
tained from the partial-wave method with the point-Cou-
lomb results obtained from the Klwert-Haug approxima-
tion and the Born approximation. The arrows indicate
the angle for the maximum of (do/dkdQII) sm 8.
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comes important whenever the matrix element for
a process involves large distances. Screening
effects in bremsstrahlung change the shape func-
tion from the point-Coulomb case. From Figs. 1

and 2 we may conclude that in this range the
screening effect increases as T, and k/T, de-
crease.

In the Born approximation" screening results
in a factor of [1-E(q)]', which multiplies the un-
screened cross section differential in photon en-
ergy and in photon and electron angles. Here
E(q) is the atomic form factor. Following the
method of Gluckstern and Hull" for the point-
Coulomb case for handling the integration we can
easily obtain in Born approximation Boric's re-
suIt".

O. I 2

0.08

0.04

~ 000 I I I

0. I6

0.08 0. I 2

0.04
0.04

Q QQ I I I Il I I I I

0 60 l20 0
I I II I I I I I QQQ

60 I 20 I 80
8 (deg)

I I I I I I I } I I I I

T( = 5kev T, =50kev

do —u' 'i'~&', [1-E(q)]'
Z dkdQ» 4',+, (, p, )2 q

2 dQ'

GB C
X A+, /2 + (2.8)

FIG. 3. Comparisons of the shape functions for neu-
tral target atoms among the partial wave method (ES),
the Elwert-Haug approximation with form-factor screen-
ing (EHF), and the Born approximation with form-factor
screening (BF). The arrows indicate the angle for the
maximum af (do/dkdQJ ain 8.

where

s, =p, -k, q=p, -p, -k,
4E,'—q' 2k(q'+kG)

& = 2k 'a —4k(E '+ E ')

backward angles; while for high-Z elements, such
predictions are accurate within about 15%.

In the soft-photon limit of the spectrum, as dis-
cussed by Low et al. ,

"the bremsstrahlung matrix
element is proportional to the matrix element for
elastic scattering. This leads to

[2(E', + E',) —q']I2E,'-s', -p,'+q']-4k'

S 2 +p2 Q'2

C = E — '', (E, - ~),
1

t' do. Q'

dkdA„dA, , 0 dA, ,„,„., 4n'

where

(2.9)

([2E,(E, —s) —s', —p,'+q']'+4p', sin'Gj,
1

6 = E,(l —P, cos 8) .
Vfe will denote the shape function obtained in the
Born approximation with the form factor as BF.
In an adhoc fashion, one can also modify the EH
triply differential cross section with the same
function, and integrate over scattered-electron
angles, obtaining a bremsstra. hlung angular dis-
tribution designated EHF. %'e present, in each
panel of Fig. 3, a comparison of the ES, EHF,
and BF shape functions for a low-Z element (Al)
and a high-Z element (Au). From Fig. 3 we see
that the superiority of the Elwert-Haug approxima-
tion to the Born approximation for the shape func-
tion has been reduced by the (inconsistent) use of
the form-factor approach for screening. For
low-Z elements the Born approximation or the El-
wert-Haug approach, modified with form-factor
screening, give good predictions for the shape of
the angular distributions except at forward and

1

E',(1-k P,)'

&i —p.p» &a pip2 ~

Integrating the triply differential cross section
over dg„we have

dudna 4W2 d02 4~

(2.10)

A A

A;~kik i(1 —P '„)

(1 - k Pi)4
(2.11)

For the point-Coulomb case, or for high energies
(dz jdfl, )„,„,, is strongly peaked near the forward
direction. It is appropriate to expand P, about P,
in I'. Then we have

do A; ~ 2A;,k; Pi~

dkdfla «=0 (1 —& p,)' (1—5 . p,)'
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where

Av= 2 dn2 - 1~ 2- ly
ehStic

If P, is taken along the z axis, the only nonvanish-
ing A. &; are A„, A „, and A „,with A„=A „»A„.
Thus we have

I.O

(A OI

~

k 1 p
kT, 4w(l —p, eos8)4

1—,P, cosg +-,' P, cosg1+ O. OI
0 . 60 I 20

8 (deg)
ISO

(2.12)

Note that this result is already obtained in Born
approximation for the point-Coulomb case.

In the screened case, the shape function in the
soft-photon limit can be obtained by substituting
the numerically calculated elastic scattering dif-
ferential cross section (do'/dA, ) „~, into Eq.
(2.10).'9 In Figs. 4 and 5 we present the shape
functions S at the soft-photon limit, for neutral
target atoms He, 0, Al, Ag, Au, U and for inci-
dent-electron energies T, =1, 10, 500 keV. Also,
in Figs. 4 and 5 we show results obtained from Eq.
(2.12). From Figs. 4 and 5 we see that in the
soft'-photon limit: (i) Screening effects increase
as T, and k/T, decrease; just as for k/T, x0.
(ii) At incident-electron energies below about 50
keV, the shape functions for different Z intersect
each other near the' "magic angles" 8= 54.74' and
125.26' [cos'8 ——,', P,(eos8) = —, cos'8- —,

' =0].
The angles of intersection vary from 57' to 50'
and from 126'to 143' as T, varies from 1 to 50
keV. To understand this feature we note that in
the nonrelativistic limit the soft-photon limit
expression reduces to the NH dipole form

FIG. 5. Shape function at 0/T& ——0 for the target atoms
He, Ag, and U at T& =500 keV. The result designated as
Coul is obtained from Eq. (2,12).

where

A, =(y- 1)/(1+2y),

y=b/a,

a=, dQ, I
(1-cos8,)',op', & do

4n' &dQ2

esca gtiC

(iii) At higher T, this "magic-angle" feature is
destroyed as shown in Fig. 5. This follows from
the high-energy limit of the soft-photon limit ex-
pression. At high energies, (dc/dQ, ) . is strongly
peaked at forward angles. We have then"

(sin8, sing, }'.

S~ =0 P, 1I~ I )4 (1+A P +A2P),

(2.14)
where

A, = -6P,y/(1+2y+2P', y),

A. =(r+P', r 1)/(1+2r+-2P', r).
S =0, p, « l~ = [1+A,P,(cos8}], (2.13}

k ) 1

) 4n

In the point-Coulomb ease, Eq. (2.14) reduces to
Eg. (2.12).

Finally, in the hard-photon limit (k/T, —1) of
the spectrum, it was first noted by Pano" that
there is an approximate connection between tip
bremsstrahlgng and atomic photoeffect. Except
for normalization, reduced radial matrix elements
for tip bremsstrahlung are complex conjugate to
those for photoeffect. In the Sauter approxima-
tion. "Fano obtained for tip bremsstrahlung

I I I I I I I I g I

Coul.O. I 6—
He

T) = IO keV

T, =OO. I2

0.08
M

0,04 ~UAu

0.00
0

(1-P, cos8)'

2 6p, 2xil- — P.-P + — P1+/ l~ 2 5 1+/ 3 7

60 120 0
8 (deg)

60 I20 ISO

FIG. 4. Shape function at k/T& = 0 for the target atoms
He, 0, Al, Ag, Au, and U at incident-electron energies
T& =1 and 10 keV. The result designated as Coul is ob-
tained from Eq. (2.12). (2.15}
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where & = —,
' T,(T', —1). This is the same expression

as obtained from the Born approximation for
bremsstrahlung when k/T, -1.

0. )2

0.08
I

0.04—
0.9

0.00

Z=I3
T) = 5keV

L. +
T( = IO keY

III. REPRESENTATION AND TABULATION OF

SHAPE FUNCTIONS

0.20
I
l

0. I 6
M

Z = l3
= 50keV

k/T~ = p.p

O. I 2 I

Tl = IOkt.'V

0.08

Convenient analytic representations are needed
to facilitate systematic tabulation of the shape
functions of the bremsstrahlung angular distribu-
tions. For theory as well, it is desirable to iden-
tify a small number of parameters which charac-
terize the shape functions. One can, of course,
display the shape function on some mesh in 0,
which gives immediate intuitive understanding.
However, effort is needed for interpolation in Z,
T„k/T„and 8.

The "magic-angle" feature for k/T, =0 and
fixed low T, as Z varies is interesting and might
be useful for parametrizing the shape function,
but it is destroyed as k/T, and T, increase, as
shown in Figs. 5 and 6. There is also a similar

O. I2

0.08

0.04
J-o.99

000 t I I I

0 60 l20 0
8 (degj

I 20 l80

FIG. 7. Shape function for Al and Au at T&
——5, 10, and

50 keV for various k/T&.

feature shown in Figs. 7 and 8, if we consider the
variation of the shape function 8 as a function of
0/T, at fixed Z and low T,. However, the two
sets of angles of intersection at a fixed low T, are
different. For example, the angles of intersection
for k/T, = 0, T, = 5 keV as Z varies about 56' and
12V'; while for Z =13, T, =5 keV as k/T, varies
are about 48' and 118'. These "magic-angle"
features are interesting, but they are probably
not directly useful for systematic tabulation.

Analytic properties of the shape function 8 from
simpler theories suggest as a simple way to para-

0.04

0.00
O. I 2—

O.08
I

oO

0.04

Tl = IO keV

0.8

0.4

Z = I3
500 keV

000
0. l2— T, = I0It~V

G, S

0.08

0.04

500 keV

o.oo
0 60 I 20

(«a)
l80 0.0

0 60 I 20
8 (deg)

I80

FIG. 6. Shape function at k//T& == 0.4, 0.6, and 0.8 for
various Z at T&

——10 keV.
FIG. 8. Shape function for Al and Au at T& ——500 keV

for various u/T&.
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TABLE I. Expansion coefficients for Z = 92, T, = 500 keV,
k/T& = 0.6 with the Kohn and Sham potential.

n /8„ /m
04-

I/T, = o.o
I I 1 I I

IR/T) = 0.6
I I I I I

k/T, = 0.95

0
1

2
3
4
5
6
7
8
9

10

1.00
2.01
1.95
1.41
0.83
0.37
0.06

-0.11
-0.19
-0.22
-0.22

1.00
1.1 1

0.65
0.20

-0.03
-0.13
—.0.15
-0.14
-0.12
-0.10
-0.09

1.00
0.04

-0.09
-0.18
-0.12
-0.08
-0.05
-0.03
-0.02
-0.02
-0.01

1.00
-0.80
-0.04
-0.09

0.00

1.00
,

—1.34'

0.37
-0.06

0.04
0.00

/

0,0~—,

-0.8,
92

—I.2

~}e,
I I I I I

l.o 0
I I I I I

I.O 0
PI

/
8

Bi

I I I I

I.O

metrize the results:

8= g B„P„(cos8)/(1-P,cos8)",A

gg p

where Bp =- 1 and A is defined by

S de =1.

(3.1)

(3.2)

FIG. 9. B„coefficients of the shape function in Eq.
(3.1) vrith m=4 for He and U and k/T&=0, 0.6, 0.95.

Such representations have been used to improve
the convergence of partialwave series for elastic
scattering. ' '" To illustrate the improved con-
vergence in bremsstrahlung which can be obtained
with convergence factors of the type of Eq. (3.1),

TABLE II. B„coefficients of the shape function in Eq. (3.1) with m = 4 calculated with the partial-wave

method for g = 2, 8, 47, 92, T, = 1, 5, 10, 50, 100, 500, and k/T, = 0.0 with the Kohn-Sham potential.

Tj
{keV)

2
8

47
92

-0.177 92
-0.174 91
-0.162 02
-0.163 17

0.172 48
0.026 26

-0.493 71
-0.446 78

-0.006 94
-0.001 95

0.061 99
0.046 55

-0.000 82
-0.000 04
-0.003 57
-0.001 89

-0.000 87
-0.000 02

0.000 16
0.000 03

2
8

47
92

-0.396 44
-0.393 08
-0.374 78
-0.364 29

0.272 46
0.210 60

-0.130 47
-0.327 55

-0.013 23
-0.013 37
0.032 58
0.093 15

-0.000 48
-0.000 30
-0.002 41
-0.011 47

-0.000 07
0.000 00
0.00009-
0.001 01

10

50

2
8

47
92

2
8

47
92

-0.549 54
-0.546 31
-0.529 04
-0.514 69

—1.049 27
—1.047 80
—1.040 91
—1.027 67

0.310 35
0.267 46
0.029 84

-0.169 30

0.418 95
0.405 68
0.341 12
0.218 44

-0.016 65
-0.018 32

0.009 33
0.080 61

-0.025 51
-0.029 47
-0.032 09
0.020 21

-0.000 86
-0.000 80
-0.001 20
-0.013 14

-0.002 75
-0.002 96
-0.001 81
-0.008 70

-0.000 09
-0.000 10
0.000 03
0.001 23

-0.000 44
-0.000 42
-0.00010

0.000 06

100

2
8

47
92

—1.267 04
—1.267 37
—1.268 19
—1.266 78

0.473 89
0.470 68
0.451 22
0.392 05

-0.276 35
-0.031 17
-0.040 75
-0.018 06

-0.003 92
-0.004 17
-0.003 04
-0.003 41

-0.000 84
-0.000 90
-0.000 55
-0.000 74

500

2
8

47
92

—1.509 81
—1.511 83
-1.524 68
—1.563 52

0.536 65
0.539 69
0.558 66
0.619 67

-0.009 86
-0.011 00
-0.017 67
-0.045 10

-0.005 22
-0.005 28
-0.006 488
-0.004 20

-0.001 53
-0.001 78
-0.001 93
-0.001 45
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Tl
(keV)

TABLE III. Same as Table II except that k/Tl = 0.6.

B2

2
8

47
92

2
47
92

-0.062 08
-0.084 48
-0.118 85
-0.139 57

-0.117 89
-0.218 64
-0.251 10

-0.591 62
-0.566 53
-0.714 67
-0.527 29

-0.573 13
-0.603 15
-0.652 34

0.006 27
0.018 78
0.079 52
0.052 22

-0.002 33
0.08S 56
0.143 09

0.000 66
0.002 80

-0.002 68
-O.OO2 46

0.000 79
-0.003 43
-0.014 58

0.000 30
-0.000 09
-0.001 44
-0.005 12

0.001 99
0.008 81
0.001 57

10

2
8

47
92

-0.164 70
-0.182 92
-0.280 79
-0.316 56

-0.556 15
-0.545 35
-0.536 73
-0.624 69

-0.004 17
0.002 85
0.074 98
0.163 45

0.000 37
0.001 94

-0.002 Ol
-0.019 57

0.000 57
0.000 97
0.001 62
0.002 42

50
2

47
92

-0.389 62
-0.522 91
-0.603 60

-0.427 00
-0.359 24
-0.424 11

-0.007 70
0.041 63
0.163 52,

0.003 54
0.004 43

-0.019 16

-0.010 21
-'0.004 04
-0.000 43

100
2

8
92

-0.573 42
-0.577 75
-0.810 OS

-0.291 08
-0.288 80
-0.234 00

-0.016 63
-0.015 86

0.11950

-0.000 70
0.000 65
0.000 43

0.002 01
0.002 07

-0.005 40

500

2

8
47
92

—1.183 00
—1.186 SO
—1.230 09
-1.341 60

0.209 49
0.213 28
0.252 24
0.369 76

-0.013 98
-0.014 23
-0.022 51
-0.060 47

0.030 02
0.028 41
0.035 69
0.046 44

-0.027 27
-0.026 71
-0.027 99
-0.009 28

Tl
(keV)

TABLE IV. Same as Table II except that k/T& = 0.9S.

8
47
92

-0.012 02
-0.055 06
-0.125 95
-0.164 71

-0.950 66
-0.774 62
-0.724 32
-0.494 26

0.005 28
0.022 43
0.085 95
0.060 15

0.000 47
0.002 74

-0.004 38
-0.004 42

0.000 36
0.000 08
0.000 88
0.002 50

2
47
92

-0.014 59
-0.193 09
-0.247 30

-0.946 82
-0.690 65
-0.678 23

-0.00$ 05
0.094 25
0.151 71

0.000 45
-0.004 14
-0.016 51

0.003 77
0.000 95
0.001 84

10

50

8
47
92

2
47
92

-0.019 55
-0.046 77
-0.232 36
-0.298 57

-0.043 75
-0.336 01
-0.524 56

-0.944 95
-0.902 85
-0.662 80
-0.687 35

-0.918 30
-0.629 54
-0.562 39

-O.OQ1 33
0.008 05
0.086 41
0.179 37

-0.011 44
0.057 60
0.193 45

-0.000 84
0.000 88

-0.002 19
-0.022 65

0.003 54
0.008 57

-0.019 08

0.000 14
0.000 64
0.001 11
0.002 27

-0.007 34
-0.003 4S
-0.000 70

100

500

2
8

92

2
8

47
92

-0.062 77
-0.073 51
-0.679 39

-0.394 43
-0.410 33
-0.746 49
—1.175 52

-0.887 33
-0.877 19
-0.419 51

-0.581 86
-0.577 80
-0.272 28

0.186 71

-0.027 43
-0.025 79

0.152 91

-0.020 34
-0.006 1S

0.002 07
-0.070 47

-0.004 49
-0.003 55

0.003 55

0.036 85
0.004 62
0.022 95
0.065 8S

0.001 72
0.002 12

-0.085 30

-0.037 86
-0.000 32

0.001 86
-0.001 11
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we give in Table l for Z=92, T, = 500keV, kjT,
=0.6, the coefficients B„ for w =0-4. As we can
see, the best choice in this particular case is
m = 3, for which only &» &» and B, are needed
to characterize S. However, in the energy range
we considered the best overall choice is m =4;
only &,-&, are then needed to characterize 8 in
this range. %e show in Fig. 9 and Tables II-IV
how such coefficients vary with Z, T„and k jT,.
Note that sll except B, become small with de-

crea.sing energy, which is expected from nonrela, -
tivistic dipole approximation.
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