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Sternheimer shielding functions y(r) are derived by means of Sternheimer's procedure for a series of
elements (Li, Na, K, Rb, F, Cl, Br, I, Cu, Fe, Ag, and Pr) with varying electronic configurations, with
and without valence electrons, which are generally included in molecular-orbital calculations with a limited
basis set. Direct and exchange contributions to R = (y(r)r ')/(r ) are presented, and the various
contributions to y(r') due to 'angular and radial excitations are discussed. The discrepancy in R values for
halides compared to Sternheimer's values is due mainly to an exchange contribution to R which has been
omitted by Sternheimer. Self-consistent calculations of y(r) have been performed with and without Xa
exchange interaction. The general tendency of self-consistent y„[ = lim„„y(r)) results is that direct
Coulomb interaction leads to y values more positive than those derived from Sternheimers procedure
(noniterative and excluding exchange interaction), while exchange interaction partly balances this effect. The
overall effect in the case of iron is that Sternheimer's value is nearly identical to our self-consistent y value

including exchange contributions. Self-consistency was obtained only for neutral atoms and positive ions.
However, no such self-consistency was obtained for negative ions. Thus the X approximation is not very

appropriate for the present purpose of calculating y(r) for elements with varying electronic configurations.
I

I. INTRODUCTION

We have been motivated to calculate Sternheimer
shielding functions y(t ) by our work on the mo-
lecular-orbital (MO) interpretation of experimental
quadrupole splittings. In MO or band calculations,
which include only valence orbitals within the MO
basis set, the electron core of the isotope under
study becomes polarized by valence electrons by
over-lap or by ligand charges. I'he amount of
polarization depends on y(x) and accounts for
shielding [y(s") &0] or antishielding [y(r) &0] effects
in deriving the quadrupole coupling constant s'Qq;
e is the elementary charge, Q is the nuclear quad-
rupole moment, and q is the electric field gradient
(EFG) at the nucleus of the isotope. Most of the
work with respect to these shielding and anti-
shielding corrections has been reported by Stern-
heimer, '~ therefore these corrections are also
termed "Sternheimer corrections. " Other workers
have contributed to this field either by using dif-
ferent methods in deriving y(t ) (variational meth-
od,""many-body calculations, " ")or by applying
Sternheimer's method to specific isotopes. ""
Unfortunately most of the publications report only
factors R and y„[for a definition see Eq. (4)], or
even only y„. We show below that the appropriate
shielding and antishielding corrections of the cal-
culated EFG by MO or band methods require y(r)
rather than R and p„only. Moreover, the re-
quired y(r) functions correspond to electronic con-
figurations which exclude the valence orbitals be-
cause their contribution to the EFG is already
taken care of by the MO's. In Sec. II we follow
Sternheimer's method and calculate y(s") for sev-

H. STERNHEIMER METHOD FOR CALCULATING

y(r) AND R

A. Physical concept

Sternheimer's procedure for calculating shield-
ing and antishielding corrections of quadrupole
coupling constants' ' is based on a first-order
perturbation treatment of the Schrodinger equa-
tion

(X,+Kt+Xs)(g, + Pt+ gs) = (E, +Et+Es)(g, +fr+ as),

(1)

with

Et=(g ~Rot ~ge), i =0, 1, 2.
X, and g, describe the electronic structure of the
unperturbed system (free atom or ion), while Xt
and X, represent the perturbation of the electro-
nic structure by the nuclear quadrupole moment

Q and an external charge, respectively. gt and gs
are the first-order contribution to the wave func-
tion. Separation of first-order terms in Q and
1/i' in Eq. (1), with r being the distance of the
external charge with respect to the atom or ion
under consideration, leads to

(&o-Eo)&t =-(&t-Et)(i'.

(3C, -E,)g, =-(X,-Es)g, .
(2a)

(2b)

eral elements, ions, and electronic configura-
tions. In Sec. III we introduce the self-consistency
concept and discuss the applicability of the X ap-
proximation for the exchange interaction in de-
riving self- consistent y(r) functions.
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R*= 6'(&)& ')/6' '), (4)

and hence R* depends on the distance of the "ex-
ternal" charge from the nucleus under considera-
tion. If the external charge, which produces the
EFG q, is a valence electron, then the expectation
values in Eq. (4) are derived using the wave func-
tion of this valence electron; in this case R* is
denoted by R. If the external charge is far away
from the atom or ion under study, y(r) becomes
constant and takes the value y„; then R~ reduces
to R*=y„.

Assuming that the EFG at the nuclear site of an
isotope within a molecule is produced by the val-
ence electrons of the isotope (q„„) and additionally
by the ligand charges surrounding it (q, «), then
the effective EFG is derived" according to

q„,= (1 —R)q„,+ (1-y„)q„g. (5)

Equation (5) neglects the fact that overlap charges
(PP, ) between the isotope a and the ligands b con-
tribute in a more sophisticated way to q,« than by
simply dividing (Q,Pg according to a Mulliken
population analysis. A better description for
q.„„„would be"

qoverlay e ~ (6)

where q is the electric-field-graidient operator,
and where Q, and Q~ are the valence orbitals of
the isotope and the ligand atom, respectively.
Equation (6) indicates that for the evaluation of

q„„„„the Sternheimer function y(w) has to be
known explicitly. As a further argument for the

The two equations [Eqs. (2a} and (2b)] give the
same physical result, only using two different
concepts. Equation (2a} describes the perturba-
tion of the spherically symmetric electron charge
distribution

~ gp ~' due to the nuclear quadrupole
moment, which produces an induced quadrupole
moment Q„d within the electronic shell; the total
quadrupole coupling constant is then e'(Q+Q„d}q.
Equation (2b), on the other hand, describes the
perturbation of the spherically symmetric electron
charge distribution ~gp ~' due to the electric field
gradient (EFG}of the external charge, which leads
to an induced electric field gradient q„,within the
electronic shell; the total quadrupole coupling con-
stant then takes the form e'Q(q+q„~). Sternheimer
has shown' that both Q„,and q„~ include the same
proportionality factor -R*, leading to

e'(Qq)„„,=em(Q —QR*)q =e'Q(q —qR*) . (3)

From Eq. (3} it follows that Eqs. (2a) and (2b) lead
to the same result.

The proportionality factor R* depends on z(r)
by the relati;on'

importance of the knowledge of y(r) for calculating
the overall EFG, in the case of heavy isotopes
y(x) might not yet have reached its saturation
value y„ for interatomic distances of the order
2 or 3 A. Since in the literature only R and y„
values have been reported [besides' y(r) for Cu',
Cl, Rb', and Cs'], we became motivated to cal-
culate y(r) for various atoms and ions. A further
motivation for this work has been the necessity
of having Z(r) and R for the atomic cores only,
which are not included within the atomic orbital
(AO) basis set for molecular-orbital (MO) calcula-
tions. For example, evaluating q, « from MO
cluster calculations including Fe 3d, 4s, 4p AO's
for the ferrous ion the relevant Sternheimer func-
tion y(r) and factor R have to be derived from the
Fe (1s' 3P') core rather than from the Fe
(1s' ' 3P'3d') core, because the EFG contribu-
tions from 3d electrons are already included in

q„„, and the correction -Bq„, is only due to the
Fe (1s' 3P') core.

We followed Sternheimer's procedure in solving
Eq. (2a) and in deriving' z(r) as

r,
y(r) =g C„,~ up, (r')u„, , (r')r" dr'

&
~

where (1/r)u„, and (1/r)u, „are the radial parts
of the unperturbed and perturbed part of atomic
orbitals, respectively. The u. ..(r'} are derived
from the radial part of Eq. (2a). The orbital ang-
ular momenta l cl' and l =~' describe the appro-
priate "radial" and. "angular excitations" of the
atomic orbitals (which were Clementi Hartree-
Fock (HF) functions in the present study), due
to the perturbation X,. The coefficients C». re-
sult from the angular part of Eq. (2a). The nu-
merical procedure" in solving Eq. (2a} was
slightly different compared to that used by Stern-
heimer. With the tr anf srom tiaonX=r/(n +) the
integration interval in Eq. (7) goes from [0,~] to
[0,1]; 50/p of the points are within the r interval
[0,n], and the other 50% are within [n, ~ ]. We
varied n from 1 to 3, increased the number of
points up to 1440, used various approximations
for the integrals (up to seven-point formulas),
and neglected areas where u, was smaller than
10 4. With n=3, for example, the increase of
points from 720 to 1440 did not affect y(r) sig-
nificantly. Details of the calculational procedure
are described elsewhere. " The calculations we
have performed include Li', Na', K', Bb, Li',

them with and without valence electrons). [The
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reader who is interested in detailed numerical
values for y(r) may ask the authors for a supple-
ment to this publication. j

B. y(r) results

As already shown in the literature" the "angul-
ar excitations" nl-l' (l Wl') contribute to y(r) with
relatively small positive values while the "radial
excitations" nl-l (especially the outer P -p ex-
citations) contribute with much larger but negative
values. Therefore the y„ factor for light atoms
(Li, Na, and F) is relatively small (positive or
negative) compared with the large and negative
y„ factors of heavier atoms (Br, and I). In a
series of elements with similar electronic con-
figuration therefore a tendency is that y„be-
comes more negative with increasing atomic
number, i.e., with increasing number of P elec-
trons (Fig. 1). The values in Fig. 1 are in good
agreement with those reported in the literature;
only the y value for I (-254) deviates from val-
ues given elsewhere, —138 (Ref. 8) and -39)
(Ref. 27). This deviation is due to the use of dif-
ferent basis functions u, , Since the main con-
tribution to y„(I ) comes from the 5p-p excitation
(y„' ~=-238), it is obvious that slight modifica-
tions within I 5P wave functions lead to significant
changes in y„(I ).

In Fig. 2(a) we show y(r) for Cu' which is in
good agreement with Sternheimer's result. '
Similar y(r) curves are found for the other atoms
and ions presently under study; in Figs. 2(b) and

2(c) we present as examples the results for Na'
and Fe""'. The general tendency that y(r) is
positive for small r values (re 1 a.u. ) reflects
the dominant positive contributions to y(r) due to
inner angular excitations in this range.

The shape of y(r) for elements with outer s elec-
trons deviates to some extent from y(r) for ele-
ments which do not have an outer s electron. This
is illustrated by Fig. 3(a), which represents y(r)

(a)

2.0-
0- I I

6.0 12.0 i[a.u ]

-8.0-

, -16.0-

(b)

0.6 3.0 6.0 12.0 r[ a u. ]

-2.5-

-4.6

(c)

for Na'. Comparing Fig. 3(a) (Na') with Fig. 2(b)
(Na'} one realizes that y"+(r} at about 3 a.u. be-
comes more negative than the y value. This
minimum in y(r) is due to the considerable positive
contribution to y'(r) from the 3s -d angular excita-
tion fo& large ~ values, which to some extent com-
pensates the dominant negative contribution from
the 2p-p radial excitation. In Fig. 3(b) we show
the contributions to y""(r}due to various angular
and radial excitations.

In connection with the MO interpretation of nu-
clear quadrupole coupling constants we were also
interested in Sternheimer shielding functions of
atomic cores which do not include the valence or-

OO(

100-

10 20 30
0 ~ s

2.0-

0
0.6 0 60 12.0 r[o.u. ]

-100-

—200-

-300-

FIG. 1. Sternheimer shielding factor p„depending on
the atomic number Z of elements. (&) Li, Na, K,
Hb; (g) F, Cl, Br, I .

Fe3

F 2+

FIG. 2. Sternheimer shielding function y(x) for (a)
Cu', (b) Na', {c) Fe ' (solid line), and Fe+ (dashed line).
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FIG. 4. Sternheimer shielding function y(r) for Fes+
(solid line) and Fe2' (dashed line) derived after neglect-
ing 3d d radial and 3d s, 3d g angular excitations.
These y(x) curVes may be used for EFG core correc-
tions of MO results if Fe M AO's are part of the basis
set of the MO calculations.

050

0.6
-1.0-

-3.0-

y' (2p —f)

f(2s dI

f (1s~d) -0.1

6.0 12.0 r[a.u.[

lustrated by the y„values given in Table I; this
is due to the large and negative contributions from
outer P -P radial excitations.

C. R results

R is derived from Eq. (4) using a valence orbital
(in the case of Fe": Fe Sd AO) for calculating the
expectation values (y(r)r ') and (r '). This R value,
however, does not include the contributions due to
the exchange interaction of the excitation nl -l'
with the valence electron. Therefore we distin-
guish two different contributions to R. The "direct
contribution" (Rn) is identical to that derived from
Eq. (4), and the other represents the exchange
effect (R~}

-5.4- )t'( 2p- p) R =R~+R~. (8)

FIG. 3. Sternheimer shielding function y(r) (a) for
Na, (b) for the various angular and radial excitations
in Na . [Note the different scale for p (2p p)].

bitals entering the MO basis set. The procedure
was simply to neglect the contributions to y(r) due
to the valence orbitals. In the case of iron, where
the 3d valence orbitals would be part of a cluster
for MO calculations, the relevant core corrections
of the EFG at the nuclear site of iron [ Rq,„-
—y„q,«, f,(1 —y(r)qp~dA] from Eqs. (5} and (6}
would be derived by neglecting the contributions
to y(r} due to the 3d -d radial excitation and the
Sd -s and 3d-g angular excitations. The result-
ing y(r) curves for Fe" and Fe" (without Sd ex-
citations) are drawn in Fig. 4. In the case of
halides the change of y(r} by including or neglect-
ing the outer s and p excitations is drastic as il-

Sternheimer has discussed extensively" the in-
fluence of exchange interaction upon R. Ne re-
peated his calculations and found some deviations
from his results: The exchange interaction be-
tween the m = 0 hole and the m = 0 electron within
the p valence shell is zero; it takes however, a
finite value concerning the exchange between the
m =0 electron of the P valence shell and the m =0
electrons of the core. Comparable arguments hold
for the direct Coulomb interaction. Therefore a
series of R~ and R~ coefficients are different for
the valence-valence interaction compared to the
valence-core interaction (Table II). Sternheimer
has omitted these differences and used the RD
and R~ coefficients of the first column in Table II
throughout'' " (If we recalculate our R values
under the same condition we derive results close
to Sternheimer's. ) Since Fo has no inner p or-
bitals the second column of Table II does not enter
the calculations in this case; therefore it is evi-
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TABLE I. Sternheimer shielding factors y„ for neutral and negative halides with and with-
out the contributions due to ns, np valence orbitals.

Element
Present work

Neutral atom Negative ion
Literature

Neutral atom Negative ion

F
Cl
Br
I

-7.1
-25.4 (-1.2)
-66.0 (-6.2)

-136.0 (-16.9) '

-22.3
-55.4 (-1.2) '

-133.0 (-6.2) '
-254.0 (-16.7) '

8.51"
-30.14"
-78.36

-22.5
-46.5 -57.1e

-123 Oc

-138.4' -396.1 f

(-16.8)"
~Values in parentheses correspond to electronic configuration excluding ns, np valence

orbitals.
Reference 28.

'R. M. Sternheimer, Phys. Rev. 132, 1637 (1963).
dReference 5.
'Reference 8.
Reference 27.

dent that ours and Sternheimer's R(F') values have
to be comparable (0.0805 and 0.10075, respective-
ly). For Cl' and Br', however, our R values de-
viate considerably from Sternheimer's: R(Clc)
=-0.078, R(Bra) =-0.114 (this work), R(C]c)
=+0,043, and R(Br') =+0.004 (Ref. 28).

In Table III we summarize our results for B,
F', Cl', Br', I, Fe'+, and Pr" and compare them
with values from the literature. For Fe" and I
we tabulate the various contributions to R, thus
one can calculate MO-relevant R values for Fe
3p and I 4d' configurations by omitting contribu-
tions 3d-s, d, g and 5s -d, 5p-p, f, respectively.
Our R value for Pr" deviates from the values re-
ported in the literature. " These deviations are
not due to the arguments mentioned above, be-

cause the electronic configuration of Pr" is 41".
The deviations are due to the use of different
wave functions uc, (in the present work Hartree-
Fock wave functions reported by Synek and Tim-
mons'2 have been used), which illustrates. that R
values significantly depend on the choice of u, ,

III. SELFCONSISTENT CALCULATIONS OF y(r)

A. Procedure

In the following we discuss the self-consistent
solution"'4 of the perturbed Schr5dinger Eq. (2a).
Because we are also interested in directly taking
care of exchange interactions, we start from the
X Hartree-Fock equation (in a.u. )

TABLE II. Rg) and Rg coefficients' for valence-electron-valence-electron interaction and
valence-electron-core interaction in the case of elements with p configuration.

Coefficients

RL) c(p p)

c(p-f)

Rg c(p p'p I =0)

c(p- p)p;a= 2)

c(p f p'J-=2)

Valence-valence

i6
25
288
175

i2
25

Valence-core'

+8
25
72
2r

Rg) and Rz coefficients were calculated from

E

cD(nl l')=8 g [C (Em;l'm)]

4 + cP ~(lm; l'm)cp~~~(lm; pm~)cz~~~(l'm;pm~),

co gimp s pmp)

where p and m& are the orbital and the magnetic quantum number of the valence electron
(Ref. 8).

Summation over m=0 in (a) omitted.
'Summation over m=0 in (a) included.
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--,'v', ——+ ', dr'-3n~ —p, (r)
~

p.(r')r-r' I8& ' ) 4,g(r) Eo,yk(&,g(r) .

Introducing perturbation K„we derive (see Appendix):

(K, &
—E, ,)u, &(r)= ", 1 —y(r)+r

~

—pc(r)
~

n —r'(r')&», +r'u, ,(r),(3 ) '~' 2&V(r). . . y(r)

(IO)

TABLE III. Sternheinmr shielding factors R and their direct (Rg and exchange (Rz) con-
tributions. For Fe2' and I additionally the various contributions to R due to different angular
and radial excitations are included.

Element

p0

FO

Cl0

pr0

Fe2+

Excitations

ls~ d
2s~d
3s d
4s d
5s d
2p f
3p f
4p-f
5p f

g
3d~ s
4d g
4d s

2p p
3p p
4p p
5p p
3d~ d
4d d

Total

1s~ d
2s
3s~ d
2p f
3p f
3d g
3d $'

2p p
3p p
3d~ d

Total

102R a

+14.169

+10.000

+3.891

-1.452

1.133
0.211
0.116
0.082
0.099
0.485
0.256
0.218
0.049
0.297

-0.049
0.270
0.151

-0.246
-1.761
-5.211

2.289
-0.460
-1,751

-3.8

2.719
4.807
2,129
7.054
3.542
1.940

-0,982

-35.512
20.694
4.127

+10.518

10 RE

-9.104

-1.944

-11.675

-9.968

-0.616
-0.017
-0.005
-0.009
-0.111
-0.147
-0.049
-0.028
-0.024
-0.034

0.022
-0.026
-0.055

-2.441
-2.947
-6.539
1.716
0.012
0.893

-10.4

-0.116
-1.382
-0.827
-1.609
-1.388

26.618
-19.190

+2.106

102R ~

+5.029

+8.055

-7.779

-11.420

0.517
0,194
0.111
0.073

-0.012
0.338
0.207
0.190
0.025
0.264

-0.027
0.244
0.096

-2.687
-4.708

-11.750
4.005

-0.448
-0.858

-14.2

2.603
3.425
1.302
5.445
2.154
1.940

-0.982

-8.894
1.504
4.127

+12.624

102R

+4.80"

+10.07"

+4.30b

+0.42"

+12.10c

+11.90

-1.36 +8.18 +13 08c
+11.83 ~

This work,
"Reference 28.
'Reference 8.
~Reference 24.
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Starting the calculation, the function y(x) is set
equal to zero and u. .. is derived from Eq. (10).
y(r), in zeroth iteration [y'(x)], then follows from
Eq. (7). Inserting y'(r) in Eq. (9) leads to u. ..
from the first iteration and this through Eq. (7),
to y'"(r). Self-consistency is obtained when Z'"'(x)
and y' "(x) are practically equal (within 0.1/q).
Taking a =0 Eq. (10) reduces to the self-consis-
tent solution of the perturbed Schrodinger equation
as has been used by Sternheimer' to calculate
y"'(x). In the present study we went to real self-
consistency, which was obtained within ten itera-
tions.

B. Self-consistent y(r) results without exchange

The general tendency of self-consistent y(r) re-
sults is that y„becomes more positive, in the case
of I for example, y„changes from y„"'=-254 to
y„" ' =-209; in the case of Fe""from y„"'=-11.51
(-9.44) to y„""=-7.57 (-7.26), and in the case of
Cl from y„"' =-55.3 to y„'"' =-44.3. Because
Sternheimer calculated Z"'(x) only up to n = 1 for
Cl, we can only compare y'" and y'„'': y„"' =-42.1
from the present study, and y„'" =-45.9 (y„"'
=-57.1) from Ref. 8.

In addition the shape of y(x) is modified (see,
for example, Fig. 2(c) and Fig. 5 for Fe'"').
These changes are explained by the fact that with-
out iterative procedure the perturbation u,"',, of
the orbital wave functions is only due to the nu-
clear quadrupole moment, while in the self-con-
sistent procedure (n )0) the perturbation i,'"',,
additionally contains the mutual polarization pf
perturbed orbitals. This higher-order polariza-
tion effect may even become dominant over the
zeroth-order. polarization effect, which is illus-
trated by the y'0'(&) and y'"'(r) curves for Ag' in
Pig. 6. The perturbation of the Ag 5s' electron
by the induced quadrupole moment Q„„ofthe elec-

5-
~ ~

06 1

-10-
-15
-20-
-25-
—30-
-35-

~ 6.0 12.0 r [a,u. J

~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~

~

~ 1
~ ~

Ag

FIG. 6. Sternheimer shielding functions p (r) (solid
line), y (r) (n=0, dashed line), and y 0 (~) (including
exchange, dotted line) 'for Ag .

tron core (Ag Is' ' ' ' 4d") is considerably larger
than the perturbation of this electron by the nu-
clear quadrupole moment Q. Since the angular
excitation 5s -d contributes with a positive value
to y'"'(r) ("shielding effect") the negative contri-
butions ("antishielding effects") due to 2P -P,
3p -p, 4P-p radial excitatiogs can be balanced
at large distances x from the nucleus leading to
a positive y„" ' value for Ag'. Because the 5s elec-
tron is located "outside" the 2p, 3p, 4p electrons,
the antishielding effects due to the 2P -P, 3P-P,
4P -P radial excitations became dominant at smal-
ler distances x over the shielding effect due to the
5s -d angular excitation; thus y""(r) becomes
negative below about x= 6 a.u. The tendency that
an outer s electron produces considerable shield-
ing effects in self-consistent calculations is also
reflected in other cases which we investigated,
Na, K', Rb, and Cu', with the only difference
being that y„'"' is considerably reduced compared
with y„"', but remains negative. In addition to
the y"'(x) values for the elements listed in Sec.
II A, a supplement to this publication, which is
available to readers, also contains the self-consis-
tent results y~'(r).

1-

1 0.6
-2-
-3-
-4
-5-
-6-
-7-

3.0 6.0 12.0 r [a.u. ]

Fe

F 2+

FIG. 5. Sternheimer shielding function y (x) ob-
tained from a self-consistent solution of the perturbed
Schrddinger equation for Fe2' and Fe3' (6 =0).

C. Selfwonsistent calculations in X approximation
1

Including exchange interaction in our calcula-
tional concept through the X exchange potential,
we cam'e to a self-consistent solution of the per-
turbed Schr5dinger equation (10) by the iterative
procedure described in Sec. III A. The relevant

parameters for the various elements and ions
under study were taken from the literature. "

A general feature of our results is that y„'"' de-
rived from self- consistent calculations including
exchange becomes more negative compared with
self- consistent values excluding exchange. This
finding is consistent with what we have described
in Sec. IIIB, i.e., the general tendency of self-
consistent y(r) results excluding exchange but in-
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0
0.6 3.0 6.0 12.0 f'[a.u. }

for deriving reliable self-consistent Sternheimer
shielding functions y(r).

IV. CONCLUSION
-2-

8

FIG. 7. Sternheimer shielding functions for Fe3'; the
solid line is identical to that of Fig. 2(c), and the dashed
line represents y~~o (t'} including exchange interaction
in Eq. (10} through the Xo exchange potential.

eluding direct Coulomb interaction is that y„'"' be-
comes more positive compared with y„"'. The
overall effect of this is that the contributions y(r)
due to exchange and direct Coulomb interaction in
self- consistent calculations partly cancel each
other, leading to the interesting fact that self-con-
sistent y™(r}curves including exchange may be
close to the simpler y"'(r) results presented in
Sec. IIB.

The considerable effect of the Ag 5s' electron
upon the self-consistent y„value (it is positive
neglecting exchange) described in Sec. IIIB is re-
duced after including exchange; the self-consis-
tent y„ for Ag' now takes the value -9.32 (Fig. 6).
Taking Fe" as an additional example we compare
y'"(r) from Fig. 2c with y "0'(Q including exchange
(Fig. 7) and find that the values derived in Sec.
II may be considered thoroughly as valuable. Com-
paring our results obtained for heavier elements
(for example Pr") with those derived from many-
body perturbation calculations'9 we find significant
deviations. y„""for Pr" from the present study
takes the value -59,29, while the self-consistent
y„reported by Ahmad and Newman" is -142.12.
(For further comparison: y+' = 56.51 from the
present work, y'„"=-60.02 reported by Das and
Haychaudhuri, "and y„'0' = -66.82 reported by
Ahmad and Newman'9).

Applying Eq. (10}to negative ions no self-con-
sistency was obtained. Because it is known from
practical applications of the X theory that the
exchange interaction tends to be overestimated at
large distances r from the nucleus in the case of
negative ions, we tried to restrict the exchange
potential to smaller r values by an appropriate
"cutoff"; however, this procedure also did not
lead to a self-consistent solution of Eg. (10).

The discrepancies mentioned above and the
limitations with respect to negatively charged
ions indicate that the X approximation for the
exchange interaction in' Etl. (10) is not very useful

We briefly described Sternheimer's method,
which we followed mainly in calculating y(r) and
R. Calculations were performed for a series
of elements with varying electronic configuration,
including core configurations which are eliminated
in molecular-orbital calculations with limited
basis set' Li " Na" K"' Rb " F '.

y y y t
Cl0 yl Bro Jl IO pl Cuo tl+ Fe0 tl+t2+ f3+ A~O Pr3+

y 7

The various contributions to y(r) due to angular
and radial excitations were discussed. Direct and
exchange contributions (RD and R~) to R were pre-
sented; in connection with this the discrepancy
between ours and Sternheimer's R (Cl and Br )
values was explained on the basis of R~ valence-
core contributions, mainly c(P -P;P;L=O),
which were omitted in Ref. 28.

We investigated the influence of direct Coulomb
interaction and X, exchange interaction upon y(Q.
%e found that both contribute mith opposite sign
to y(r), and in the case of iron even cancel each
other; thus y'(r) and self-consistent results
y'"'(r) (including the X approximation) are nearly
identical in the case' of iron. For heavier ele-
ments (Pr") the X approximation yields y„which
deviates considerably from results having been
obtained with a more reliable approximation";
in addition our X calculations, when applied to
negative ions, led to divergent y(r) results.

Because many M5ssbauer spectroscopists still
use the iron value 0.68 for 1-R in Eq. (5) we
want to emphasize, that the correct value is
0.88." For MO calculations wj.th limited basis
set (Fe 3d, 4s, 4p AO's), however, the appro-
priate value would be 0.92. Taking this value. in-
stead of 0.68, which we have used so far in our
MO work, "the nuclear quadrupole moment of iron
can be recalculated.

We find Q(Fe) =0.15 +0.03 b which is significant-
ly different from the value 0.20 +0.03 b, which was
reported earlier. "

For readers who are interested in detailed nu-
merical values for y(r) a supplement to this pub-
lication is available.
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APPENDIX

Introducing perturbation X, we get modified
wave functions P~(r} = @, ~(r')+ Q, ~(r), where
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(t), f(r) and (t, ,(r) are defined by

0o, (r) = [ff, , (f")/f']Y„'(8 I),

C,' depends on 8 and y:

C~(8, p) = [4)f/(2k-1)]'i'Y~ (8, (p) . (A2)

4»(r) = " &Y" jC' jY'„&Y„"(8, V) . (A1)

The modified energies and electron densities are
Ef =EQ,f+E, ,f and p(r) = pQ(r)+ &p(r). Thus the
perturbed X Hartree-Fock equation (9) becomes

-2 &f ——+ ' - -, dr'- 3o.'
6 p, (t)) '1+

l
+K, f [(t), f(r)+ (t, f(r)]p, (r')+&p(r'), 3 l '~' &p(f) )

~'

/of' i
=(E.„.+E„,)[4„,(r)+ p„,(r)], (A3)

where 3C„f=qCO(8, cp)/2H U. sing the expansion
'I

~ ~ ~

p, (r) 3p, (r)

uP to first order in 4p/po and the unperturbed Schrodinger equation [Eq. (9)] Eq. (A3) takes the form

--~-—+ -' -, dr'-3&1 p(~)—-E 0 (r)
1- Z p(r'), f 3

&Sv ~

X, f E, -f+ -, dr' —c(
6

pQ(f') I (t)0 f(r) ~ (A4)
~p(r') -, »'"~p(~)

The charge densities are derived from

p.(r) =En, j4.,,(r) j',

&p(r) =2+nj@ f(r)g f(r)

(A5)
C„=8+, [ C(@( fm f'f)z)]

m=-t

The term

op(r')
jr- r'l

=2qp+n "' " Y'(8 ~)Yf'(8 y)
rr'

in Eq. (A4) can be replaced by'

x &Yf'. jc,' j Y.'}. (A6) (A10)

(n,. is the population of orbital (t)f e) Because K, in-
duces a quadrupole moment within the electron
shell, np(f') can be represented also by

With the effective perturbation operator

3(6 ef f — q/&3

&p(r) = n.V(~)C,'(8, V ) (A7)

AV(r) is obtained from Eqs. (A6) and (A7) by
multiplication with C, and integration over cos8
and p:

+
6 pQ(r) o' CQ~(8, p), (A11)
3 '~' 24V(f')

8)f Q
)

p

the energy

dV(x)f C', (6, 66)C (6, 66)d(cosd)d(6

2q ggff o.f f.f Z &Yf IC'
I
Y'&

X &Y', jC2jY

(A8)

Ef,f =&&o,g l&f"
I &Q.f&

is calculated to be

E, ,,=g-&Y'. lC; jY'„&
l fm

x (Q) + (QV("))-

with

8ff ~q~ff, 2(2l + 1) " fv
(A9)

C„.=6+(&Y.', jC;jY.&) .

Using the abbreviation C„",)(fm, l'm) for the Gaunt
integral (Y' jCI~ j Y„'& we are within the same no-
tation as Sternheimer':

t3
~q&p, -'~'(f )2nV(~)&,

(A12)

[The expectation values in (A12) are derived from
the radial part of the unperturbed wave function

Q, „(f)]. Combining Eqs. (A4) and (A9)-(A12) we
finally come to the expression represented by Eq.
(10).
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