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An improved method for calculating magnetic fine structures in helium Rydberg states is developed and the
results are compared with previous calculations and with existing precise experimental determinations.
Agreement with experiment is markedly improved in D manifolds, but systematic anomalies in F and G
manifolds remain unexplained. Relativistic and mass-polarization contributions to electric fine structure are
evaluated and found to be significant at the same order as recently calculated radiative corrections.
Agreement with experimental determinations is no better than about 1%.

The excited helium atom is a particularly simple
case of an atomic Rydberg system since its core
is a hydrogenlike ion whose properties are easily
calculated. The fine-structure intervals of such a
system are a sensitive indicator of the differences
between the Rydberg system and hydrogen. Heli-
um fine structure in high-angular-momentum man-
ifolds (L>1) has been the object of a number of
theoretical calculations concerned with the break-
down of LS coupling,’ its effect on excitation trans-
fer,’~5 and the validity of the polarization model.®
In their turn, experimental measurements have be-
come increasingly more precise since early opti-
cal measurements.” They encompass level-cross-
ing,%'° electric'’ and magnetic'®''® anticrossing,
and quantum beat'**° techniques applied to D
states; MacAdam and Wing'®~*® have used a micro-
wave-optical technique to make precise measure-
ments of a large number of intervals in F and G
as well as D manifolds.

H=H,+H,,+Hy,+H, ,
in which
Ho=%(pi+/’§) ‘2/71‘2/7'24'1/712 ’
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I. THE HAMILTONIAN AND ITS EIGENVALUES

The Hamiltonian for a two-electron system in
the field of a fixed, spinless nucleus is usually
taken to be that Hamiltonian obtained from the
Breit equation (in the Pauli approximation).'®-2!
To include the effects of nuclear motion one must
add to this Hamiltonian the relativistic single-par-
ticle Hamiltonian for a spinless nucleus of mass
M and charge Ze?* and the retardation and spin-or-
bit**2* corrections to the electron-nucleus inter-
action owing to the motion of the nucleus. Then,
using relative coordinates and reduced mass
atomic units [, e, and mM/ (m +M) have magnitude
1® and dropping terms dependent on the center-
of-mass motion or of higher order than o yields
the Hamiltonian
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and
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The fine structure of helium can be conceptually
divided into three parts. There is an overall shift
dependent only on the radial and orbital angular
momentum quantum numbers (direct electric fine
structure); the required symmetry of the electron-
ic wave function splits the singlet-triplet degen-
eracy, contributing the exchange electric fine
structure; the spin-dependent interactions that
split the degeneracy in the total angular momen-
tum quantum number contribute the magnetic fine
structure. In our Hamiltonian, the magnetic fine
structure is caused by H,, and ‘the electric fine
structure by the other terms in H.?¢

Since H,, the nonrelativistic, fixed-nucleus part
of H, is @~2 or M/m times larger than the other
terms in H, we will compute approximate eigen-
values of H by using (approximate) wave functions
of H, to evaluate the expectation value of H — H,,.
Since H, is diagonal in L and S it is usual and con-
venient to use LS coupled basis states for calcula-
ting the eigenvalues of H, even though the opera-
tors H s and S~ keep L and S from being exact
quantum numbers for H. We denote these basis
states by |NLSJM), in which N is some radial
quantum number. The matrix elements of H - H,
between states differing in N or L are small
enough to cause no shifts greater than 1 kHz in
the eigenvalues of states with L>1. In terms of
reduced matrix elements®’ (that is, integrals of
radial wave functions), the nonzero matrix ele-
ments of H between basis states with the same N
and L are

(NLIL-1M|H|NL1L -1M)
=Eyg.+ Lhg,+[2L/QL+3),,,
(NL1LM|H|NL1LM)E;, - h,, - 2h
(NLOLM|H|NLOLM)=E,,,
(NL1L+1M|H|NL1L +1M)
=Ewnz1= (L+Dhg,+[2L+2)/2L-1)]n,,,

88?2

and .
(NL1LM|H|NLOLM) =(NLOLM|H|NL1LM)
=(L(L+ 1))1/2hoff ’

in which

'

E g s=(NLS|Hy+H,,,+ H|NLS) ,

hy,=D[3Za*(1 =M% +a/mmXNLS=1||H}||NLS=1)
- 4(e?/m?)(3 +2a/7XNLS=1|[H] ||[NLS=1)
- Z(a®/mM) (1 + a/2m)

X(NLS =1||r{*F, xB,) | [NLS =1} ],

Bog = D[5Z0*(1 =M 2+ a/mm)NLS =1||H5||NLS = 0)
+1(@®/mPXNLS =1{|H||NLS=0)
+Z(@*/mM)(1 +a/27)

X(NLS =1||r*(F, xB,) [ INLS = 0)],

heo==§ D[6QL+3)(2L~1)]/*(@/m*)(1+a/n)

X(NLS =1||r;3(2/3)"*C®(7,,)|INLS =1) ,
and
D=[L(L+1)(2L+1)]"Y2,

In this 4 X4 matrix the only off-diagonal matrix
element is A, , which mixes the singlet and triplet
states of the same L and J, For states with L>2,
this matrix element is comparable to or larger
than the nonrelativistic singlet-triplet splitting;
for L> 3 the observed eigenstates are superposi-
tions of roughly equal amounts of the pure S=0
and S=1 basis states. Since the singlet state al-
ways adiabatically connects with the mixed state
of higher energy and the triplet state with the
mixed state of lower energy, we will still use the
terms “singlet” and “triplet” to denote the ob-
served mixed eigenstates with higher and lower
energy, respectively. The problem is now re-
duced to (i) finding eigenfunctions and eigenvalues
of H,, (ii) evaluating the radial integrals using
these eigenfunctions, and (iii) diagonalizing the 4
X4 matrix for each N and L.

The wave functions needed to evaluate the radial
integrals are the solutions of the equation
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(H,~ E)|NLSM;) =0

having the correct symmetry and angular momen-
tum. Since the wave function depends on S only in
its symmetry, we may find any solution to the dif-
ferential equation

(H,- E)|NLM,) =0 (2)

and impose the symmetry requirements afterwards

by writing

T.T,|NLS M;)
=[(F,F,INLMy) + (-1)5(E,F, INLM) )/ V2 .

For singly excited states (configuration 1szL) a
perturbation series solution of Eq. (2) is appro-
priate.?»2%2% We use

170=%Pf+%17§ - Z/Tl - (Z - 1)/7’2
for the unperturbed Hamiltonian and
V=1/7,,-1/7,

for the perturbing potential; the zeroth-order
wave function has electron one in'the 1s state of a
charge Ze nucleus and electron two in the nL state
of a charge (Z — 1)e nucleus. Thus we write

(F,F,|NLMy) =¥°(F,, F,) + V' (F,,Fp) + 2,

VOF, F,) = RYs(r)RIT (7)Y 10(R)Y Ly, (R2)
=900, TV 1o Q)Y 14, ()

E=E,+E +*°*,

E,==32"-3(Z -1)°/n* ,

E= [ [ 00, )W r, = 1/, )

xviridr, dr, ,

and ¥' satisfies
(Hy— E)¥* +(V- E,)¥°=

The first-order wave function can be written as
the correctly coupled partial wave expansion

U (F,T,)
2L, +1\3(1, 1, L
—2 th (ry, 75) (= 1)F 2l2+1) (1 2 )
11, 1 00 0
XZ (l1m1l2m2|LML)Yllml(Ql)lemz(Qz) .

g mlmz

Then the R’1’2 satisfy the equation
[lel + ﬁztlezltz("u 72)

= [(El + 1/72)5110 - 7l'<1/7’l'>1+1]1/)0(7’1; 7’2) ) (3)

in which
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Huy==3 (871 Tren, T ol 7 2 z
and
- 1(32 2 8 L, +1)) Z-1 1 (Zz-1)?
21,- "g\F 2t T T - 5 z .
2 2\o7r; 7, arz 7, ¥y 2 n

This expansion is an infinite series in [, but for
fixed [, the summand is nonzero for only , +1 val-
ues of [,. Equation (3) is a partial differential
equation with no simple solution. But since the
kinetic energy of the outer electron is much small-
er, by a factor of about 1/#°, than the kinetic ener-
gy of the inner electron, we expect the operator
?12,2 to be small compared to 171,1 and the following,
formally exact, series expansion to be convergent:

Rtllz Z R‘1’2 “)
1,=0: ﬁzLRgL = [E1 - El('yz)]d)o
Hy, Ry = (B, =1/r +1/7,)y°

H,, R, =-H, Ry, m>1

E,(r,) = les 1'1)< I)R s(r)ridr,

,#0: R%, =0

iz~
Hule 1, ==(rt /r3v*) %
HuleLz H212R1112’ m>1

The quantities E, and RgL are introduced to avoid
solutions for R,; which are ill behaved at the ori-
gin. The differential equations for the R7};, can be
solved analytically by standard methods, though
the solutions have lengthy functional forms. We
have developed procedures which give all the R7);,
and have evaluated those with m <2 for all [, and
m=2 for I, =1. The non-Coulombic potential near
the origin causes the outer electron’s wave func-
tion to be somewhat nonhydrogenic; this is the m
=0 contribution to the first-order wave function.
The terms with m =1 represent the 2*1-pole polar-
ization of the inner electron in the field of the outer
electron, with the inner electron’s wave function
adapting instantaneously to changes in'the position
of the outer electron. Keeping only the »=0 and
m=1 terms yields the adiabatic approximation to
the wave function.® The kinetic energy of the elec-
trons is altered by the adiabatic corrections to the
wave function; this interaction energy causes the
m =2 contributions to the wave function. The terms
with larger m contain other interactions of the mo-
tion of the outer electron with the polarized core.
If only the zero-order wave function ¢° is used
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to evaluate the matrix elements of H - H,, as in
Refs. 1 and 10, we obtain the hydrogenic approxi-
mation of the magnetic fine structure. If in addi-
tion the first-order matrix elements ((y*|H|y% and
(y°|H|y")) are included but terms with m>1 in

R,,;, are dropped, we have the adiabatic approxi-
mation. If we use only the m=1, [, =0,1 terms we
have the procedure of Araki® and Parish and
Mires.* In this paper we evaluate the first-order
matrix elements withm =0, 1, and 2 (extended
adiabatic approximation).

The contributions to 7, ko, and kg for the »
=3-12, L=2-4 manifolds are detailed in Table I.
The first line in each group gives the zeroth-order
integrals: (hydrogenic approximation) and line two
the m =0 portion of the first-order integrals. The
m=1 integral has contributions from all 7,, but the
terms decrease in size as [, increases. For ex-
ample, Table II shows the contributions to %, from
individual I, for the 5D, 5F, and 5G manifolds.
The values listed in line three of Table I include
all terms greater than 0.01 MHz (through [, = 8)
for D manifolds and all terms greater than 0.001
MHz (through [, =4) for F and G manifolds. As
noted by Parish and Mires,* the dipolé portion
(line 4) constitutes nearly all of the polarization,

[+ D2

Y=L+ 2 2 +1
1

miyl2

n rd (.1
X Rlllz('ruyz) prEn (i;Ei

21+

z[L(L+1)QRL+ /2 D, 22t T

mlil2

000

Most of the contribution to the integrals comes
from the region #, <7,. In this region and for 7,
+0 and m#0, we have, approximately,

Rm

1112

;'11(71)Q?112(7'2);

by Eq. (4), the P’s and Q’s satisfy

IF 1 _ . IpZ b m _ pm=-1
Hulel"V],Rls(yl)’ Hulpll"Pll ’

1 _—lj-1pZ-1 m  _ _T -1
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though this is partly because other terms have
opposite signs.

Line five of Table I gives the m =2 dipole con-
tribution; it is surprising to see that this is nearly
as large as the adiabatic term. This would at first
seem to cast doubt on the convergence of the ser-
ies in Eq. (4) and prompts us to estimate the rela-
tive size of the contributions to the reduced ma-
trix elements. For this we use the following pro-
cedure. The reduced matrix elements contained
in kg, hg, and Zo; can be written as expectation
values of pseudopotentials in the (zL) state. The
leading terms in the pseudopotentials for the di-
rect (i.e., spin-indepéndent) matrix elements are
inverse powers of 7,. The other terms in the
pseudopotentials insure that the matrix elements
do not diverge for small L. We can estimate the
size of the radial integrals by evaluating the ex-
pectation value of these leading terms; however,
since the remaining terms are not small compared
to the leading terms, we can only obtain order of
magnitude results.

In terms of the radial wave functions the direct
part of the first-order reduced matrix element of
H:, for example, is

9 1 9

o7, ¥, 07,

)¢°(1’1, 7’2)] rividr, dr,

1 o 7
77, V,fﬂ] Wy, vo)rividr,dr, .

This form for the R}};, leaves out an additional
term which is a homogenous solution of Eq. (4);
this term is necessary in the exact form to insure
continuity where 7, =v,, but explicit calculation
shows that its contribution to the integrals under
consideration is small. By using the above form
for R7};, and extending the integrals to all , and
7,, we can separate the double integral into a pro-
duct of two single integrals and rewrite the 7, in-
tegral in the form [ R, 7;*R,.73dr,, as desired.
Now the Q7);, have the following leading terms:
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m=1: Q\;,~73'*'R,, (coeff. independent of 1,),

m=2: Q;"112~72‘”‘2R,:L (coeff. independent of 7,) ,

~7;'173R,, (coeff. dependent on I,),

m=>3, odd: QF,,~7;'*"™R,, (coeff. independent of 1,) ,

~yglimm=iR! Jvyhi-m-2R . (coeff. dependent on 1,),

m=>3,even: Qn;,~7;'1""R}, (coeff. independent of I,)

~yylmmelR L vy m2R (coeff. dependent on Z,) .

By inserting these expressions in Eq. (5) and not-
ing that the first term vanishes if the integral is
independent of ,, we find that for 7, #0 and m #0,
the leading term in the pseudopotential is 7;2!1-m-3
for odd m and 73;%1=™"2 for evenm. Thus the over-
all leading terms are r;e (as opposed to 7;* for the
hydrogenic expectation values) and occur in the
m=1andm=2 dipole terms. Solving for the P!
and computing the coefficients of these terms
shows that the coefficient of the 7 =2 term is half
that of the m=1. The operators Hj contribute only
monopole terms; the leading terms of H, are
r3217m=3 for odd m and 7;**1~™~* for evenm. The
1, =0 terms are not covered by the above analysis,,
but explicit calculations show that they are com-
parable to the 7, =2 terms. We would expect then
that the m=1 and 2 dipole terms are the most im-
portant and are comparable in magnitude; terms
decrease in size as [, increases and roughly half
as fast as m increases. This is consistent with
the exact results given in Tables I and II.

Thus the size of the m =2 dipole term does not
indicate that the expansion in Eq. (4) is invalid but
that the approximation which truncates the series
after m=1 is not a good approximation for fine-
structure calculations for any » and L. The lead-
ing terms omitted by a calculation including R R',
and R? are proportional to {(#;% and should be
comparable to the quadrupole m=1 and 2 terms,
whose magnitudes are about 20%, 10%, and 1% of
the adiabatic first-order contributions for the D,
F, and G states, respectively. Hence we expect
that the contributions to %, %o, and 2, from un-
calculated terms in the first-order wave function
are about 1.5% for D states, 0.1% for F states, and
0.001% for G states. The improvement in the rela-
tive precision of the calculations with increasing
L is obvious. Since the dipole terms give the
largest contributions (within 10% of the total), we
have not computed the full =2 contribution, but
have included in the extended adiabatic approxima-
tion the hydrogenic and adiabatic terms and an es-
timate of the m =2 terms obtained by multiplying

the m=2 dipole term by the quotient of the full m
=1 contribution and the m=1 dipole contribution.

The cutoff in m in the calculation of the first-
order term is solely because of loss of numerical
precision in the computation of the radial inte-
grals., When this problem is remedied, we expect
to be able to extend the calculation so that this
truncation error is less than the errors resulting
from the limitations of our general procedure.
We also expect to calculate the electric fine struc-
ture and thereby to reproduce the results of Poe
and Chang.*® Our general procedure follows per-
turbation theory and hence its accuracy is limited
by the truncation of the perturbation series; it
gives the energy to second-order in (1/7,, -~ 1/7,)
and to first order in (H-H,. We estimate that
terms that are third order in (1/7,, -—1/%,) con-
tribute about 0.2%, 0.004%, and 0.0003% to the
magnetic fine structure of the D, F, and G states,
respectively. Terms that are second order in H
- H, (i.e., a® terms) contribute about 0.005%. .

II. COMPARISON WITH MAGNETIC FINE-STRUCTURE
MEASUREMENTS

The splittings between the four fine-structure’
states of the same » and L depend on %, ko, hss,
and the singlet-triplet splitting in the absence of
H,,in» But to estimate the nonrelativistic singlet-
triplet splitting to an accuracy comparable to the
errors in the other parameters requires a better
wave function. So to separate the nonrelativistic
problem from the magnetic fine-structure prob-
lem, we have adopted the following procedure. We
determine that value of X, the electric exchange
(equal to half the singlet-triplet splitting in the ab-
sence of Hi), which, with the calculated matrix
elements of H;,;, gives the best fit to the experi-
mental data in the least-squares sense, using
quoted standard deviations. The goodness of the
fit is taken to be the indicator of the correctness
of the theoretical calculations. This procedure
puts each theory in the most favorable light, since
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TABLE 1. Radial integrals for magnetic fine structure.
L=2 L=3 L =4
ko hoft hss hgo hoft hss hso P ot hss
N= 3
HYD -221.067 —648.642 215.633
M=0 -~0.297 -0.799 0.239
M=1" 10.614 2.770  -4.135
M=1,l;=1 10.674 2.173 -3.316
M=2,l1=1 -7.118 1.463 1.985
N= 4 .
HYD —94,048 -273.464 90.788 -32.564 —97.889 32.648
M=0 -0.134 -0.351 0.101 -0.000 -0.001 0.000
M=1 5.991 1.540 -2.280 0.121 0.030 -0.060
M=1,l1=1 5.971 1.195 -1.811 0.124 0.027 -0.054
M=2,11=1 -3.952 0.881 1.145 -0.066 0.019 0.010
N= 5 )
HYD —48.342 -139.969 46.438 -16.676 -50.119 16.715 =7.779 ~23.389 7.801
M=0 -0.061 -0.156 . 0.043 -0.000 -0.001 0.000 0.000 0.000 0.000
M=1 3.434 0.875 ~1.293 0.086 0.024 -0.044 0.006 -0.001 -0.002
M=1,1;=1 3.406 0.676 -1.023 0.089 0.022 —-0.039 0.006 -0.001 = -0.062
M=2,14=1 ~2.216 0.546 0.660 -0.049 0.015 0.008 -0.002 0.001 0.000
N= 6
HYD -28.035 -—80.986 26.859 -9.651 -29.004 9.673 -~4.502 -13.535 4.514
M=0 -0.030 -0.074 0.019 -0.000 -0.000 0.000 0.000 0.000 0.000
M=1 2.105 0.534 -0.787 0.058 0.017 -0.030 0.005 -~0.000 -0.002
M=1,11=1 2.080 0.412 -0.622 0.060 0.015 -0.027 0.005 -0.000 -0.002
M=2,1;=1 -1.326 0.364 0.406 -0.032 0.011 0.006 —0.002 0.001 0.000
N= 1T
HYD -17.678 -50.994 16.909 -6.078 —18.265 6.091 -2.835 -8.524 2.843
M=0 -0.015 -0.036 0.008 -0.000 0.000 0.000 0.000 0.000 0.000
M=1 1.371 0.346 -0.510 0.040 0.012 -0.021 0.003 0.000 —0.001
M=1,l1=1 1.352 0.267 -0.403 0.041 0.010 -0.018 0.003 0.000 -0.001
M=2,11=1 ~0.840 0.258 0.264 -0.022 0.008 0.004 -0.001 0.000 0.000
N= 8
HYD -11.853 —-34.160 11.325 -4.072 -12.236 4,081 -1.899 -5.710 1.905
M=0 -0.008 -0.018 0.003 -0.000 -0.000 0.000 0.000 0.000 0.000
M=1 0.938 0.237 -0.348 0.028 0.008 -0.014 0.002 0.000 —0.001
M=1,11=1 0.924 0.182 -=0.275 0.029 0.007 =0.013 0.002 0.000 -0.001
M=2,11=1 -0.558 0.193 0.181 -~0.015 0.006 0.003 -0.001 0.000 0.000
N= 9
HYD -8.329 —-23.990 7.953 -2.860 -8.594 2.866 -1.334 —-4.011 1.338
M=0 -0.004 -0.008 0.001 -0.000 ~0.000 0.000 0.000 0.000 0.000
M=1 0.668 0.168 ~0.248 0.020 0.006 -0.011 0.002 0.000 —0.001
M=1,14=1 0.657 0.129 -0.195 0.021 0.005 —0.009 0.002 0.000 ~0.001
M=2,11=1 -0.385 0.149 0.129 -0.011 0.005 0.002 -0.001 0.000 0.000
N=10
HYD —-6.075 -17.488 5.797 -2.085 ~6.265 2.089 -0.972 -2.924 0.975
M=0 -0.002 -0.003 -0.000 -0.000 ~0.000 0.000 0.000 0.000 0.000
M=1 0.492 0.124 -0.182 0.015 0.005 -0.008 0.001 0.000 -0.001
M=1,14=1 0.484 0.095 ~0.144 0.016 0.004 -0.007 0.001 0.000 -0.001
M=2,l1=1 -0.274 0.120 0.095 -0.008 0.004 0.002 -0.001 0.000 0.000
N=11
HYD -4,565 -13.139 4.355 ~1.567 ~4.707 1.570 -0.731 -2.197 0.733
M=0 -0.001 ~0.001 "~0.001 -0.000 —0.000 0.000 0.000 0.000 0.000
M=1 0.373 0.094 -~0.138 0.011 0.003 -0.006 0.001 0.000 -0.000
M=1,1;=1 0.366 0.072 -0.109 0.012 0.003 -0.005 0.001 0.000 -0.000
M=2,14=1 -0.200 0.098 0.072 ~0.006 0.003 0.001 -0.000 0.000 0.000
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TABLE 1. (Continued).

L=2 L=3 L=4
ks, R ot hss s, R ot hss hso hogt hs-_s
N=12 , ]
HYD -3.517 —-10.120 3.354 -1.207 -3.625 1.209 —0.563 -1.692 0.564
M=0 -0.000 0.001 -0.001 -0.000 -0.000 0.000 0.000 0.000 0.000
M=1 0.288 0.072 -0.107 0.009 0.003 —0.005 0.001 0.000 —-0.000
M=1,1;=1 0.283 0.056 —0.084 0.009 0.002. -0.004 0.001 0.000 -0.000
M=2,11=1 -0.148 0.082 0.056 0.001  -—0.000 0.000 0.000

-0.004

0.003

the agreement with experiment could not be bet-
ter no matter what other value of Xis assumed.
The results of such fits are displayed in Table III
for those » and L for which there exists a complete
set of three measurements of magnetic fine-struc-
ture intervals. The table lists the experimental
data and, for the hydrogenic, adiabatic, and extend-
ed adiabatic approximations in turn, the differen-
ces between the measurements and the theoretical
fit, the value of x® for the fit, and the fitted value
of X. (For two degrees of freedom the 5% and 1%
significance levels for x° are 6.0 and 9.2.) ‘

There is a complete set of data for D manifolds
through » =10 except for the 8D manifold. Table
III shows that the results of this work give mark-
edly superior predictions of the magnetic fine
structure compared to the naive hydrogenic ap-
proximation. In contrast, the adiabatic approxi-
mation yields consistently poorer agreement with
experiment than the hydrogenic approximation
despite its supposedly better wave function. Fur-
thermore the residual discrepancies between ex-
periment and the predictions of the extended adia-
batic approximation are comparable to the esti-
mated theoretical errors (1.5%).

The fits for the F and G manifolds, where the
data are more sparse, show no significant differ-

TABLE II. First-order m=1 contributions to kg, (in
MHz).

5D SF 5G

=0 —-0.80084 —0.012 99 —0.00007

1 3.40565 0.08909 0.00615

2 0.65358 0.007 53 0.00007

3 0.10417 0.00191 0.00001

4 0.03726 0.00047 0.00000

5 0.01642 0.00019

6 0.00835 0.00010

7 0.00471

8 0.004 28

-

ence between the hydrogenic and the extended
adiabatic (or even the adiabatic) approximations.
That this should be expected is clear from the
small size (< 0.2 MHz) of the corrections which
the first-order wave function introduces. How-
ever, the fits are unacceptable wherever relative-
ly precise (<2%) data are available, i.e., in the TF,
9F, and 7G manifolds. The residual discrepancies
are up to five times the quoted standard deviations
of the measurements and an order of magnitude
more than the expected theoretical errors. It
would be interesting to have additional data to de-
termine whether these anomalies are also present
in other F and G manifolds.

Table IV lists the experimental data for those
D, F, and G manifolds for which not all the fine-
structure intervals have been measured. From
each of these we have extracted a value for X;
since the fit is no longer overdetermined, this val-
ue for X reproduces the data exactly.

III. COMPARISON WITH ELECTRIC FINE
STRUCTURE MEASUREMENTS

By subtracting the magnetic and exchange elec-
tric contributions, as determined in the previous
section, from experimental values for the inter-
vals between states of different L, we obtain a
semiexperimental “spinless” value which can be
compared directly with calculations of the direct
electric fine structure. In Table VI we give the
experimental values for those intervals which
have been measured directly and the spinless val-
ues obtained from them using the extended adia-
batic approximation. The superscript M indicates
that the average of the singlet and triplet values
of the same J has been used.

The most extensive calculation of these energy
differences in D, F, and G manifolds is that of Poe
and Chang.?® Their diagrammatic calculation is
in principle equivalent to a computation of the.
zero- and first-order matrix elements of (1/7,
—1/7,) using the complete first-order wave func-
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TABLE IIIl. Magnetic fine structure (values in MHz).

Experiment-theory

Extended
Interval Ref. Measured value Hydrogenic Adiabatic adiabatic
3ip,—°p, 13 102360.00(200.0) 1448.85 -2123.19 400.94
p,- 3D, 10 1400.67 (0.29) ~12.71 44.44 5.52
3D, Dy 10 75.97 (0.23) -7.72 12.21 -2.21
X2 . 3101.0 26416.0 459.0
x: 50 325.0 52111.0 50 850.0
4'p,-3p, 13 59140.00 (80.0) 60.80 —73.59 19.88
p,— D, 10 591.25 (0.14) -8.69 23.71 1.83
3p,-°D, 15 553.00 (0.70) -5.84 14.67 1.03
3p,— D4 10 36.15 (0.24) —4.94 6.94 -1.30
X 4343.0 29 965.0 202.0
x: 29488.0 29555.0 29509.0
5'D,~°D, 13 34125.00 (45.00) 3.23 —5.62 0.34
p,—°D, 15 284.10 (0.60) -1.78 10.00 2.23
3Dy~ 3Dy 9 20.30 (0.30) ~-1.87 5.00 0.41
X2 | 47.5 556.0 15.6
% 17 035.0 17 039.0 17037.0
6'D,—°D, 13 20 946.00 (30.00) - 0.76 —2.42 —0.37
p,-°D, 15 165.30 (1.0) —-0.09 7.16 2.44
3p,— 3D, 9 12.30 (0.3) -0.88 3.37 0.64
X% 8.22 177.0 10.6
x: 10458.0 10459.0 10458.0
7'D,-°D, 32 13657.66 (0.26) 0.00 0.00 0.00
Dy~ D 32 109.15 (0.29) -3.39 4.10 -0.63
3p,—3py - 32 6.35 (0.19) —2.06 0.70 -1.01
X2 254.0 220.0 31.8
x: -6815.0 6817.0 6816.0
9'p,-3p, 32 6662.00 (0.09) 0.00 0.00 0.00-
p,—°Dg 32 52.18 (0.15) —-0.83 2.84 0.65
3Dy— D3 32 3.79 (0.11) —-0.23 1.12 0.36
X% : 33.0 438.0 27.9
x: 3325.0 3325.0 3325.0
10'D, - °D, 12 4889.00 (30.0) 1 0.51 —-0.25 0.15
p,—°D; 18 37.59 (0.52) -1.06 1.65 0.08
Dy —°Dyg 18 2.28 (0.30) —-0.66 0.33 —-0.20
X2 9.1 11.3 0.46
x: 2441.0 2441.0 2441.0
TF,-%F, 16 146.30 (0.30) —-0.18 —0.19 —0.14
Sy —3Fy 16 69.10 (1.3) -7.41 -7.15 —-7.20
- Fy 16 28.30  (0.30) 0.02 -0.01 ~0.09
X2 32.9 30.6 31.0
% 33.84 33.92 33.93
olFg— %, 32 71.06 (0.06) 0.08 0.10 0.10
= 3F, 32 35.51 (0.10) 0.44 0.56 0.55
3, =%Fy 32 12.47 (0.11) 0.10 0.07 0.13
X% : 22.0 34.7 34.3
x: . 17.89 17.90 17.93
12'F 3~ % 18 30.17 (0.65) —-0.34 ~0.33 —0.32
3y =34 18 - 13.97 (0.69) —0.60 —0.54 —0.55
3, ~%F, 18 4.68 (0.60) —-0.31 ~0.33 —0.30
x%: 1.30 1.18 1.13
x: 8.06 8.06 8.07
76,36, 32 76.47 (0.24) 0.15 0.15 0.15
3G3- 3G, 32 57.09 (0.15) —0.32 —-0.31 —0.31
3G5—3Gy 32 30.49 (0.20) 0.59 0.57 0.58
x%: 13.7 12.9 13.2
%t 0.415 0.407 0.406

1837
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TABLE IIl, (Continued).,

Experiment-theory

Extended

Interval Ref, Measured value Hydrogenic Adiabatic adiabatic
10'G,- 36, 18 25.84  (0.51) —0.34 —0.34 —0.34
3G3= 3Gy 18 19.58 (0.53) —0.12 -0.11 -0.11
3G5—3G, 18 10.39 (0.68) 0.13 0.12 0.12
X2 0.52 0.52 0.51

x: 0.138 0.135 0.135

tion [the full solution of Eq. (3)]. Table VI compares
their results, for which they quote three-figure
precision, with the spinless values and shows the
consistent ~1.4% discrepancy noted by Poe and
Chang. .

The expectation values of H,, and H.,, which are
included in Eq. (1) but not in the calculation of Poe
and Chang, have the right size to account for most
of this discrepancy. These operators are diagonal
in L and S and are independent of J. They are ex-
pressed here in terms of their direct parts (av-
erage of the singlet and triplet expectation value‘s)
and exchange parts (half the difference between
the two). In the hydrogenic approximation H,,, has
a nonzero expectation value only for P states. The
hydrogenic matrix elements of H are listed in
Table V., These are primarily the result of the
relativistic correction to the kinetic energy (they
do not include that part of the expectation value
which is independent of both » and L). Only H,,
has significant first-order matrix elements; these
also are given in Table V. The theoretical spin-
less energy of a state is then the sum of the eigen-
value of H,, for which we take the value of Poe and
Chang corrected for the finite mass of the nucle-
us, and the expectation values of H,,, and H, as
given in Table V. The spinless splittings found by
taking differences of the appropriate energies are
listed in the next to last column of Table VI.

The discrepancies are now at most 0.1% in the
D-F intervals and at most 0.25% in the D-G inter-

TABLE IV. Magnetic fine-structure manifolds with
insufficient data for fits (values in MHz).

Interval Ref. Measured value Exchange
8'D,-3p, 13 9345.00(35.00) X =4666
p,—°D, 15 69.00 (3.0)
11'p,-°p, 12 3696.00(30.00) X =1846
6'F ;- 3, 16 226.64 (0.11) X =47.76
8iFy—%F, 17 99.90 (0.30) X =24.47
10'F 53— °F 4 18 52.38 (0.04) X =13.66
1117 ;- %F, 18 . 39.55 (0.03) X=10.44
olg,- 3G, 18 35.97 (0.05) X =0.688

vals, a definite improvement over the simple non-
relativistic values. But there is a 2% disagree-
ment in the 6F-G interval, Furthermore, this is
not unique to » =6 since, if we compute the spin-
less and theoretical values for the 7, 9, and 10
F-G intervals by taking differences of the values
for the D-G and D-F intervals, we find the same
2% discrepancy. If, as we would expect, the rela-
tive accuracy of the theoretical predictions im-
proves with larger L, we must conclude that the

TABLE V.

Hydrogenic matrix First-order (M =1,2)

elements matrix elements
of Hy (MHz) of H,, (MHz)

NL Direct Exchange Direct Exchange
3D ~-973.68 8.55 —-11457.30 141.97

4D -581.89 5.00 —-41759.17 81.66 -
5D —-350.49 2.90 -2419.30 47.01
6D —223.11 1.79 —1394.62 28.85
7D —149.62 1.17 -876.19 18.78
8D —104.82 0.80 -586.08 12.85
9D -76.12 0.60 -411.20 9.15
10D -56.95 0.42 —299.54 6.74
11D —43.69 0.32 —224.93 5.10
12D —-34.23 0.25 -173.18 3.96
4F -286.96 0.01 -2320.12 0.14
5F -190.28 0.01 —-1184.64 0.12
6F -130.39 0.01 —684.52 0.09
F -91.24 0.01 —430.68 0.06
8F -65.70 0.00 -288.35 0.04
9F —48.65 0.00 —202.44 0.03
10F -36.93 0.00 —147.53 0.02
11F —~28.64 0.00 -110.82 0.02
12F —-22.64 0.00 —-85.35 0.01
5G -101.27 0.00 —678.86 0.00
686G —~78.88 0.00 —-392.59 0.00
7G -58.50 0.00 —247.12 0.00
8G —43.97 0.00 -165.50 0.00
9G -33.39 0.00 - -116.22 0.00
10G —25.80 . 0.00 -84.71 0.00
1116 -20.28 0.00 ~63.64 0.00
12G -16.20 0.00 —49.02 0.00




Theoretical interval with
relativistic, mass, and
radiative corrections
59728(—427,~0.71%)

Theoretical interval
with relativistic and
mass corrections
60 098(—~57,—0.095%)

Theoretical
nonrelativistic interval

Direct electric fine structure (values in MHz).
59303(~852,-1.4%)

Spinless
interval
60155

TABLE VI

Experimental value
49690.18 (0.09)

16

Ref,

6'D, —“F,

MAGNETIC AND ELECTRIC FINE STRUCTURE IN HELIUM... 1839

precision of these eigenvalues is only about 1%

and that the agreement in the D-F and D-G inter-
vals noted above is fortuitous. But this would be

FEEEE SReE sese surprising in view of the quoted'three f1gu1.'e ac-

2e LRE gg I8S 8 283 curacy of Poe and Chang for their calculations

SSSSS SGSD o and the consistency of their assertion with the

S SRS SS W ~0.2% discrepancies in the D states.

c‘?]' °.-F 3’; T :; 2; TY a2 Kelsey and Spruch® have proposed a radiative

NT P ow IFoo HN®o correction to the usual polarization potential be-

N ¥ O P = DN O N M- . .

SCOAHN®D -0DHM OW®PdO tween an electron and a polarizable core. For a

0N H © ¥ N hydrogenlike core, the leading term in this poten-
tial is (in our units)

U~ (99/8nZY) malr;% .

WRRRR 2R ’§ l§ s % % & The last column of Table VI gives the theoretical

ERIE83 R38R BEE® predictions when this term is included. This cor-

TT995. §°°° a~a~ rection causes a 0.6% shift in the D-F and D-G in-

T4 @ g ?3 8 S % g g terval and leaves us with ~1% discrepancies. Thus

UBURURU Ui s Z ~ we cannot draw any conclusion on the presence or

FEHE88 3882 3353 ab of this radiative correction, but in eith

QY% 2982 223X sence s radiative correction, but in either

PuEng ZIFY ervax case there remain anomalies of about 1% in these
intervals.

Table VII compares the electric exchange value

— e~ O m o~ o~ OO s ra h ic fine-

Soces Nese Ruge (X) ext. cted from t e r.na.gnetlc fine-structure

T @R Tunw 030N data with the nonrelativistic value calculated by

TTTTT ; TTT 7TYTS Poe and Chang and with the prediction obtained by

FLLESY PG g9y adding the relativistic mass polarization, and fi-

SN TT TYYY 7Ll nite nuclear mass terms to the result of Poe and

§ E § 3 § § § E § g § § E Chang. In most D states the disagreement is with-

i . . .

EOE®e 8Bolr ©an in the relatively large experimental errors. How-
ever, the more precisely known 7D and 9D states
as well as the 5D have significant discrepancies.

00N O Ww N D = WD <t © 10 ©

(=3 I BV FHFO WV O MO H

MNMOVOANANMNMO OCOOM OO

VOB®S B PAB ®BAQ L

PNHAHH O A TABLE VII. Exchange electric fine structure (values
in MHz).

Semiempirical Poe and Chang Spinless
6 S8 ~ - exchange exchange exchange

—_~— e~ D < M H o~

HNNS S e n 9

sssecesS esse o 3D 50 850(100) 50 724 50 868

o 2 § B ® w© 4D 29509 (40) 29400 29483

< >~ © N o N (=1

S S oo N o~ 5D 17037 (23) 16 924 16972

SEh83 868 8 6D 10458 (15) 10409 10439

BHRS®  pny @ D 6815 (<1) 6780 6799

8D 4666 (18) 4634 4647
9D 3325 (<1) 3308 3318
10D 2441 (15) 2432 2439
11D 1846 (15) 1844 1849
© >~ I 00 © o O © o0
i - ™ - il
4F 67.9 68.0
5F 59.5 59.6
6F 47.76 43.2 43.3
T DO F 33.93 30.6 30.7
O - .
FEIFE o Fooo &F 24.47 21.9 21.9
év Lk Lé ! ;N LLoLr et oF 17.93 16.2 16.2
ISHSHN N Ry Ry By
TN oD B~ oo 10F 13.66 12.2 12.2
- — — 11F 10.44 9.3 9.3
12F 8.07
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For these intervals, including the relativistic and
mass corrections reduces the residuals by a fac-
tor of 2, leaving discrepancies of about 0.4%. The
much smaller exchange values for F states have
no appreciable relativistic or mass corrections,
but the theoretical values are consistently 9%-11%
smaller than the experimental values. Poe and
Chang report that the second-order contributions
to the exchange are surprisingly large, amounting
to 60% of the first-order exchange; it is entirely
conceivable that still higher-order contributions
account for this 10%.

IV. CONCLUSIONS

Not only does the extended adiabatic approxima-
tion developed here give better predictions of the
magnetic fine structure than either the adiabatic
or hydrogenic approximations, but it also explains
why these approximations are not valid. The adia-
batic approximation omits terms having the same
order of magnitude as the corrections it intro-
duces. Since these additional terms in part cancel
the corrections introduced by the adiabatic approx-
imation, the hydrogenic approximation gives for-

tuitously good results.

Theoretical calculations of direct and exchange
electric fine structure and magnetic fine structure
in helium Rydberg states are expected to be most
accurate in high L states where nonhydrogenic cor-
rections to the wave function decrease rapidly. It
may be noted that the available data do zof confirm
this expectation. Inthe case of magnetic fine struc-
ture, the present calculationisinacceptable agree-
ment withallavailable data from D manifolds, butisin
marked disagreement with measurements in sev-
eral F and G states. In the case of direct electric
fine structure, agreement between theory and ex-
periment appears to be better for intervals in-
volving the D states than in the case of higher L
states. Finally, in the case of exchange electric
fine structure, the D states confirm theoretical
calculations at the acceptable level of 0.5%, while
systematic discrepancies of about 10% are pre-
sent in F states. Experimental data for the “high
L” F and G states are derived exclusively from
the work of MacAdam, Wing, and Lamb. Addition-
al data, perhaps in even higher states, would be
helpful in sorting out the discrepancies which are
now apparent.
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