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Screening effect on the plasma heating by inverse bremsstrahlnng
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The effect of Coulomb screening on the inverse-bremsstrahlung heating process in a plasma illuminated
by a laser beam is discussed. It is shown that, although the screening eAect actually lowers the electron-
nuclei interaction, a situation may arise, namely, when the laser frequency approaches the plasma
frequency, in which an enhancement of the collisional plasma heating can be expected.

I. INTRODUCTION

There has been recent interest in the study of
the interaction of intense laser fields with plas-
mas' 4 and semiconductors. ' ' In particular, it
has been suggested that the inverse-bremsstrah-
lung process may play an important role in the
breakdown and the heating of a plasma by a laser
beam io The argument goes as follows. 2.io in
the simultaneous presence of the Coulomb nuclear
field and of an electromagnetic wave of frequency
~ and electric field intensity E„an electron may
absorb photons from the electromagnetic field.
When the nucleus recoil energy is neglected, the
gain in average kinetic energy of the electrons
per process is e'E20/2muP. Since, obviously, not
all electron-nucleus collisions will be accom-
panied by inverse bremsstrahlung, let v,«be the
appropriate effective collision rate. The rate of
change of the kinetic energy of the electron will
then be given by'

e2E2

(&) =
2 jeff ~ (1)

However, if this process is to contribute effec-
tively towards the heating, to thermonuclear
temperatures, when a plasma is illuminated by
a laser beam, it must entail a rapid absorption
of electromagnetic energy during the period of
the laser pulse. The investigation of the rate
of absorption by inverse bremsstrahlung was
done by Seely and Harris, ' who have shown the
important result that, even though it is a com-
paratively slow process, it could eventually be
made faster than collective instabilities and be-
come the dominant heating mechanism. In their
calculations, ' however, the effect of the screening
of the Coulomb interaction between the electron
and the nuclei has been neglected. As is well
known, the interaction of a charged particle with
electrons is substantially lowered by Coulomb
screening, thereby affecting the effective col-
lision rate; it is consequently of interest to look
for ways to reduce this effect. This leads us to

the important question of how the estimates of
Ref. 2 would be changed by Coulomb screening.

In the following we consider the effect of
Coulomb screening on the inverse-bremsstrah-
lung heating process, and investigate the condi-
tions under which the weakening effect of screen-
ing could be reduced. It is shown that, although
the screening effect actually lowers the Coulomb
interaction, one might accomplish a reduction of
this weakening effect by illuminating the plasma
with an electromagnetic wave with frequency ~
near the plasma frequency ~~. The plasma is
assumed to be infinite and homogeneous, and we
neglect the effects of external magnetic fields.
The laser beam is treated as a classical plane
electromagnetic wave in the dipole approximation.
This is justifiable if the distance over which the
amplitude of the electromagnetic wave changes
is large in comparison to the size of the scatter-
ing centers, the initial Debye screening radius
rD, and the amplitude of the electron oscillations
in the wave field. The electron states are de-
scribed by the solution to the Schrodinger equa-
tion for an electron in the field of a classical
electromagnetic wave. The invers e-bremstrah-
lung process is treated using first-order pertur-
bation theory as done in Ref. 2.

We begin with the derivation of the screened
potential of a static charge Ze placed in a plasma
subjected to an electromagnetic wave. The tran-
sition probabilities for the electron eol.lision
with a nucleus (assumed to be fixed) are then used
to write a kinetic equation for the electrons.
After taking the classical limit, we calculate
the rate of change of the kinetic energy of the
electrons, and compare it with Eq. (1) to estimate
the effective collision frequency.

II. SCATTERING POTENTIAL

The modification of Coulomb screening due to
the presence of an electromagnetic wave has been
discussed in previous papers. "'~' Here we shall
briefly outline the main results. %@begin by
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k'(p(k, t) =4)(p(k) —4)Te Q (cJ «c«)„(2
where p(k) is the Fourier component of the static
charge, and ( ), denotes averaging with the
complete Hamiltonian. Constructing the equa-
tion of motion for (c««c«) 2 within the random-
phase approximation (SPA), solving it with the
initial condition (c««c«) t „=0, and substituting
into Eq. (2), one gets"

4'
a (20

(e« —e««)(t —t') &

x g (f«« -f,) exp

x exp[-ik a(sin~t —sin(2)t')].

Here a= eE,/muP is the electron oscillation am-
plitude in the electromagnetic wave field, e~
=)I'P'/2m, and f& is the electron occupation num-
ber. If we now define

(()(k, t) =(()(k, t) exp(ik ~ a sinu/),

p(k, t) = p(k) exp(ik a sin(dt),

and combine Eqs. (4) with Eq. (3) we get

(4)

9) (ke (2)) = 4)(p(ke (2))/t)t e(kt (2)) 2 (5)

where e(k, &u) is the usual dielectric constant in
the RPA." It then follows from Eqs. (4) and (5)
that y(k, t) can be written"

4)(p(k)
(P(k, t)= g, , )J'„.,(k a)J„(k a)e' "',

where J„(z) is the Bessel function of order n.
Equation (6) tell us that the presence of an electro-
magnetic wave affects the screening in such a
way that the high-frequency components at the
wave frequency and its harmonics contribute
even to the low-frequency components of the po-
tential. .' In particular, the static component
((),(r) (i.e., where p. =0) will be"

(~) 1
() d«~

)IZe t( f, 2 )
(2)()' & l't'e

writing the Hamiltonian of our system as
2

H(t) = Q (2'tt+ -t((t) ) ctree-eg t(tttt) c„t,c,
p p, k

where A(t) =(c/&u)E, cos(dt describes the laser
field, and the scalar potential y describes the
field of a static charge and the self-consistent
field. The Fourier components of this scalar
potential are given by the Poisson equation

where

1 ~ J«(k a)
& crt e(ke»)

That is, the effect of a radiation field on the static
potential of a point charge can be taken into ac-
count by introducing an effective dielectric con-,
stant dependent on'both the frequency and the po-
larization of the electromagnetic field. In the
zero-field limit (i.e., where a =0) only the n =0
term in Eq. (8) survives, so that s,«reduces to
the usual static dielectric constant e(k, 0).

III. KINETIC EQUATION

Once we know the modification of the Coulomb
potential of a fixed point charge in the plasma due
to the presence of an electromagnetic wave, we
can calculate the electron scattering by these
static charges. In doing so, however, we shall
consider only the static component of the poten-
tial, yo(r), as given by Eq. (I). Treating the
electron collision with a nucleus as a perturba-
tion, we find the transition-probability amplitude
for a transition from a state 1(p,) to a state
2(p, ) to be

e(1-2)=i/«f 2'r j t tt(rt,tt)e (tr) (rtt, t),
(9)

where (C)(r, t) is the solution to the Schrodinger
equation for an electron in the field of an electro-
magnetic wave'.

y 2/2 et)) ~ r t5(t) ~ )) tt&t/« trt(t)
p I

with

5(t) = (eE,/m(v') sin(ot
2 )l(t) = (e'E', /4m(v'tt)t .

Substituting Eqs. (I) and (10) into Eq. (9),
performing the integrations as done in Ref. 2,
we can write

a(1- 2)

2)N5(e2 —ft —VA(2)) ~ ~ « ~ ~ )2
4)(Z e'J„(z)

V p2-pg &elf p2-pg

(12)

with e =(p«- p, ) ~ a. From the well-known relation
between the scattering amplitude and the T ma-
trix, "we' can then use Eq. (12) to obtain the tran-
sition probability per unit time, T„(1-2), for
the transition from state 1 to state 2 with ab-
sorption (v&0) or emission (v&0) of ~v~ photons.
We get
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2g ~ 4mSe'
Tv(1- 2) =

@
J'v(s) If

I p I2e (p p )

X 5(62 —f& —Pkf()) . (13)

The rate of change of the number of electrons
f(p, ) with momentum Itp2 is then given in terms
of the transition probability as'

„' = g Q T.(1-2)[f(p,) -f(p.)], (14)
pa~ oo p

with the assumption that the electrons are far
from degeneracy [i.e., f(p) «1]. Letting the
sum over p, become an integral, assuming a
Maxwellian distribution for the electrons, and
using Eq. (13), we reduce Eq. (14) to

&f(p, )
) ~ V d, 2ff J'„(k ~ a)(4ffZe2)2' ~ (»)2 @ I"IPe.ff(k)l'

(p@~ I Qkop @P ( p@x exp
I

—1. ll
I~

' —vk&u-
2

+ exp
I

I,k~7 k m 2m
j I, bar

It'lk p, kk )I
E m 2mi

where we have written p, as p, =p, -k. Upon
taking the classical limit by letting 8- 0 such
t at"

Q (" )f(v)-v f~'~(" )f(~),

we finally get for the kinetic equation for the
electrons

dge) 2 mv,' sf(v )
Qg

d'v d'k
2(2)f)' (k T)'

„(4ffZe')'Z2„(k a)

(18)

=f( ) Q, d'k2

(4ffZe2)2J2v(k ~ a)
(v'Ik' „,(k)I'

Here e,« is given by Eq. (8).

IV. EFFECTIVE COI.I ISION FREQUENCY

As mentioned in the Introduction, the rate of
change of the average kinetic energy of the elec-
trons should now be evaluated and compared with
Eq. (1) to get the effective collision frequency
v ff This is done using Eq. (1'l) for the kinetic
equation of the electrons. The result for the rate
of change d(e)/dt is then

which after comparison with Eq. (1) gives us

, v,'f(v, ) v2J2„(k ~ a)
(2v)2V (k,T)

x 2 2 5(k v2 —v(()). (19)
(4ffZ e')'

~ eff

Equation (19) is the general expression for the
effective frequency, determining the rate at
which the energy is retained by the electrons
owing to the absorption of an arbitrary number
of photons.

In the following we shall. restrict ourselves to
the case of weak field (k ~ a«1). In this case,
the Besse1. functions can be approximated by

J'„(k ~ a) = [I/(et )'](-,' k a)'", (2

and consequently only the v = 1 term should be
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x 2 2 5(k'v2- &ff).
(4ffZ e')'

~ eff
(21)

RePlacing f(v2) by n, (ffv'r) ~2 e "' r, where v~z,

=2kffT/m, and performing the integration over
v, using the 5 function, we have

4(Ze2)2n„3 (k ~ a)'
.vl/2a2fff2v 3 y3

~
e (kk) [2

2
22 Q2 (22)

with @f1 = fff2/Vz. ,

Now, to perform the integration over k in Eq.
(22) one should specify e„,(k). Going back to Eq.
(8), we see that e,« is simplified noticeably when

~ is near ~~. In this case we recall. that the
high-frequency dielectric constant is e =1 —&o2/&u2,

and since the dominant term in Eq. (8) is the
resonant one (n =+ 1), we can approximate

1 2Z„(k a) 1 (k a)
'E eff 1 QP2/&u' 2 1 —fe&2/&d

Substituting this expression for e,« into Eq. (22),
we get

no 1
eff 1 2/2m V (1 fd2/QP)2

x deka ~k 1 8-'I '24k5 (k2 ]

which, after integration, reduces to

where

4~ ."Z .~. (&.a)'
7 m2V' (1 —&ff2/uP)2

(25)

dxx 1-x
0

Equation (25) is the expression for v, ff that we
want to discuss. Comparing it with the equivalent
expression obtained by Seely arid Harris [see
Eq. (16) of Ref. 2], one notices that they differ
essentially by the last factor of Eq. (25), namely,
(kva)'/(I —uP2/fd')2. In the first place, when

retained; i.e., in the weak-field limit only
single-photon processes are significant. Using
Eq. (20) and retaining only the v =1 term, we get
the following expression for the effective collision
frequency:

~ v22f(v2) (k a)'
2 4(2v)2-' (f,r)'

screening effects in the electron-nucleus inter-
action are taken into account, the effective col-
lision frequency becomes field dependent; it
then varies with the square of the laser intensity.
Secondly, it is proportional to the electron den-
sity cubed, rather than being linearl. y proportion-
al, as found in Ref. 2. Thirdly, as ~ gets closer
to the plasma frequency, v,«becomes increas-
ingly large, whereas as one gets away from res-
onance, Eq. (25) tells us that collisional absorp-
tion becomes a negligible heating mechanism.
Physically, all these features may be understood
as follows. The introduction of screening effects
should, of course, weaken collisional absorption.
This is because the first consequence of screen-
ing is a reduction in the strength of the Coulomb

interaction, and thereby a reduction in the ef-
fective number of electron-nuclei collisions.
However, if the plasma is illuminated by a ra-
diation field of a frequency close to the natural
frequency of oscillation of the screening cloud

(&u2), a resonant condition is reached, with the
result that the screening cloud is destroyed. This
screening breakdown in turn ensures that the
electron-nuclei interaction will then regain
strength, and therefore an enhancement of the
plasma heating collisional absorption should be
expected. Finally, we believe the effects dis-
cussed in this paper get adequate support from
recent experimental observations. "'" These
suggest an enhancement of the Brillouin back-
seattering of the ruby-laser beam from a dense
(helium or hydrogen) plasma illuminated with an
additional high-power CO, l.aser. This was at-
tributed to the laser heating of the plasma. This
heating effect ean be construed as supporting
our claim that inverse bremstrahlung is the dom-
inant heating mechanism under the conditions
stated in this paper. However, to get an accurate
conception of the actual electron heating mech-
anism, similar experiments would have to be
performed at different CO, power settings in
order to see how the electron temperature varies
with the pumping power. The results of these
experiments could then be compared to our pre-
diction that electron temperature rises as a cubic
power of the CO, -laser intensity.
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