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Integrability of multiple three-wave interactions
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'

Numerical evidence is presented which indicates that the N —degree-of-freedom Hamiltonian that describes
a set of pairs of sinusoidal waves interacting with a single, "test" wave is completely integrable.
Computations of the Poincare surface of section and Greene's residues provide the evidence for two
background wave pairs. Linear separation of neighboring orbits for up to four wave pairs also suggests
integrability for more degrees of freedom.

I. INTRODUCTION

In this paper we discuss numerical evidence for
complete integrability of a physically interesting,
N-degree-of-freedom Hamiltonian. The dynamical
system, introduced in Sec. II, consists of a set of
waves interacting in groups of three. One mem-

. ber of each triad is a particular wave denoted the
"test wave. " Thus the Hamiltonian describes the
evolution of the test wave upon interaction with a
spectrum of background waves.

It is well known that the equations of motion for
a one-degree-of-freedom conservative system
can be integrated using the constancy of the en-
ergy. However, for systems with more than one
degree of freedom, integrability is exceptional—
requiring the existence of additional integrals of
motion. More precisely, an &-degree-of-freedom
system is integrable if there exist N isolating in-
tegrals in involution. ' The difficulty of finding
these integrals is indicated by the small number
of known integrable systems. Those of physical
interest include the Toda"' and Calogero-Moser'
lattices. Moreover, theorems by Siegels indicate
that nonintegrability is probable for a large class
of Hamiltonians.

While the existence of N integrals for a com-
pletely integrable system restricts the region in
phase space that is traversed by any trajectory to
an &-dimensional surface, an orbit in a noninte-
grable system does not have this restriction. For
Hamiltonians of this type a single orbit may dense-
ly fill a higher-dimensional region in the phase
space. This type of motion, termed "stochastic, "
has been observed numerically for many systems
(e.g. , Hdnon and Heiles').

Even though it is possible to numerically demon-
strate nonintegrability, ' we have been unable to
find evidence of stochastic behavior for our sys-
tem. In lieu of the discovery of the integrals for
the test-wave system, we have constructed sev-
eral numerical tests which indicate integrability
(or at least lack of stochasticity).

The test-wave Hamiltonian is introduced in Sec.
II, and several general characteristics of the sys-
tem are discussed. Section III consists of a brief
discussion of the well-known, single-triad case.
In Sec. IV we construct the Poincare surface of
section mapping. ' We apply this to the two-de-
gree-of-freedom case, for which the surface is a
plane. The regularity of this mapping (Fig. 4) is
an indication of integrability. In Sec. V we examine
the separation of nearby orbits as a function of
time. ' For every pair of orbits we tested for the
two-, three-, and four-degree-of-freedom sys-
tems, the separation was not exponentially in-
creasing in time; thus this system does not exhibit
the instability characteristic of a C system. ' The
absence of this local stochastic behavior indicates
integrability. Finally in Sec. VI we apply the most
sensitive, yet least known, test: Greene's residue
method. '"" With this method we probe the fine
structure of the surface of section constructed
in Sec. IV by considering the linearization of the
mapping near periodic points. With this we can
show quantitatively that the surface of section
mapping is indeed regular as it appears in Fig. 4.

II. TEST-WAVE HAMILTONIAN SYSTEM

Our Hamiltonian (1) describes a weakly nonlin-
ear physical system" consisting of interacting
waves. In the linear approximation the system is
composed of a superposition of uncoupled sinu-
soidal waves or equivalently —harmonic oscillators.
The lowest-order nonlinearity (the only one con-
sidered here) couples the waves in triads with
coupling strength proportional to the product of
the wave amplitudes. Examples of such systems
include lattice vibrations, sound waves, plasma
waves, and water waves.

As a simplification to the dynamics we consider
only interactions involving a single labeled wave.
Triads containing only the remaining, background
waves are neglected. Energy transfer among the
background waves is therefore accomplished only

19 1780 1979 The American Physical Society



19 INTEGRABII ITY OF MULTIPI K THREE-%AVE INTERACTIONS

through the mediation of the labeled or test wave.
Test-wave dynamics have been studied for the

ocean with coupling between surface and internal
waves. " In this model a single internal wave is
coupled to a spectrum of surface waves. Since
the lowest-order resonant interaction among sur-
face waves is the four-wave interaction, the neg-
lect of interactions among the background is a
consistent approximation to third order. The test-
wave model also applies to the generation of a
transverse plasma wave through interaction with
pairs of longitudinal waves, '4 and to two-dimen-
sional turbulence (here the unperturbed wave fre-
quencies are zero)." Our own interest in the mod-
el is for interactions among oceanic internal
waves.

%'e introduce the Hamiltonian in terms of action-
angle variables. These are convenient variables to
use for analytical purposes since the actions are
constant for the unperturbed system. The test-
wave action is designated J, and the background
wave actions are (Z„,J„'~n= I,Mj. The Hamiltonian
ls

H= (go/, + Q ((o„J'„+(g„'g
na 1

—p ~„(z,J„z„')'~2cos(e„-e„'- e,).
ne 1

Here the ~, are the linear wave frequencies, the

8, are the wave phases, and the &, represent the
coupling coefficients. The system has 2M+ 1 de-
grees of freedom. Note that the background wave

J, directly interacts only with the wave J', and the
test wave.

Action variables, however, are not useful for
numerical integration of the equations of motion
since these equations are singular at J= 0. Instead
we use the action-amplitude coordinates" for com-
putations:

a~=(2J«)'~'e '~a= q~+ ip~, k= 1, 2, ... , 2M+ 1. (2)

In terms of the action amplitudes g, or the canon-
ical rectangular coordinates (q„p,), the Hamil-
tonian is a cubic polynomial and the equations of
motion have no singularities.

Since the phases occur in only M independent
combinations in (1), we can define a canonical
transformation to a new system with only 3f de-
grees of freedom. Following the notation of Gold-
stein, "the generating function for this transforma-
tion is

E2= Ioeo+ Q I„(8„-8„'- eo)+ g I„'8„'.

nial

The new coordinates I, p can be expressed in

terms of the old as

N

I,=70+ Q Zq, g„= 8„—8„' —8„
]el

where

For the new Hamiltonian we find (up to an additive
constant)

Z= g Sp„-g «„V„cosg„,
n=l na1

~n=&n {A"n &0 ~

1/2
I„-=I„(I,', -I„) I,-g I,)

gal

From the equations of motion for (5) we see that
the momenta I„' and I, are constants and thus ig-
norable. The phase space of the new system is
bounded by the requirement that the original act-
tions be positive:

0 & I„~I'„, Q I„&I, . (6)
n~ l

The energy is therefore also bounded.
The frequency differences b,„ indicate the degree

of resonance mismatch of the linear oscillators.
6„=0 is called resonance because in the limit of
no coupling (c„=0) the phases P„are constants.
This corresponds to resonant locking of the three-
wave phases which, for a finite but small &„,
causes a large oscillation of the actions. As- the
mismatch increases the oscillation amplitudes of
the actions decrease. In fact if one of the d „» e„vI„ then the corresponding action is essential-
ly constant and its degree of freedom can be ig-
nored. This will be seen more specifically for the
single triad (M= 1) ca,se discussed in Sec. III.

An interesting consequence of the equations of
motion for the test-wave system in exact reso-
nance (6„=0) is a tendency for phase coherence
among the modes. The most extreme example of
this is an initial condition for which P„= +2m; then
all the phases will oscillate as "squa. re waves" be-
tween 2 p and -& m with the same fundamental per-
iod. Similarly the actions oscillate together be-
tween zero and their maximum values. Also ini-
tial conditions with the actions at their respective
extrema (6), regardless of the phases, yield
square-wave oscillation of the phases. Examples
of these trajectories are shown in Fig. 1 for the
M= 2 and 3 cases. The figure displays the actions
I and the phases g as functions of time. Figures
l(a) and l(b) are square-wave solutions for the
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FIG. 1. Examples of square-wave trajectories for =, ~

~ ~= I'=1 g I =2.01 & =1,n solid lines I and tIt) 2 by dotted lines. For (c), I)=1.1, I2=1. , 3= . p=1 If and trj
&

are shown by so i ine ~ 2 2

for (a) . This traj ectory is ««»qttj& and Itj2 are superimposed. In (d) the parameters are the same as or a . is r j
trajectory since It) ~(0) & x/2.

two-triad case with I,(0)= I,(0); $,(0)= ——,
'

m; g,(0)
Sirice I,'= I2 for these figures the actions

oscillate between the same absolute limits, as de-
rived from (6). In Fig. 1(b) the second of Eqs. (6),

further restricts the actions from being2 0&

simultaneously large. Figure l(c) is a three-triad
computation for which the initial actions and the
I„' are not equal, but g„(0)=~ m. Further computa-
tions show that square-wave phase oscillations
also occur for cases in which the E„are not equal.
The Fig. 1(d} is a computation for the M= 2 sys-
tem with initial conditions near the square-wave
case: g,(0)=—,

'
m; P,(0)&—', m. The phases both os-

ciliate between g and -p but spend most of the
time +2 p. Discontinuities in the phase graph are
due to restricting the phases to the range (-w, 7j j.

For the special case in which the I„' are equal,
the a„are equal, and the I„(0) are equal, the equa-
tions of motion can be easily integrated, for the
square-wave case, yielding (see Sec. III}

I„(t)= I&sn'( ,' c(MI&}'i't+ 6)-

~

~

~

6+jT & t & 6+ (j + ,') T, -
y„(t) =

+-.'~, 6+(j+-.')T&t&6+(j+ I)r,
where j= 0, 1, . .. .
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4 1
T -,-,j~aP( 2 I&/I&),

I&= min(I', I,/M),

I& m——ax(I', I0/M) .
Here sn is a Jacobi elliptic function and I' is the
elliptic integral of the first kind. " Thus the ac-
tions oscillate between zero and I& [the maximum
possible according to Eq. (6)] with period T. In

Fig. 2 this solution is displayed for the two-triad
(M= 2) system. Computations show that the quali-
tative behavior of all square-wave type trajec-
tories is similar. A more general solution, also
for K= 0, has been obtained for a similar system
by Wilhelmsson for the M= 2 case."

While the values s& g for the phases yield large
oscillations for the resonant system there are 2"
distinct equilibrium points i.n phase space given by

III. SINGLE-TRIAD CASE

For the case M= 1, a single-triad interaction,
the Hamiltonian (5) has only one degree of free-
dom and can be easily explicitly integrated. This
Hamiltonian has been studied numerous
times""~" "but for completeness we briefly
summarize the results. A qualitative discussion
of the phase space and the orbits is given in Ref.
12.

The equations of motion are

&VI=-aVsing p=L -e—cosg.n gl (9)

Upon squaring the first equation, the equation of
motion for the action I becomes equivalent to that
for a particle in a one-dimensional well with the
potential energy

$„=0 or m,
U= 2 [(Z —b I) —e I(I' —I)(IO —I)] (l0)

N

e„- — V„ i
cos(„=0.

nna1

(8)

Computations with orbits near these points show
that the two points g„= 0 and g„=m are asymptoti-
cally stable (orbits remain close for ali time) while
the other points are "stable" only for a short time:
nearby orbits begin as small oscillation, but the
amplitude of the oscillation may grow in time.
This latter motion is qualitatively similar to a
particle near a saddle point in a potential well.

and total energy zero. The, extrema of motion are
given by the smallest two zeros of U(I), which are
real and non-negative for physical values of the
parameters. We label. the zeros as Sg $2 and 43
such that

0 ~ s, - s2 & min(I', Io) - s, .
The solution for the action is then

with the oscillation period

2.0-

'rr
0 20 40 60 80

l

The square-wave solution is obtained by setting
E=O, X=O for which 8,=0, &,=mi (In„I'), and the
oscillations are over the entire range of allowed
variation of the action (6).

As 6 increases the amplitude of oscillation de-
creases. Figure 3 shows the maximum amplitude

Maximum

Oscillation
Amplitude

i
80SO20

l

0 40

FIG. 2. Trajectory of Eq. (7). The parameters are
the same as for Fig. 1(a).

4

FIG. 3. Mmdmum oscillation amplitude as a function
of resonance mismatch 4 for the single-triad case.
Here I&/I&= 3.
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of oscillation as a, function of h/& for the particu-
lar choice I,/I'= S. The maximum oscillation
amplitude occurs for an energy of approximately

The width of the amplitude curve is b, = ev I,;
therefore, if b, is much larger than this the action
is constant.

IV. POINCARE SURFACE OF SECTION

For the two-triad (M= 2) case the Hamiltonian
(5) has two degrees of freedom, and integrability

jis no longer guaranteed. In this section we dis-
cuss the Poincard surface of section for this sys-
tem and show how it fails to indicate nonintegra-
bility.

First we define the canonical rectangular coor-
dinates corresponding to the transformed action-
angle coordinates (I, g) by

I.O—

0

-IO—

- 2.0

I 0—

-l.O 0 1,0 2.0

p, = -(2I,)'~2sing, , q, =(2I,.)'~2cosg, (14)

By constructing the Poincard surface of section
mapping we can qualitatively check for the exis-
tence of a second integral of motion, beyond the
energy, for this system. To construct the mapping
consider orbits confined to a particular three-di-
mensional energy surface defined by

K= K( pl l ql p2 q2) ~ (15)

Our surface of section is essentially the intersec-
tion of this surface with the surface p, = 0. We may
use (p„q, ) as coordinates of this surface since
the value of q, is determined by solving (15) with

p, = 0 upon choosing a particular branch. The re-
lation q,(p„q„K) is double valued, the branches
being distinguished by the sign of 8K/Sq2= -p2.
We take p, & 0 and denote the corresponding func-
tion as q', . p, &0 yields similar results.

As a trajectory with the specified energy evolves
in time it may repeatedly intersect the surface of
section, now represented as a region of the p, -q,
plane defined implicitly by

K=K(p, q, p =O, q ), lq I
(q, p )O. (16)

Successive intersection points uniquely define the
Poincare mapping on the plane. If no invariant
exists besides the energy, then these intersection
points will densely fill some area of the plane;
however, if the invariant does exist then the inter-
secti.on points must lie on a smooth level curve of
this invariant. If the second integral C were known
the equation of the level curves would be obtained
by simply substituting the values of p, and q, on
the surface of section into the form of the integral
C(p„q„p„q2), yielding

[Pl ri'ql t P2 Ii'q2(P1 si'ql!1 ) j

Thus the existence of level curves on all surfaces
of section implies the existence of the invariant.

-2.0
i

- I.O 0
Ql

I. O 2.0

!,0—
(c)

0

—I.O—

-2.0
l

- I.0 0
Ql

I. O

I

2.0

FIG. 4. Surfaces of section for M =2; I& —-1.1; I&-—1.6;
Ip= 2,01 E' g= e 2= 1. The energies for (a), (b), and (c)
are E=- 0.1, —0.5, —1.0, respectively.

Computationally one must contend with a finite
set of mapping iterates generated by the computer.
It is thus impossible to be certain whether or not
these points lie on a smooth curve. In practice,
however, the distjnctj. on for many systems is
easily made because of a great difference in the
complexity of nonstochastic and stochastic map-
pings. With these remarks we turn to the mapping
for the test-wave system.

Typical surface of section plots for three values
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of the energy are presented in Fig. 4, for the
choice of parameters: I,'='1.1,I,'= 1.6, 1,= 2.01,
e, = e,= 1,6,= 6,= 0. For these parameters ~Z~
~ 1.322. Since the orbits are invariant. under g„- P„+v, K- -K; we may consider one sign of the
energy. Figure 4, therefore, represents a survey
of the entire allowed range of energy. %'e have
also numerically integrated the equations of mo-
tion for points chosen over the, entire allowed re-
gion of the p, -q, plane for each energy. The dark
curves in Fig. 4 enclose this region. As the en-
ergy approaches -1.322 the surface of section
shrinks to a point on the q, axis. This point is a
stable equilibrium [see Eq. (8)].

The remaining curves in Fig. 4 are each gen-
erated by the repeated intersections with the plane
of a single trajectory. A typical curve was drawn
through 50 intersection points when the ordered,
quasiperiodic nature of the mapping was clear. In
each surface of section there are two elliptic fixed
points which correspond to periodic orbits in the
full phase space. Each of these fixed points is on
the q, axis.

Smooth curves are present in the surface of sec-
tion plots for other values of the parameters in-
cluding nonequal &„and nonzero 6„. We have been
unable to find any evidence of stochastic regions
on any surface of section.

V. SEPARATION OF NEIGHBORING ORBITS

As another test for stochastic motion we com-
pute the rate of separation of nearby trajectories.
A pair of trajectories in a highly stochastic re-
gion of phase space will separate exponentially in
time, while every nearby pair of trajectories for
an integrable system will separate only linearly in
time.

Exponential separation is a property of highly
stochastic systems called C systems. ' For a C
system, phase space in the neighborhood of a tra-
jectory can be decomposed into two subspaces. In
one subspace every trajectory diverges exponen-
tially from other trajectories as time increases;
in the other, the trajectories converge. A ran-
domly selected separation vector will have com-
ponents in the dilating subspace that quickly over-
whelm the contracting components; therefore most
trajectories will diverge. One property of C sys-
tems is an extreme sensitivity of the flow' to initial
conditions since two trajectories initially. infini-
tesimally separated will at a later time be a
macroscopic distance apart. A C system is also
ergodic and mixing on the energy surface. '

For an integrable system it is always possible
to find a set of true action-angle coordinates (g, P).
In these coordinates the Hamiltonian is only a func-

tion of the action so that the solutions to the equa-
tions of motion are

f(f)= f(o), y(t)=~(f)t+y(o) (18)

Since the angle variables are periodic each orbit
lies on an pf-dimensional torus. In terms of these
coordinates the rate of separation of two orbits is

(19)

which is a constant, thus the distance increases
linearly in time.

A "typi. cal" nonintegrable system is not a C sys-
tem, but seems to have regions in phase space of
exponential orbit separation. These orbits usually
correspond to those found to be stochastic by the
methods of Secs. IV and VI. It is, however, pos-
sible for a system to be nonintegrable (even mix-
ing and ergodic) and not exhibit C-system behav-
ior." Therefore a system with linearly separating
orbits is not a C system, but it may also not be an
integrable system.

The use of the exponential separation method is
not restricted to systems of two degrees of free-
dom, as is the surface of section method, but like
that method the results are qualitative. It is dif-
ficult to precisely distinguish between the two
regimes in computations, because for small times
an exponential curve is linear. Yet the computa-
tions cannot be continued too long or the boundaries
of the phase space are encountered and growth of
the distance must stop. %e circumvent this re-
striction by initializing the orbits at a distance
small compared to the size of the phase space.

We calculated the orbit separation for the sys-
tems M= 2, 3, and 4 and found that it was never
exponential. To cover the phase space we chose
several hundred initial conditions with the actions
on a grid and the phases picked randomly. Typical
separation curves are shown in Fig. 5, where we
have plotted the logarithm (base 10) of the distance
against time. Distance was calculated using the
coordinates (2) with a Euclidean metric. Note,
however, that the exponential-linear distinction is
independent of the metric used (Ref. 9, p. 55). At
g= 0 the fractional separation between orbits was
typically 10 ' in one of several directions. For
Fig. 5(a) the initial separation is in an action (J )
direction, while in Fig. 5(b) and 5(c) it is in an
angle (8) direction. The generally negative curva-
ture of each of these curves is indicative of the
nonexponential growth rate. The small oscillations
on these curves have periods similar to those of
the trajectories themselves. Oscillations of this
sort are present in both integrable and noninte-
grable systems, although generally seem to be
more regular in integrable systems.
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method is clearly explained in Greene's paper, it
is apparently not widely known so we give a brief
description of it.

Greene develops the method for plane, area-
preserving mappings. For the ease of a two-de-
gree-of-freedom Hamiltonian, the surface of sec-
tion discussed in Sec. IV is such a mapping [e.g. ,
the K= -O. l surface of section, Fig. 4(a)]. To
apply the mapping to a point on the surface, inte-
grate the equations of motion forward in time un-
til the orbit again intersects the surface. Sym-
boli. cally, we refer to this procedure as a nonlin-
ear mapping T:

(Pi ~l)= ~(Pi ~i) (20)
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On the K= -0.1 surface there are two first-order
fixed points of this mapping, defined by

(Pl I 41) +Pl I 'Vl) '

For example, the central fixed point in Fig. 4(a)
is at q, = 0.03878, p, = 0.0. These fixed points gen-
erally represent periodic orbits in the full phase
space rather than equilibria. In Fig. 4(a) the fixed
points are elliptic since iterations of the mapping
for points nearby'result in elliptical curves. The
rotation number of a particular surface of section
curve about the elliptic fixed point is defined as

&a = (average angle per mapping iteration)/2&.

tLI
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For curves close to the fixed point (d =0.46. The
rotation number is a monotonically decreasing
function of radial distance from the fixed point,
approaching zero at the separatrix (outermost
orbit encircling the fixed point). For the fixed
point discussed here this curve is shown in Fig.

0.5—
FIG. 5. Separation of nearby orbits as a function of

time for M=2, 3. Log&0 of the Euclidean distance is
plotted. For (a) the initial separation was in the J dir-
ection, while for (b) and (c) it was in the 0 direction.

Since the orbit separation for the test-wave sys-
tem with up to four triads is linear, we are unable
to find evidence of nonintegrability for this sys-
tem. Since for up to four triads the orbits are
qualitatively similar, the evidence tentatively in-
dicates that the test-wave system with an arbi-
trary number of degrees of freedom is integrable.

VI. GREENE'S RESIDUES

0.2—

0.1—

1

0.5
It(0)

I

l.0

The most sensitive integrability test is applic-
able only to systems with two degrees of freedom:
the residue method of Greene. ' Although this

FIG. 6. Botation number as a function of initial con-
ditions. The parameters are the same as for Fig. 4 with
K= —0.1. Initial conditions are I2= 0&001, |t 2= 0, with
g ~ determined by I&.
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6. Here the value of I, is essentially the radial
distance from the fixed point since this point is
so close to the origin.

If the rotation number is irrational then the
iterates of the mapping will fill a curve on the sur-
face of section. If, however, the rotation number
is rational, e.g. , ~= P/Q, then the mapping is
periodic after Q iterations. A point with rotation
number P/Q is a fixed point of the Qth power of
the mapping T:

(p„q,) = &'(p~, q~).

t &'-hl
I =M

i—qy) ( q —qy/

where (pz, qz) are the coordinates of the Qth order
fixed point. Since T is area preserving so is M;
therefore

(24)

det(M} = 1. (25)

The character of the invariant curves of the linear
mapping is determined by the residue, as defined
in Ref. 10:

Z=-,' [2-Tr(M)]. (26)

Since, from (25), the product of the eigenvalues
of M is 1, knowledge of R yields the eigenvalues.
Table I lists the type of fixed point as determined
by R. As succinctly shown in Arnold and Avez
(Appendix 2t), ' hyperbolic fixed points have real
eigenvalues and thus along the, eigenvectors itera-
tion of the mapping causes exponential divergence
or convergence (every fixed point in a C system
is hyperbolic). Elliptic fixed points have complex
conjugate eigenvalues of modulus unity so the
mapping causes rotation. For the parabolic case

TABLE I. Character of fixed point as determined by
the residue.

Residue

R&1
R=l

0&R&1
R=o
R&0

Type of fixed point

Hyperbolic with r eQection
Parabolic with reQection
Elliptic
Parabolic (integrable systems)
Hyperbolic

Since the rotation number is a smooth function,
there is an infinity of these higher-order fixed
points.

Calculation of the residue determines the charac-
ter of these fixed points. To define the residue,
consider initial conditions in the neighborhood of
a Qth order fixed point. The behavior of the map-
ping T in some neighborhood of this point is de-
termined by the linearization of T~ at the fixed
point. Since T is a mapping of the plane, the lin-
earized mapping is a 2x2 matrix, M;

the eigenvalues are either both +1 or -1 (R = 0 or
1). In this case the eigenvectors are collinear.
The R= 0 case is special since along the eigenvec-
tor every point is a fixed point under the mapping.

Each of the Q fixed points in a family have the
same residue. If R+0 then for each rotation num-
ber there are typically two interleaved families
of fixed points: one with R&0 and the other with
R&0. For example, if one family has 0&R&1
then the mapping must have closed el.liptical in-
variant curves in the neighborhood of the fixed
points. Between each of the elliptical fixed points
there will be a hyperbolic fixed point. The exten-
sions of the eigenvectors of this point form sep-
aratricies between the elliptic points. This struc-
ture has the appearance of a chain of Q islands
about the first-order fixed point (see Ref. 11}.
Upon discovery of such a chain it is natural to
consider the rotation number of the curves which
surround the Qth order fixed point. At rational
values of this new rotation number there will again
be higher-order fixed points which may again be
elliptic or hyperbolic. For a nonintegrable sys-
tem this progression of higher-order fixed points
about fixed points never terminates. Thus sur-
face of section curves, which appear to be smooth,
are in reality composed of an infinite series of
islands within islands and are thus not actually
smooth. Following the reasoning in Sec. IV the
second integral (16) would not exist.

If R= 0, however, there is no infinite series of
islands. For this case the curve emanating from
the fixed point along the eigenvector of the linear
mapping is a line of fixed points. This is the only
case for which a smooth curve of Qth order fixed
points surrounding the central point can exist.
When these curves exist the mapping is integrable.
For this case it is easy to find fixed points moving
out in any direction from the center. This is to
be contrasted with the R WO case for which there
are typically only 2Q fixed points with & = P/Q.

Computation of R is an extremely sensitive,
quantitative check for integrability of the two-de-
gree-of-freedom system, limited only by the ac-
curacy to which the orbits can be calculated.

To compute R it is first necessary to find the
higher-order fixed points. Using single precision
(14 digit) arithmetic on a CDC 'l600 computer we
were able to determine fixed points to 11 digits of
accuracy by using Newton's method to converge on
a rational value of rotation number. Once the
fixed point is determined the linearized mapping
is computed by choosing two initial conditions in
a neighborhood of and not collinear with the fixed
point (explicit expressions are given in Ref. 11).
We found, by varying the distance from the fixed
point, that for distances less than 10"' the mapping
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TABLE II. Values of the residues obtained for the
test-wave Hamiltonian with the parameters of Fig. 4.
Initial conditions are I2 ——0.001, |t)2—-0.0, E= -0.1 with I&

determining the rotation number.

Rotation number

1/3
1/5
1/6
1/7
1/8
1/9
1/10

I, (0)

0.7338
0.8741
0.9035
0.9260
0.9444
0.9601
0.9738

Residue

4.0 x 10-'0
4.4 x ].0&
6.7 x 10-9
8.7 x 10-'
1.1 x 10&
] 2x]0-8
1.4 x 10&

Error

2 x 10-9

4 x ].0-8

6 x 10-8
8 x 10-8
9 x 10-8
1x 10-'
1 x 10-~

VII. CONCLUSIONS AND SPECULATIONS

Based on the evidence of the Poincard surface
of section and Greene's method, the two-triad

was linear to integration accuracy. Using this
scheme we calculated the residue for 50 fixed
points on the K= -0.1 and X= -0.5 surfaces. We
chose fixed points at various arbitrary angles
around two elliptic first-order fixed points on a
surface of section. To estimate the error of the
calculation we also calculated the determinant of
the matrix (25). For each of the 50 fixed points
the error was always larger than ~R~; typical
values were ~R~ =10 +10 '.

For more convincing evidence that R = 0 every-
where, we used double-precision (28 digit) arith-
metic to calculate the residue for select few fixed
points. For these fixed points the integration ac-
curacy was 1V digits and the distance to nearby
points was picked as 10 ". Table II shows that
again the value of 8 was zero within numerical
accuracy for each fixed point.

We conclude that not only does the surface of
section consist of smooth curves on the scale
visible in Fig. 4, but also to at least distances of
the order of 10 '. Thus to this accuracy the sec-
ond integral exists.

test-wave Hamiltonian is almost certainly integ-
rable. The evidence of linear separation of neigh-
boring orbits indicates integrability for up to four
triads, albeit in a more qualitative way. It seems
reasonable to speculate that since there seems to
be nothing special about four degrees of freedom,
the M-degree-of-freedom test-wave Hamiltonian
may also be integrable. To jump from two to four
to I degrees of freedom is hardly justified, but a
major purpose of this paper is to stimulate in-
terest in the search for integrals of motion.

It is interesting to speculate on the characteris-
tics of the Hamiltonian (1) that are required for
integrability: perhaps this Hamiltonian is a mem-
ber of a more general class of integrable Hamil-
tonians. For example, if we compare the test-
wave Hamiltonian to that of Ford and Lunsford'

H= (g,Z, + (g,J2+ ~,JS —e,(J,'J,) ~'cos(28, —8,),

—e,(J~J,J3)'~'cos(8, —8, —8,), (27)

it appears that the essential difference is that in
our Hamiltonian only one wave appears in more
than one coupling term. Thus it may be possible
that a Hamiltonian with a more general interaction
term is also integrable, although by Siegel's theo-
rem' this is not probable.
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