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Line-shape theory and molecular dynamics in collision-induced light scattering
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Molecular-dynamics studies in argon at 148 amagats are presented for gaining inforiTIation on the
dynamical properties responsible for the depolarized light scattering from simple fluids. The total and pair-

correlation functions are computed within the simple dipole-induced-dipole model of polarizability
anisotropy. The pair spectral shape is derived. These results are compared with a theoretical analysis based
on a continued-fraction approach. The necessary frequency moments are calculated both in the low-density

limit and taking into account first-order density corrections, and compared with the molecular-dynamics data.
The agreement between the theoretical spectra and molecular-dynamics data shows the validity of the
memory-function approach. The comparison with the real experimental results allows one to test the relevant

physical contributions to the polarizability anisotropy.

I. INTRODUCTION

The depolarizing effect in the radiation scattered
by a system of atoms (or spherical molecules) has
been extensively studied in the past ten years both
experimentally and theoretically. ' The basic rea-
son for the presence of depolarized scattered radia-
tion is most easily seen in the low-density limit,
where only binary collisions are important. Here
the interatomic collisions induce a transient po-
larizability anisotropy in a pair of interacting
atoms, producing an axially symmetric diatomic
quasimolecule which accounts for the depolarizing
effect. The duration of this polarizability anisot-
ropy pulse is obviously connected with the fre-
quency width of the observed depolarized spectrum.

The theoretical efforts for a better quantitative
understanding of the phenomenon have proceeded
along three main directions. The first one con-
cerns the detailed mechanism of the induced po-
larizability anisotropy, which is exactly known
only at large interatomic separations [dipole-in-
duced-dipole (DID) limit). The choice of a par-
ticular form for the polarizability anisotropy is
reflected on the actual magnitude of the depolarized
integrated intensity observed in the scattering pro-
cess.

The second problem regards the shape. of the
scattered spectrum. Experimentally, nearly ex-
ponential line shapes are found. In a sense, this
feature turns out to be less affected by the detailed
form of the polarizability anisotropy or the inter-
atomic potentials. Even so, it is difficult to ar-
rive at a rigorous first-principle calculation of
the line shape, particularly at arbitrary density.
Often one must be content with the less ambitious
task of comparing overall quantities, like the spec-
tral slope and/or the first frequency moments
with the experimental findings.

Finally, there is the interesting problem of the be-

havior of the spectra at higher densities (and pos-
sibly at various temperatures). Clearly in this
case the simple binary collision model breaks
down. The investigation of such features would be
very useful for clarifying the dynamic properties
of dense gases and liquids.

In this work we shall mainly deal with the line-
shape problem of the spectrum due to pairs of in~
teracting atoms at moderate density. In Sec. II
the general expressions of the depolarized scat-
tered intensity and of the frequency moments are
summarized. The theoretical analysis used for
evaluating the spectral. shape is presented in Sec.
III. For this purpose we shall use a memory-func-
tion approach which permits one to obtain in a con-
sistent way the shape of the scattered spectrum if
the first few frequency moments can be theoreti-
cally evaluated. A molecular dynamics experiment
has been carried out in order to obtain both the
"exact" time-correlation function and the spectral
shape. Here the DID polarizability result has been
used as a simple and convenient test of the validity
of the theoretical approach. All these results are
compared in Sec. IV, along with a discussion of
the effects coming from finite-density corrections
to the pair-distribution function. Finally, in Sec. V
the line shapes obtained by the memory-function
approach are compared both with the molecular-
dynamics results and with the spectra observed in
real experiments, thereby establishing the rele-
vance of the various mechanisms for the polar-
izability in the different frequency regions of the
spectra.

II. DEPOLARIZED SCATTERING CROSS SECTION

Assuming that the system polarizability can be
written as a sum of pairwise contributions, the
total depolarized scattering cross section turns out
to be given by'.
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In the low-density limit I,(u&) accounts for most
of the depolarized intensity.

Then we require a model for the polarizability
tensor 0.,&

of the pair i,j. Performing a multipole
expansion, at first order one obtains the dipole-

. induced-dipole (DID} limit.

Q jf=20t + ~+2Qf T jf0 ej ~ ef 0

where
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and o., is the atomic polarizability. The result(3a)
is exact, both classically and quantum mechan-
ically, at relatively large distances Rj~.

'

The terms neglected in Eq. (3a) refers tovarious
physical effects. First, higher -order multipole
effects are of course present: even if classicaBy
at typical interatomic separations their effect is
small. , there is some quantum-theoretical' and
experimental evidence that they are not negligible.
Moreover, there are also negative electronic over-
lap terms whose effect is still quantitatively un-
clear, in spite of the Wany empirical forms de-
duced for them from the experimental data. '

Even so, the large-separation result given by
Eqs. (Sa) and (Sb) is on the whole a very good first
approximation, simply because small distances

',
' 0

jgg k, l
)0 j ilk

(1)
Here u is the frequency shift measured from the
incident frequency +, ((()&0 for the Stokes scatter-
ing). The polarization vectors of the incident and
of the scattered fields are denoted by aj and zf re-
spectively: for instance, in depolarized scatter-
ing aj=Z, &f=X. The quantity 5j& is the polariz-
ability tensor of atoms i and j, which depends on
their mutual separation Rj&. The summations run
on the -N atoms in the system, characterized by a
volume V and a number density p=I)I/V.

In Eq. (1) one can separate out the different con-
tributions due to pairs, 'triplets, and quadruplets
of atoms. " In particular, the contribution due to
atomic pairs is

Ip'l((d} = — —— dt e '"'1 40j 1
4 c 2m

Rjz are unlikely to be very effective due to the
strong repulsive part of the interatomic potential.
At least at low and moderate densities, the effect
of the polarizability anisotropy other than that
given by the DID mechanism is mainly seen on the
integrated intensity of the spectra. As already
noted, the spectral shape turns out to be com-,
paratively less affected, particularly at low-fre-
quency shifts (see also Sec. V). For all these rea
sons, in what follows we have explicitly considered
only the DID polarizability, even if the theoretical
approach can be straightforwardly used to include
any other mechanism.

Instead of using Eq. (2), the dynamical processes
due to scattering by atomic pairs can be investi-
gated if the set of frequency moments

oP= deed"I2j'f co, n=0, 1,2, . . . 4
~ OO

is known. In the classical limit, only even-fre-
quency moments do not vanish since in this case
I,((())= I,(-(()). Quantum effects due to detailed
balance factors must, however, be included if the
classical results are compared with the real ex-
perimental spectra (see Sec. V}.

The frequency moments +& are calculated per-
forming n time derivatives of the dynamic corre-
lation function

Q (n)q(0) u)q(t))

and evaluating the result at t= 0. Obviously, as n
increases the procedure becomes more and more
algebraically involved and tedious. It is therefore
interesting to investigate whether it is possible to
obtain an approximate spectral shape using the in-
formation contained in the first few frequency mo-
ments. In Sec. III we shall discuss a memory-
function approach to this problem. '

For the spectrum due to the pairs, the zero-fre-
quency moment (integrated intensity) is given by

4 4 oo

(()0= — —' p'V — dR R'P'(R)g(R) . (5)
2 c 15

Here we have explicitly considered the case ej e,-
= 0. In Eq. (5) P(R} is the polarizability anisotropy
associated to a couple of atoms separated by the
distance R: in the DID limit one has P(R) = 6u,'/R'.
The quantity g(R) is the density-dependent pair-
distribution function, In the low-density limit it is
simply given by g,(R) = exp[-y(R)/K~T], where q(R)
is the pair interatomic potential.

The expressions of w' and w, second and fourth
moments of I,((d), are also known (see, e.g. , the
paper by Lallemand in Ref. 5). The sixth moment
+' can be calculated along the same lines; after
a good deal of algebra we find'



19 LINE-SHAPE THEORY AND MOLECULAR DYNAMICS IN. . . 179

p P— ~2)T dR 7560 P, —8~08PP +2448P—,+648PP, -792P P +216PP
2 e 15 m

+ 334 P"' -144 6'P"'+ 36RP "3"'+16R*P'"') 2 (R)

pp' pp"
+ — ~ — dR y' —V2 —+ 132 —24 -36—

m ~ .0 R3 R2 R R

+ 63'3" —6RP"' —3 '3R"3")p(R)

4 2K~T' t „P '
dR 4" 36 -243' +6RP'P" + 3R P "P"')p(R)

+ —
R

~ dR y" 24 —,- l2 +54P"+9R' B'"~g(R)

4 2x, 1'
+ ~ dR (y"'R'P" + 6y'p "R'P'P")g(R)

0
(6)

Here m is the atomic mass and the primes indi-
cate derivatives with respect to R. As in the case
of m4, an integration by parts simplifies somewhat
Eq. (6), provided that g(R) = exp[-(/(R)/X~T],
clearly a bad approximation at moderate and high
densities. The shape of the spectrum is essential-
ly determined by the "normalized" frequency mo-
ments ((u") -=(u"/(o .

HI. MORI'S THEORY AND CORRELATION FUNCTION
CALCULATION

We now deal with the calculation of time-corre-
lation functions iike (MM(t}), where M is the dy-
namical variable associated to the scattering. In
the following we limit ourselves to the classical
case. I et us define a "shape-correlation func-
tion"

f,(t) = (M(0)M(t))/(M(0)M(0)) (7)

and its Laplace transform f,(z). The frequency
dependence of the spectrum is given by the Fourier
transform of f,(t), i.e. ,

f,((o) = (1/v) Bef,( & = i (u) . (8)

Mori' has derived an exact equation of motion for
f,(t) in terms of a memory function f,(t) which de-
pends on higher-order time correlations. An equa-
tion of motion can also be written for f,(t) in terms
of the corresponding memory function f,(f), and so
on. Taking the Laplace transform of each equation
of this infinite hierarchy, Mori arrives at the fol-
lowing continued-fraction representation for f,(z):

f (&}=I.&+&,f,(&)] ',
f;(&)= [&+&„,f;„(')]' (9)

The quantities 4„are connected with the even-fre-
quency moments ((o'"). In particular, the first
three h„are given by

b2= ((o ), 6 = ((u )/hq -b2,
a, =(l/a.,)[((o')/a, -(a, + a,,)'] .

(10)

ot(to)= J ft(t)ooeoddt,
0

b~((o) = Jl f~(t) sin(otdt,
0

the spectral shape is found to be

f ( )
1 +2ag((o)
v [(o -b,,b,((o)]'+ [a,a,((u)]'

or

(12)

(13)

fo((o) =-
v ((o[(o-&,b,((u}] -a,P+{(oa,a,((u)j' '

according to whether the continued fraction is
stopped at the first (j= 1) or the second (j= 2)
stage, respectively.

Equations (13) and (14) are still exact, but re-
quire the knowledge of the quantities f,(t) or f,(t).
Approximate forms can be deduced in particular
cases, depending on the involuted time scales and
consequently on the frequency range of interest. '
A Gaussian form for the memory function f&(t)

The representation (9) is formally exact and re-
duces the dynamical problem to a static one. In
practice, however, only the first few 4„can be
theoretically evaluated and an approximate termin-
ation of the continued fraction is necessary. For
spectral. shapes without much structure it is suffi-
cient to break the hierarchy by means of simple
statistical approximations for f,(t) or, at most,
f,(t). Defining

f~(& = i(o) = a~((o) —ibq((u) (11)

with
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(j= 1, 2}

f&(t) = exp(-2b, .„t') (15)

The expressions of a&(~) and b,.(a&) are derived in
Appendix A.

a„„„=(m+ 1)a„,.
For a Gaussian f~(t} the quantities a~(&o) and b, (~)
are found to be

(16)

a,((o) = (v/2n„, )'~'exp(-(u'/2a„, ),

exp(-&o'/2a~ „)
b~(~) =

(~ exp(y') dy .

has been found to give good results in several
physical cases' "for describing the overall fea-
tures of the spectra. Indeed, such a memory func-
tion has the correct expansion in the t- 0 limit and
all the integrals Jo" t"f&(t) dt exist. In the frame-
work of the general memory-function theory of
Ref. 8 the Gaussian termination (15) gives an ap-
proximate compromise behavior at all times:
moreover, it has been exactly derived as a limit-
ing case in a recent approach to the line-shape
theory" which complements the previous memory-
function theory With. the choice (15) the spectral
shape functions given by Eq. (13) or (14) automati-
cally conserve the first three and four even-fre-
quency moments, respectively. The successive
4 are fixed by the Gaussian form of the memory
function according to the relation

IV. MOLECULAR DYNAMICS EXPERIMENT

In this section we describe the computer simula-
tion experiment and report the correlation func-
tions pertinent to the problem.

A sample of %=108 atoms of argon is considered
in a cubic box with an edge L = 30 A. This fixes
the number density p= 148 amagats. The atoms
are assumed to interact through a Lennard-Jones
(6-12) potential with parameters @=119.8'K and
o= 3.405 A. The temperature of the system is
chosen to be T= 294'K, which corresponds to a
reduced temperature T*=K~T/e= 2.45. A standard
method of integration'4 of the Newton equations of
motion is used along with periodic boundary condi-
tions. The time step is 6t = 2 x 10"sec. After a
long run the system, starting from the solid fcc

.configuration with initial velocities assigned ac-
cording to the desired temperature, reaches ther-
modynamic equilibrium. Then the dynamics of the
N particles is followed during 24000 more steps.
In this time interval the averages of the time-cor-
relation functions relevant for the problem are
performed.

Two main correlation functions are evaluated.
The first one is connected to the total depolarized
light scattering spectrum, "namely,

f&(t) = sech'[( —,'b&„)'i't]. (18)

The derivation is given in Appendix A. This mem-
ory function has the correct short-time expansion
and an exponential long-time decay which is just
the appropriate one if one neglects the processes
which cause the very-long time tails.

In this case, different relationships are found
among the successive 4 and in particular

(19)

The corresponding spectral shape determined by

Eq. (13}(j= 1) depends on the ratio 6,/d, ."" If
the Gaussian termination is done at the second
stage [j=2, Eq. (14)], the spectra show different
features according to the ratios 6,/b. , and 6,/6, ."
In any case, in collision-induced light scattering
the values of the theoretical moments are such
that only a single central peak at &= 0 is found, as
expected.

In the framework of the l.ine-shape theory of Ref.
13 only two limiting cases were considered, which
yielded either a Gaussian f&(t) or —in the long-
time "Markoffian" limit —an exponential f&(t). A
third intermediate limiting form is possible, and
leads to

C'c~y (w) = W T'~'&(0) T'&'&(7')
ig 0E

iyg h~l
2~ i lA0

t

where now e, &a&.
The second one is the contribution to Eq. (20)

due to pairs of atoms:

(20)

C'~'~(7) = 2 ~ T'~'&(0) T'~'$7)
iaaf

The maximum temporal delay at which the time-
correlation functions are evaluated is v.„=1002 t,
which corresponds to a time interval of 2 && 10 "
sec.

When averaged over the whole time interval of
24000 steps the three correlation functions. cor-
responding to the choices of q, and qz alongX, Y, Z,
turn out to have the same time behavior as expec-
ted, due to the fact that different components only
stem out from a different scattering geometry.

In Fig. 1 the time-correlation functions, normal-
ized to their 7 = 0 values are reported. The dash-
dot line represents the total correlation function
while the dash-double-dot line is the pair contri-
bution.

It is worthwhile noticing that in our previous ex-
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FIG. 1, Time-correlation functions for depolarized
light scattering as given by the computer experiment" in
argon at room temperature and at 148 amagats. Dash-
dot line, total correlation function; dash-double dot line,
correlation function coming from atomic pairs. Both
curves have been normalized to their respective values
at T= 0.
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periment 500 atoms of argon were used to derive
the pair contribution in the same external condi-
tions. In that case the time average was per-
formed over a shorter interval so that a larger
spread of the three correlation functions was pres-
ent at long time delays. Nevertheless, the average
of the three components was substantially the same
as the correlation function obtained in the present
experiment. The lower accuracy achieved in the
previous experiment was reflected in a larger os-
cillation of the frequency components of the spec-
trum in the region beyond 80 cm '. By the present
results the frequency range can be extended to
170 cm ' with higher accuracy.

%e are now in a position to get information on a
quantity which represents the contribution to the
total depolarized intensity of the triplets and quad-
ruplets. In fact if we write (dropping the labels

P
t(, 6p}

c(~)/c(0) = [c,(~)+ c„,(~)]/c(0), (22)

we can extract C„,(r)/C(0) by a simple subtrac-
tion, once C(v), C(0), and C,(7') are known. A

comparison between the values of C(0} and C,(0)
obtained in the present molecular-dynamics ex-
periment and a theoretical analysis will be made
in Sec. V. In Fig. 2 we report the time behavior
of the correlation functions as written in Eq. (22).
At this stage we can only say that the long-lasting
behavior of C„4(r) and its negative contribution to
the total integrated intensity ts confirmed by real
experiments" where both a fast decay of the three-
body spectrum and a negative contribution to the
total scattered intensity was observed.

~ ~ ~ ~ ~ ~

0.25 0.5 0.76
PIOC

1.25 1.6

F[Q. 2. Same as in Fig. 1, but with all curves nor-
malized in such a way that t."(7 = 0) =1. The time corre-
lation function coming from the contribution of triplets
and quadruplets of atoms (dotted line; see text) has also
been drawn.

xfexp [-y(R„)/If, T] —I], (24)

%e now focus our attention on the pair contribu-
tion for which a detailed theoretical analysis is
possible, as already shown. As will be shown in
Sec. V, using the memory-function approach, that
only the first three nonvanishing normalized mo-
ments of the pair spectrum are necessary. In or-
der to perform the integrals appearing in the theo-
retical expressions of the moments the radial-dis-
tribution function g(R) at the used density must be
known. We have evaluated the "experimental" g(R)
in the interval O.V9&x&2.49 (x=R/o) counting for
each atom the number of particles between x and
x+ax (ax=0.02). An average over 24000 steps is
then performed. The function g(R) so obtained is
reported in Fig. 3 where the dash-dot line repre-
sents the zero-order approximation g,(R), the open
circles are the "experimental" data, and the solid
line is the distribution function when the first den-
sity correction to go(R} is taken into account, " i.e. ,

g(R„}=g,(R„)[I+pg"'(R„)],

g" '(R„)= I dIt, jexp [-q (g„)/Ke T] —I].
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FLQ. 3. Pair-distribution function for Lennard-Jones
argon at room temperature and 148 amagats. Dash-dot .
line, zero-order result go (R); solid line, theoretical
g(R) obtained taking into account first-order density
corrections. The open circles are the pair-distribution
function obtained in the computer experiment.

The result is quite satisfactory and stresses out
the effects of finite density corrections. In Table I
we report the value of the first moments evaluated
performing the integrals with the "experimental"
rRdlR1-distribution function. The integrRls Rre
corrected to account for the long-range contribu-
tion (R &2.49c) assuming that in this region the ra-
dial-distribution function is equal to unity. For
comparison the values obtained in'the zero- [g(R)

gc(R)] and first-o—rder approximation (g(R)
~gc(R)[1+pgu'(R)]jare also reported. As far as
the moments are concerned the following informa-
tion can be gained. Firstly, finite density correc-
tions cause an increase of &" larger and larger as
n gets larger. Secondly, R small correction due
to the contribution of a term proportional to p' in
the radial-distribution function is apparent, and
finally the sixth moment cannot be evaluated by

this method since detailed information on the ra-
dial-distributuion function below x = 0.79 is nec-
essary. As is apparent from Eq. (6) the integrals
.in u' involve higher-order derivatives of the po-
tential energy, which are relevant just in the re-
gion below x=0.79 where the counts in the com-
puter experiment are too small to give any reliable
result.

Two alternative methods for the evaluation of the
moments from the "experimental" results arepos-
sible. The first one is to expand the correlation
function as a power series of time and evaluate the
coefficients of the three terms by a fitting proce-
dure. By the second method one simply evaluates
the integrals (4) using the "experimental" spectrum
I,(&u) deduced from the correlation function. As a
matter of fact these two methods turn out to give
unreliable results even for the fourth moment.
Namely, a precise evaluation of the time coeffi-
cients needs the values of the correlation function
at times such that terms higher than the required
ones are already important: unfortunately, the ac-
curacy of the computed C(r) does not allow this
polynomial fitting at such high orders. On the
other hand, the second method requires knowledge
of the spectrum in a frequency region where a sub-
stantial oscillation already appears in the experi-
mental spectra.

S —=(c'/N)C(0), 2S2 —= (o'/N) C2(0) . (25)

In our molecular-dynamics experiment (p= 148
amagats) S and 2S, turn out to be 0.7183 and
1.1167, respectively. The contribution of the pairs
can be easily deduced from Eq. (5): in the zero-
order approximation for g(R) we obtain 2S,
=1.1222. As is apparent from the &' values re-

V. RESULTS AWD DISCUSSION

In this section we compare the molecular-dy-
namics data with the theoretical results. The first
quantities of interest are the integrated intensities
C(0) and C,(0). It is convenient to introduce the
dimensionless quantities'

TABLE I. The DID frequency moments of the pair spectrum together with the related quan-
tities Q. The mxmbers refer to Lennard-Jones argon at a reduced temperature T*=2.45 and
at a density of 148 amagats In these c.onditions the frequency 00 ——(2Ks T/mc 2)~ 2 turns out
to be 5.432 cm . (a) Refers to the low-density go limit, (b) to the theoretical g(R) with first-
order density corrections, (c) to the experimental g(R). A factor -1t. && (u&/c)4p Vo.&/0- is

f5
present in all moments ~ and has been left out.

(a)

(c)

0.4752
0.4746
0.4783

4.847
4.895
4.958

619.2
654.3
697.2

(u'/a, '

4.36 x 105
~ ~ ~

10.2
10.315
10.36

117.55
123.35
130
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ported in Table I, practically the same result is
obtained even taking into account the first density
correction to g,(R}.

The total depolarized intensity is the sum of 2S,
and analogous contributions 48, and 84 coming from
triplets and quadruplets of atoms. The theoretica1.
expression of the triplet contribution is known' and
can be exactly evaluated in the low-density limit
where the three-body distribution function factor-
izes in a product of three pair functions g,(R). In
our case, we find 4S,= -0.5418 so that the theo-
retical contribution due to the pairs and the tri-
plets turns out to be 2S,+4S,=0.5804. This is to
be compared with the "experimental" total value of
S(0)= O.V133, giving a clear evidence that the cluad-
ruplet contribution 8, is positive. Theoretically,
the computation of the multiple integrals involved
in the expression of 84 is very difficult even in the
low -density limit.

Let us now discuss in detail the shape of the
spectrum due to the pairs. The experimental" spec-
trum is obtained by Fourier transforming the mo-
lecular-dynamics data for the time-correlation
function C,(r) of Eg. (21). This has been done nu-
merically by a fast-Fourier -transform method.
The result is plotted in Fig. 4 (open circles) up to
a frequency &v= 170 cm ' (note the logarithmic ver-
tical scale). It is apparent that the purely DID
mechanism for the polarizability leads to a spec-
tral shape which is neither a single exponential nor
a sum of two exponentials. This feature has al-
ready been noted in theoretical evaluations of the

line shape at low densities" as well as in real ex-perimentss.

In Fig. 4 the spectral shapes obtained with two
possible terminations at the first order of the con-
tinued fraction have also been plotted. They cor-
respond to the Gaussian and sech'g approximations
for f,(t) discussed in Sec. III. Here in order to
make the most direct comparison with the molecu-
lar-dynamics data, the quantities Lh, and 4, have
been deduced using the", experimental" values of
~', w', ~~ reported in Table I. In this figure, as
well as in the following ones, both the "experi-
mental" and the theoretical curves have been nor-
malized to the same integrated intensity. From
Fig. 4 one sees that some overall features of the
spectrum are already reproduced even in this
first-order termination. The deviations beyond
&-60 cm ' can be easily explained. Whatever ter-
mination is used at first order, b,, (and conse-
quently the sixth moment) is automatically fixed:
for the Gaussian and sech'x one would find ~co

=(2.63 x10')Q,'and (3.5 x10')Q'„respectively. The
corresponding values of h3 are 260Q,' and 390QD.
Even if it- is difficult to establish the value of &'

using the "experimental"g(R) inEq. (6), thesepre-
dicted first-order values are undoubtedly too low.
For instance, if we use the low-density distribu-
tion function go(R) the quantity ~to turns out to be
(4.36 x 10')Q6 and consequently 6,= 62VQ0. These
drawbacks of the first-order terminations have
already been pointed out in the Gaussian case. '

In Fig. 5 we have plotted the spectral shapes ob-
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FIG. 4. Spectral shape for the depolarized spectrum
due to the pairs. The open circles refer to the molecu-
lar-dynamics data. The dashed and the dotted lines are
the result of a first-order memory-function theory with
sech2x and Gaussian terminations, respectively. The
necessary frequency moments have been evaluated by
means of the "experimental" g(R).

FIG. 5. Same as in Fig. 4, but with the theoretical
curves obtained by means of a second-order memory-
hction approach. The fuO and the dashed lines refer
to a sech x and to a Gaussian termination, respectively.
The necessary frequency moments have been evaluated
using the low-density limit for the pair-d. istribution
function,
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tained using the same terminations at the Second
ogden of the continued fraction. Since the value of
&u' can be exactly determined only in the g,(R) lim-
it, to be consistent we have used the quantities 4„
D„d, in the same low-density approximation.
Even so an improved agreement is evident up to
frequencies u-100 cm ' for both types of termin-
ations. Therefore, as far as the spectral shape is
concerned the theory at the second stage gives
good results for mast of the spectrum without re-
quiring a detailed knowledge of high-order memory
functions.

A more stringent test of the validity of the vari-
ous terminations is the comparison of the corre-
sponding time-correlation functions as shown in

Fig. 6(a) and 6(b). It is apparent from Fig. 6(a), which
is obtained in the g, limit, that the sech x termina-
tion gives a better agreement with the molecular-
dynamics data. Obviously, the agreement can be
improved using the quantities 4, and 4., deduced
from the "experimental" g(R) and letting b., as an
adjustable parameter for a best fitting of the

3, = 10.20 ~o

0.8

0.6

0.4

0.2

d, -:036 9,
= 'l30.0

sech'x form. The result of this procedure [shown
in Fig. 6(b)] gives b,,= 630Q,' which corresponds to
~'=(5 x10')Q', . lf the fitting were performed on
the Gaussian, we would obtain L, = 5009,' and a
corresponding value of the sixth moment [(4.2
x 10')Q', j, which is unreasonably low on the basis
of the finite-density corrections presented ln Table
I. Again, al.so in this case the spectral shapes
(Fig. V) for both terminations appear to be in ex-
cellent agreement with the molecular-dynamics
data.

Finally, it is interesting to compare the spectra
obtained with the DID polarizability with the shape
observed in real experiments for the "two-body"
intensity. In practice, the latter is obtained ex-
tracting from the total depolarized spectrum the
contribution proportional. to the square of the den-
sity: this component is directly comparable with
the pair spectrum in the lowest-order approxima-
tion for g(B). In a recent work the two-body part
of the room-temperature spectrum of argon has
been reported up to 250 cm"'. In our units the
measured normalized second and fourth moments
turn out to be(&u') = A, = 8.14Q,', (ur )= V60Q, and
consequently 6,= 85.2Q,'. From Fig. 8 one sees
that the experimental spectrum is satisfactorily
reproduced by a second-order sech'x termination
if a 4, -380g,' is chosen as a fitting parameter.
The corresponding value of (uP) turns out to be
(3.34 x 10')Q', .

A comparison between the real experiment and
the molecular-dynamics data allows us to estab-
lish in a direct way the presence and the relevance
of mechanisms for the polarizability anisotropy
other than the DID one. Indeed from Fig. 8 it ap-
pears that the DID mechanism accounts with good
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FIG. 6. Time correlation function Cz(v')/C&(0) due to
the pairs. The open circles are the molecular-dynam-
ics data already reported I Fig. 1. The fu11 and the
dashed lines refer to a sech2x and to Gaussian second-
order terminations, respectively. In (a) the frequency
moments correspond to the go Bmit; in (b) they have
been evaluated as described in the text,

80 120
c m-1

FIG. 7. Same as in Fig. 5, but with the frequency
moments as Dl Fl.g, 6 (b),
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nearly exponential shape in contrast with the ex-
perimental two-body spectrum.

VI. CONCLUSION

28
ee

1600 40 80 120
c m-'

FIG. 8. Comparison bebveen the pair spectrum as
given by the molecular-dynamics simulation {black dots)
and the two-body experimental spectrum in real argon
at room temperature {open ovals). For the latter data
the effect of the detailed balance factor has been sub-
tracted out. The full line is the second-order result
based on the experimental frequency moments reported
in Ref. 4. The dot-dashed line is the second-order re-
sult with the DlD moments in the g& limit. Both these
curves correspond to a sech x termibation.

accuracy for the low-frequency behavior of the
two-body spectrum. As a matter of fact, the long-
time behavior of the correlation function is mainly
determined by the long-range part of the polariz-
ability which is dominated by a purely DID mech-
anism. Beyond 80 cm ' the evident discrepancy
between the molecular-dynamics data and the ex-
perimental points is quite interesting. The finite
density g(R) increases the effective contribution
of the short distances as is apparent from Fig. 3.
One may think that this is the cause of the devia-
tion with respect to the experimental. two-body
spectrum, which by definition corresponds to the
low-density limit. However, the comparison be-
tween the experimental data and the DID spectrum
obtained by the memory-function approach in the

g,(R) limit shows (Fig. 8) that finite density cor-
rections are not sufficient to account for this dis-
crepancy. This is clear evidence that a short-
range contribution to the polarizability anisotropy
is not negligible. To our knowledge the only theo-
retical attempt to derive in argon an electronic
overlap contribution is due to Gelbart et al.""
However, their expression of the polarizability
leads to frequency moments still in disagreement
with the experimental. values of Ref. 4: the fre-
quency moments theoretically derived in Ref. 20
lead to 4, = 8.450,' and 4,= 52.40,'. Moreover, the
corresponding ratio Age, , is 6.20 and leads to a

In this work we have shown that a theoretical
analysis based on a memory-function approach
combined with molecular-dynamics calculations
is a useful method for gaining information on those
dynamical properties responsible for the depolar-
ized scattering of light from. simple fluids. More-
over, the comparison with the real experimental
data allows one to test the relevant physical con-
tributions to the polarizability anisotropy. We
have focused our attention on the classical dipolar
contribution and demonstrated the validity of the
memory-function approach in this well-defined

. physical situation. In this way as soon as a more
detailed theoretical knowledge of the pair polar-
izability is available, the use of the methods dis-
cussed here permits one to verify the validity of
the predictions by a straightforward comparison
with the experimental spectral shapes.
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APPENDIX A

In a recent paper Tokuyama and Mori" present
a different approach in order to obtain a new equa-
tion for the jth-order memory function. In this
framework the equation of motion for f&(t) assumes
the following exact form:

(A1)

where

(A2)

is a generalized frequency. The frequency modu-
lation function g&(t) can be derived from the equa-
tion of motion of the variables of the system by
means of a projection-operator method. A rela-
tionship between it& and f,„has been obtaine. d and
the two theories can complement each other giving
the possibility of a unified point of view. Integrat-
ing Eq. (Al), one obtains

(A3)
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f())=exp(-a;. , j( ))-r)f)r)d~)
0

(A4)

The solution of (A4) can be obtained by differen-
tiating twice, and turns out to be

f&(t) =sech'[(—'a )'~'t]

From Eq. (A5) the expressions of a&(a)) and b&(~)
can be found. The expression of a&(c)) is simply
given by

(A5}

a,(a)) =
J sech'[( —,'a, „}'"t]cos

0

~,.„sinh[~~((u, „,)»'] (A6)

This expression has been derived also in the
stochastic theory of line shape~ and turns out to
be powerful for simple special cases of g~(t). If
the frequency modulation g&(t) has the same time
decay as f,(t), the latter can be inserted in the
right-hand side of Eq. (A3) which becomes

For b&(&u) the integral

b~(c&)= ' sech'[(ah, „)'~'t]sin &ufdt
0

(AV)

can be expressed by means of a series expanding
sin~t and integrating term by term, i.e. ,

b~(a)) = 2((ulr ~.,) ln2

00 2 k 4k-1
+ g ( 1)

'

20) )) t(2k l)a)
kr2 j+ J,

(AB)

where g(x) is the Riemann function. Within an ac-
curacy of 1/o only few terms are sufficient until
&o-(b,.„)'~' and the number of these terms re-
mains reasonable until a) -(2L,.„)'~'. Beyond this
frequency value the Gaussian b&(c)) of Eq. (1V)
turns out to give a good approximate expression
for b&(c)} also for this sech'x termination.
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