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Nonlinear-optical processes in nematic liquid crystals near Freedericks transitions

R. M. Herman and R. J. Serinko
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 19 October 1978)

Weak-beam amplification and diffracted-beam production are predicted under a variety of conditions, in

which thin nematic-liquid-crystal samples maintained in an external magnetic field near Freedericks
transitions are simultaneously illuminated by strong and weak beams derived from the same light source. It
is shown that for 4-methoxybenzylidene-4-butylaniline, substantial weak-beam amplification should occur
under continuous illumination for modest (-0.1 W/cm ) strong-beam intensities, for certain cell and beam

geometries. If a small positive frequency difference between the strong and weak incident beams is

maintained, weak-beam amplification is further enhanced, and the conditions on the angles of incidence for
amplification are considerably relaxed.

I. INTRODUCTION

In recent years, nonlinear optical properties of
nematic-liquid-crystal materials have been studied
by a number of authors, in an attempt to gain in-
formation on electronic and orientational contribu-
tions to nonlinear optical susceptibilities and to
obtain relaxation rates and transport properties
related to the orientational motions of the indivi-
dual molecules. ' Studies have been carried outboth
above and below the nematic-isotropic transition
in an effort to understand the properties of these
materials near the phase transition. In the ne-
matic phase, also, low-intensity light scattering
has been employed" to reveal the presence of a
very narrow, intense Rayleigh component, cor-
responding to scattering from the director orien-
tational fluctuations, which relax very slowly, in
addition to at least two broader components (com-
prising the so-called Rayleigh wing) arising from
fluctuations of the individual molecular alignments
about the director. It is this narrow component
that is primarily related to the self-focusing
property of nematics' under continuous illumina-
tion. Other (nonorientational) slowly relaxing ex-
citations in nematics have also been studied re-
cently. ' These have been ascribed to thermal-
and mass-diffusion effects in liquid crystals.

In the present paper we shall again concentrate
on the slowly varying components of molecular
anisotropy that are related to the behavior of the
director in the nematic phase. Our interest lies
with nonlinearities that appear for relatively low
light intensities. In seeking a method for enhanc-
ing the nonlinearities at low optical intensities,
we shall consider the nematics as existing near
Freedericks transitions associated with their
placement in externally applied constant magnetic
fields. ' " [We confine our interest to magnetic-
(as opposed to electric-) field-induced transitions,

for purposes of ultimate experimental expediency. ]
To obtain these transitions, a thin sample of ne-
matic material is placed between parallel glass
cell walls, treated such that at the walls the ne-
matic director field is maintained in a fixed di-
rection perpendicular to the applied magnetic
field. Accordingly, at low fieMs, the director
field is uniform throughout the sample, in that
there is no systematic magnetic torque on the sam-
ple in its equilibrium configuration and for fluc-
tuations away from equilibrium, elastic restoring
torques exceed magnetic torques, which tend to
orient the director field in a direction perpendicu-
lar to its low-field equilibrium configuration. As
the magnetic field is increased, one encounters an
abrupt change in behavior as the mag'neiic field be-
comes strong enough to prevent fluctuations from
returning to their original (low-field) equilibrium
value. In this case the original configuration now

represents an unstable situation. Bistable equilib-
rium configurations then exist, with stable direc-
tor orientations lying to either side. of the low-
field director orientation, in the plane defined by
the latter and the magnetic field.

In the experiments that we shall propose, and
the analysis that we carry out, we envision two
beams of monochromatic light simultaneously in-
cident on thin cells containing liquid-crystal ma-
terial of positive dielectric anisotropy. The beams
could have differing intensities, angles of inci-
dence, polar izations, and frequencies. Through-
out most of the present paper w'e shall concen-
trate on the lowest-order optical nonlinearities
produced by beams of equal frequency, although
the modifications resulting from nonzero frequency
differences will be discussed toward the end of the
paper. The results of the present analysis, and
related experiments, could yield improved means
of determining optical anisotropies, nonlinear op-
tical properties, and nematic director relaxation
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FIG. 1. Cell geometry
for light scattering experi-
ments.

rates. The phenomena discussed in the present
paper could conceivably lead to direct applications
in the area of optical amplification and display,
using the birefringent phase holograms envisioned
throughout the present analysis.

The general type of experimental configuration
to which we address ourselves is shown schemat-
ically in Pig. 1. In the present work, we shall be
concerned only with the first-order transmitted
beams I~~ and I~. The second-order beams in-
dicated might appear as a result of higher-order
nonlinearities, in practice, although we shall not
deal with them further in the present paper.

The phenomena which we analyze would be most
easily observable for the liquid crystal configura-
tions depicted in Figs. 2(a) and 2(b). In this case-
homeotropic alignment (director yg parallel to the
z axis in the absence of magnetic field) slightly
above the Freedericks transition —the externally
applied magnetic field tends to reorient the mole-
cules as indicated schematically in Fig. 2(b) (or
equivalently, with tilt angles 8 opposite to those
shown). At these fields, the director is quite sus-
ceptible to being further perturbed by the optical
fields (in particular, by the interference signal
between the strong and weak beams). As a re-
sult, liquid crystals at or near Freedericks tran-
sitions have large nonlinear optical susceptibili-
ties. In fact, w'e shall show that with normal in-
cidence, and strong-beam intensities as low as
2 W/cm', reasonably large weak beam optical
amplifications (-100%) may be realized for certain
angular separations between the incident beams,
while for angles of incidence of the order of 45,
the same amplifications may be observed with
much lower strong-beam intensities (-0.1 W/cm'),
for equal frequency strong and weak beams. The
analysis of the distortions induced by magnetic
fields perpendicular to the undistorted director

I'E
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M/2 d/2 z

FIG. 2. Molecular alignment (-) and director field
(+ for various cell geometries and magnetic fields.
(a) Homeotropic alignment below the Freedericks
transition. (b) Same initial alignment, above the
Freedericks transition. (c) Zero field al. ignment
parallel to x direction. (d) Same initial alignment,
with Hy & Hp p

for several fixed-z plane s within the
cell. [Equal, opposite values of 8 are equivalent to
those shown in (b) and (d).]

field, both being parallel to the cell surfaces
[Figs. 2(c) and 2(d)] is mathematically similar
to the above case. Nonetheless, optical amplifi-
cation in this case is less efficient, due to the
form taken by the nonlinear susceptibility. Final-
ly, it is shown that if there exists a nonzero fre-
quency shift between the incident strong and weak
beams, with the weak beam having (slightly) low-
er frequency, the optical amplification is in-
creased while the angular specificity, which is
present as a result of phase matching conditions
for equal frequency input beams, is no longer
present.

In Sec. II we analyze the situation in which ihe



NON LINEAR-OPT'ICAL PROCESSES IN NEMATIC LIQUID. . . 1759

liquid crystal is aligned homeotropically (n,) at
zero magnetic field, with applied magnetic field
in the y direction (H,) and with both strong and
weak beams (approximately) normally incident
with optical fields linearly polarized in the y di-
rection. In Sec. III, we perform a similar analysis
for the same configuration, except that now the
beams are incident at angle g in the y-z plane,
the optical fields making an angle Owiththey axis,
also in the y-z plane. In Sec. IV we make an anal-
ysis for initial orientation in the z direction (~„),
applied magnetic field in the y direction, normal
incidence, and linear polarization at angle 0 from
the y axis in the g-y plane. In Sec. V, the effects
of the weak and strong beams having differing po-
larizations are considered. Finally, in Sec. VI,
the effects of frequency differences between the
incident beams are derived.

II. NONLINEAR OPTICAL RESPONSE
FOR THE CASE Az, Hy, Eg, E~

In this and the following sections, we assume
that the optical waves propagate with undistorted
behavior in lowest approximation, for purposes
of finding the nonlinear refractive indices. Fol-
lowing that, the spatially dependent phase retarda-
tion of the strong beam in propagation through the
sample is calculated. This retardation is directly
associated with the diffraction of the strong beam
into the WT and D beams (Fig. l). This corre-
sponds to ones working in the first Born approxi-
mation, calculating the l.owest-order distortion
from the undistorted waveforms. The generaliza-
tion to the case of continuously distorted waves
is, in principle, straightforward and is presented
in the Appendix. For weak interactions and thin
samples, the more general treatment yields re-
sults that are equivalent to the phase-shift ap-
proach.

We shall consider working close to the Freed-
ericks transition, so that the 8 values for the di-
rector angle relative to the z axis [Fig. 2(b)) will
be small. For simplicity, we shall work in the
approximation that all three Franck elastic con-
stants are equal (denoted by K). Ben-Abraham"
has shown that this approximation leads only to
very minor error in the calculation of the prop-
erties of 4-methoxybenzylidene-4'-butylaniline
(MBBA), for example, to which reference is made
in the numerical calculations of the present paper.

Let us begin by assuming a director angle pro-
file throughout the thickness of the sample, 8(t, z}.
Here t is the projection in the g-y plane of the vec-
tor extending from the origin to the points in the
liquid crystal sample. The angle 8(t, z) is deter-
mined by K, H„(the applied field), the optical

l = ((otic)~c l,~+(-,' ae) cos28) (2)

in order to satisfy Maxwell's equations. In these
equations, e=-, (e„+E,} and he= e„—e„where zg
and z, are the dielectric coefficients that would
be observed for fields polarized parallel and per-
pendicular to the director. (We shall assume pos-
itive anisotropy in this paper, c„+&g.) For small.
angles, Eq. (2) reduces to

n "':~"' l. + 8'(t, z) [.

Accoro~ngly the strong beam optical wave fronts,
upon emergence from the sample, will be dis-
torted, in that there is a nonlinear optical phase
retardation which varies with t, equal to

5(T}=k; 8'(t, z) dz. (4)
+II d/ 2

Provided that the interference components of 5(Z)
are small («I) the strong beam, emerging with
distorted wave fronts, may easily be decomposed
into plane-wave solutions having wave vectors as
shown in Fig. 1, with sidebeams being weak com-
pared with I». If 5( t) variations are comparable
to unity, the sidebeams could then be comparable
in intensity to the central component, while high-
er-order diffraction components would be present.
In calculating 8'(7, z} we employ the elastic con-
tinuum theory, according to the treatment of
Sheng, "generalized to include the effects of the
optical fields. The equation for 8 is derived
through minimization of the free-energy density,
which, in the present case, is given through the

fields (in which interference terms between the in-
cident weak and strong fields which vary with
transverse displacement t play a prominent role}
and the boundary conditions, 8(t, z= +—,d) = 0.

In an optical field propagating in the g direction,
the electric displacement and the optical magnetic
field must be transverse to the propagation vector
in order to satisfy Maxwell's equations V D= 0
and V'8= 0. In the present example, therefore,
we consider the situation (B„,D, , k,) and, by solv-
ing the other Maxwell equations, we find R (which
satisfies the constitutive relation D=, ~ E) and k,
the magnitude of the k vector. Assuming all wave
forms of the type e""' ",E has components

E„=O,

&+ 2 he cos2
8l~ D&' —(-,'he)' /

2 b, e sin28)
g e2 (1ye)?

while 4 has the form
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expression

6'(t, z)=- '
~

——H'sin'8E d8(t, g)&' hx
2 dz j 2

——E'( t) sin'8,
8m

in which the relatively small derivatives of 8 with
respect to 7 have been ignored. The first term
represents the contribution due to the bending of
the director field, the second arises from the
orientation of the director at angle (—,

'
w —8) rela-

tive to the externally applied magnetic field, while
the third represents the orientational energy in
the slowly varying (actually time-independent, in
the present ease) components of squared optical
electric fields. The latter effectively supplements
the magnetic field such that in the present prob-
lem, the behavior of 8 is the same as if there ex-
isted an effective applied magnetic field H„~( t) of
magnitude

incoming beams. The efficiency for conversion
into the weak beam remains high, even for large
angles, in the event that the weak beam has slightly
lower frequency than the strong, however. This
important aspect of the scattering process is also
described in the Appendix. ) For wider angular
separations (20', sav) d should therefore not ex-
ceed one optical wavelength (in the liquid crystal
medium); for small angular separations (-1') d
may be as large as a few hundred wavelengths.
Assuming that the transverse wave vector com-
ponent k; is small compared with the total wave
vector k, we obtain

E'=2 ( Es '+ E~~'+ [E~zE~exp(-fk. 't )+ c.c.]j.
(10)

Finally, assuming that H is nearly equal to the
Freedericks transition field HF; that EXH'» D&E',
and that E~«E~, H,«may be expressed in the ap-
proximate form

In the above equations Ax is the anisotropy in mag-
netic susceptibility while, of course, 6& is the
similarly defined anisotropy in dielectric constant
for optical frequencies. The equation for 8(t, a) as
inferred through minimization of the free energy
has the form

b, E

9«16m~ XH,

&&& [Eg['+ [EgE exp(-fk- t )+ e.e.]j.

The solution for Eq. (7) is well known. For
small director angles, 8(t, g) has the form

8(t, «) = 8„(t) co(~sz/d) (12)

d8
$'( t),+ sin8cos8= 0,

subject to the boundary conditions 8( t, z= +—,
'

d) = 0.
The coherence length f( t) is defined as

(7)

We now represent E in the form

E=E,= —,'(fEz exp[-f(kg —~f)]

+ E~exp[ i(v'k' —k.'-z+ k-' t —~t)j
+ c.c.),

where c.c. denotes the complex conjugate, E~ and

E~ representing the strong-and weak-field ampl. i-
tudes, which may, indeed, be complex. The neg-
lect of differences between the actual weak-field
wave-vector component in the g direction, v'k' —k2
and k, is justified, provided that (k.d/k) «1. This

t
is equivalent to the condition that the angular sep-
aration between the input beams be less than
(kd) '~2. (In the Appendix, we show that there exists
an optimal angle for scattering of the strong beam in-
to the weak and diffracted beams, which is deter-
mined, in part, by the phase mismatching asso-
ciated with the difference in g components of wave
vector, for the wider angles of separation between

The maximum angle of inclination (which occurs
at g = 0) has the approximate form

2([H,fq(t) —H~]/H~j ~', H&H~
8„(C)—=

0

~ e~

~
~

(
~

~
~ ~

~

~
I I 2

t
~

F

F&
(13)

with KF, the Freedericks field, being equal to
(m/d)(K/hx)' '. Restricting our interest to situa-
tions in which H ~ HF, therefore, the phase shift
is found by integration over z in accordance with
Eq. (4), with the result

kd(he)' ( l Ez l'+ [E~zE~ exp(-ikf' t) + c.c.] j
16m~', ax HF

(14)

The first term arises from the magnetic-field-
induced change in effective index of refraction;
the term in ~E~ ~' leads to self-focusing effects,
which will be neglected in the present treatment;
and, finally, the terms modulated with wave vec- .

tor k give rise to a contribution to the weak trans-
t

mitted beam and to the diffractive component.
To obtain the sidebeam intensities from 5( t)
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we simply write the laser field, following transmission through the sample, as

E exp(ikgt —kz —6(t)])= - o E exp[f(u)f Az)] (15a)

E~exp[e((gt —kz —k t)]
&ikdaz' 'I JE~)'
16'',~X) a (15b)

~H, E~exp[i(~t-kz+k. t)]~ ~
~

&kdb ~ ) Es
16m'„hx] H~

(15c)

~aa~~2is, i'~'
( 16vyPQ}tH j (16)

ignoring reflection losses at the faces of the sam-
ple hoMer. By contrast the diffracted intensity,
obtained by squaring (15c), is simply

having incorporated the terms not modulated with
k into 6,. The first term (15a) represents the

t
simply transmitted beam, traveling in the initial
strong-beam direction, while (15b) represents a
supplement to the weak-transmitted beam and
(15c) represents the diffractive component. The
electric field amplitude for the simply transmitted
weak beam (which would have been present in the
absence of the nonlinearities) must be added to
(15b) to obtain the resultant field, which, in turn,
must be squared to obtain the intensity. The imag-
inary number i in the latter ensures that there is
no interference and that the intensities should be
added. (This is not the case when one allows for
frequency differences to exist between E~ and E~,
as will be discussed below. ) Accordingly,

E~ AND E+ POLARIZED ATANGLE O

THE y AXIS IN THE y-s PLANE

The configuration may be achieved through
homeotropic alignment in the g direction with op-
tical fieMs propagating at some angle 0 with re-
spect to the z axis, with linear polarization in the
y-g plane as shown in Fig. 3. In order to achieve
angle9, the incident beams must propagate at an-
gle g through the sample, to be determined. The
differences between the nonlinear optical phenom-
ena in this case and those described above arise
from two effects: (i) the differences in behavior
of the liquid crystal in tilted fields and (ii} the
differences in propagation of the strong beam hav-
ing a different direction of polarization relative to
the (perturbed) liquid crystal director. In con-
trast to the results of Sec. II, it will now be seen
that 8 is linearly dependent on the interference
component of the optical intensity while the index
variations will similarly depend linearly on 8. To
find 8(z) we note that Eq. (5) is now replaced by

Ei d8(z, t)
i

b.y
2 Ck )

I~= (I~r Iw)- (17) ——E' sin'(8+ e) .
8m

(18}

where in Eqs. (16) and (1V) I~ is the weak trans-
mitted intensity in the absence of the strong field,
as is consistant with the general behavior of 4-
photon scattering processes, ~ ' as explained in
the Appendix.

Considering, as an example, a 100-p,m-thick
sample of MBBA, the diffracted intensity is ob-
tainable in the form 0.25I~'I~, with I8 measured
in W/cm', thus for strong beams having intensities
in the neighborhood of 2 W/cm', one expects a
doubling in weak transmitted intensity. One may
operate somewhat above, as opposed to just above,
the Freedericks transition, as can be seen by the
absence of any factor which depends sensitively on
(H-Hz) in Eqs. (16) and (1'I). This arises from
the fact that it is 8' and noi 8 itself that is respon-
sible for the diffractive process, and 8' varies
directly as (H,«-Hz), so long as H„, does not
greatly exceed Hz (H,«&1~ 5H~, say).

This is equivalent to the expression

i
——H'(1+ v '+ 2o cos2e)' 2«~8(z, t)&' aX j./2

x sin'(8+ ~)+ (const}E',

FIG. 3. Optical configuration for obtaining angle g
between the incident light beam and undistorted director,
corresponding to angle 8 between the poIariratlon di-
rection and the y axis.
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where

(20)

The above is now an elliptic integral, in view of
the fact that sinP„&1, having the solution~4

and

sin2o, = g sin28/(1+ a cos28) . (21)

mH——= Z(sinP„) —E(p(cl, ), sinP ),

with

(26)

The free energy of orientation in the combined
fields is maximized at angle -0..

At this point, two effects must be considered.
The less dominant is simply contained in the mod-
ulation factor for free energy, (1+2o cos20+o')'~'.
This factor, by itself, leads to orientational dis-
turbances that are equivalent, in lowest order, to
those obtained for the normally incident light, ex-
cept that the (approximate) factor cos28 now multi-
plies each occurrence of ~Ez~!',E~E~, etc. , in Eq.
(11) for H,«. Nevertheless, the more interesting
effect, which is of primary importance, is pro-
vided by the maximization of the orientational free-
energy component at angle -~. In analyzing its
effects we shall, for the moment, replace the
modulating factor (1+2o cos28+ o')' ' by unity.
Then the differential equation (7) may be replaced
by an equivalent one in the angle 8+ &, subject to
the boundary conditions 8= 0 at z= +2 d. If we de-
fine P = 8+ o. , then the differential equation in P has
a form. identical with Eq. (7) and the boundary con-
ditions become p= ~ at z= +-,' d. The solution to
this equation is, then,

p(c.) = sin '(sino. /sinP„), (27)

with

sin
0

provided that we interpret the term ((-1)!!/0!!)
as unity. The physically interesting cases will,
of course, occur for H nearly equal to H~, in
which case c. «P„«1. Accordingly, we retain
terms only to first powers in ~ and second in p„
with the result that Eq. (26) may be reduced to
the form

K and I' being complete and incomplete elliptic
integrals of the first kind. They may be expanded
in the form

(22)
4(H/H~ - 1) =P'„—8o./vP (28)

where, of course, n, P, and P are functions of
the transverse components of position t through
the interference effects of the optical fields on ~.
One should view Eq. (22) as applicable in the do-
main ——,

' d&g &0, with the understanding that the
solutions are symmetric about z = 0. In all cases
~ will be viewed as being small, inasmuch as a
«1 [Eqs. (20) and (21)]. If at the same time we
restrict our attention to reasonably small P-val-
ues, Eq. (22) may be solved, approximately,
through expansion of sinP' and sinP . To find P„,
we take the case z = 0, P = P„ in which case

v H .
~j

~~ sinP——sinP = I' dP 1—
2Hz 3 sinP

hoMs. This integral may be rendered into the
form of an elliptic integral through the transfor-
mation

sing = sinP/sinP

in which case Eq. (23) reduces to

having approximated P(o, ), from Eq. (27), simply
as (c./sinP„). In the case o, = 0, P„has real solu-'
tions, approximately equal to +2[(H-Hz)/H ]'~',
reproducing the result of Sec. II. This remains
essentially the case for fields substantially greater
than H~ in that the solution to the above equation
yields t! approximately equal to 2[(H -H~)/Hz]'~'
+(~/v) [(H —Hz)/Hz] ' for the condition (H H~)/-
H~»(n/v)'. For smaller fields (including H&H~),
of course, .the ~-dependent term becomes relative-
ly more important. At H=Hz, for example, P„ is
equal to (8c./m)'~', which is typically very much
larger than ~, yet not as large as it would be at
the larger fields. Notice, at this point, that there
is no negative root for p at H ~ Hz, in fact, the
negativ'e root is possible only so long as (H-Hz)/
H~ ~ 3(o /2v)'~'. (With this in mind, the root which
appears to be dominant, physically, is the positive
one and we shall therefore focus our attention upon
that root. ) For H&Hz such that (Hz-H)/Hz
» —,'(o, /v)'~', P is approximately equal to (2u/
v) [(Hz-H)/H~]' provided, still, that (Hz-H)/
H~«1. To summarize, therefore, the positive
root has the following approximate form:
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+-&(H-H, 'i'/' o. /H-H, 'i-'

& Hz
H-HF

H
(29a)

/9~) 2/3

& I, n&
H -HF =0,

F
(29b)

2a (Hp -H2~)'
m i, H~

H, -H
H~ 2 ig)

(29c)

+ sin28— (30a)

In order to assess the relative importance of
various influences on 8, we recall that 8„=P„
—~, and that me are ultimately interested in de-
pendencies of each of the above terms on squared
optical fields as they enter through the parameter
0; At this point, we may restore the modulation
factor (1+2o cos28+v')'/'. To lowest order in o,
H should be replaced by H,« =H(l+ o cos28) while

~ = csin20. Accordingly, if we examine Eg. (29a),
we find

d8 'I H /H H,
)~cos2g

I

Eq. (2) must now be replaced by 8+ )I), and the op-
tical-field-induced .components of ~,«which we
shall denote as ~, , become

[& (~ 222&)2]&/ ts), ts d8
(&+—' d e cos2$)'/' 2

sin2~

dec�

'
+2

We must, therefore, find 8(z} in terms of 8„, and

ultimately integrate over the cell thickness. Re-
turning to Eq. (22), assuming that H/H~-=1, and

confining our interest to lowest order terms, me

see that

&&Pm dP, 1 P
l~

) . P i.
whose solution is, then

H-Hp
&&)

'

It is clear that the second term, which arises
from the ~ dependence of 8, is dominant especial. -
ly near the Freedericks transition. It is clear
from (29c), moreover, that just below the Freed-
ericks transition, the dependence of 8 on inter-
ference terms in the optical fields is of the same
order of magnitude as it is just above the transi-
tion —in fact, it is virtually twice as large,

20—
do' g7/ Hp )

(30b)
H —Hp 1

HF 2

Obviously, expressions (29a) and (29c) are not
valid at the transition itself in which case one
would examine the properties of (29b), whose de-
rivatives diverge as ~ -0—that is, as the optical
fields themselves diminish. Further analysis of
this feature would most likely reveal the simul-
taneous presence of many orders or nonlinear op-
tical processes; however, one presumably mould

work somemhat away from the transition itself
in order to achieve optical stability.

The other aspect of the problem that nom has
importance, since the optical fields are polarized
at angle 0 with respect to the y axis, is the manner
in which first order changes in 8 can affect the
phase shifts. In fact, for arbitrary g values, 8 in

—„=-sm'(P/P„) —l ~.

With P» c. we find, once again [cf. Eq. (12)]

(32)8(g) —= 8„cos(mz/d) .
The phase shift, 5(7) is now obtainable through
the expression

d~
~(K)=u, n, , —

~/2
' ' COS(

(33)

mhere k, is the vacuum wave vector and the factor
1/cos)I) represents the lengthening of the path due
to nonnormal incidence. Using Eqs. (20), (30b),
(31), and (32), we obtain

k,d(b, e)' [e' (-,
' a&)'-]'/'

4m'hx (e+ —,
' hc cos2$}'/'

2 Hp-H)) '
x — "

~

—1
m H~

tstn2t) stnse)Z'( t )
X

cos)j) IP~

with 8 and g related by the expression

—,he sin2$0= +tan'
(s+ —' n snns 2')) ' (35)

according to (1). By comparison with Eg. (14), we
see that the effect of tilting the optical fields is
one of further enhancing the magnitude of the dif-
fracted intensity by the factor
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{
3 ( g~ )-3/2

)E'+ cos2$ (

2 ii~ —ii'I, ' sin2( sinaOI'
i r III,. ) costfJ

over the normal-incidence case. For MBBA, with
II= O.BII~. and g= —,

'
m, this factor is 28.7, so that

one should observe 100%%uo weak-beam amplification
at strong-beam intensities of order O. l W/cm'.
In addition, the fact that one may operate below
the Freedericks transition may lead to much great-
er optical stabilities than would be found for the
case H~ H~

IV. n~, Hy, Es, AND Ev POLARIZED PARALLEL TO ONE

ANOTHER, AT ANGLE 8 FROM THEy AXIS
IN THE ~-y PLANE

This alignment is achieved through treating the
glass surfaces in various ways so as to cause an
alignment at the cell walls in the g direction that
is parallel to the walls. With the new definition
for 8 (i.e. , in the ~-y plane, as opposed to the y-z
plane) and with the elastic free energy term being
—,'K(d8/dz)', with If now representing the Franck
elastic constant for bending and 8 being defined
as the director angle in the g-y plane relative to
the ~ direction, the equation governing the director
and the boundary conditions are identical to those
of Sec. II for Q= 0 and Sec. III for 840. The dif-
ferences arise solely from the manner in which
the light scattering takes place. To illustrate
this, let us analyze the case 840, and compare
results with those for Sec. III. In that section, we
found diffracted amplitudes of order E~ & which, in
turn, are of order

k,dn, , Ez-de sin2((d8 /da)okQdEz,

according to Eg. (31).
In contrast, for the present case, if we approx-

imate 8(z, t ) by 8„(t) for the moment, the effects
of the birefringence grating are obtained by ana-
lyzing the optical electric field following trans-
mission through the medium in the following man-
ner. First, we decompose E~ into components
parallel and perpendicular to the director,

Ez E~n„= Ez(cos[O+-—8 ( t)]n, + sin[0+ 8„(t)]n„].

Folloming passage through the sample, this field
then becomes

-Ez(cos [CA 8~( E) ]n~ exp(- ikQn~d)

+ cos [8+ 8 ( t ) ]nQ exp( ikQni~d)}— '

This may be rewritten, assuming 8 «8 and rep-
resenting the modulational components of 8„(t) by

(d8 /do)o(t), in the form

Eq[COSOn exp( —ikQn~d)+ sinOnii exp( ikQniid}]

+ (d8„/do)o(t)E~ [n„cose exp(- ikQniid)

—n»neexp(-ik, n d)].

The first component is obviously the transmitted
strong beam, which has now been elliptically po-
larized according to the relative phase k,(n„—n )d.
The second term represents the modulational com-
ponent, proportional to o(t), which contains both
the nonlinear optical contribution to E~~ as well
as E~. It is important to note that the sidebeams
have polarization orthogonal to that of the trans-
mitted strong beam —a fact, that could ultimately
be important in optical processing. Nonetheless,
for present purposes, the amplification factor is
relatively small, having amplitude

Eo-(d8 /do)oE~,

as compared with expression (36). The principal-
numerical difference lies in the absence of the fac-
tor k,d from the above expression which, for 100-
p, m thicknesses, . is of the order j.0'. Accordingly
we shall got pursue this line of investigation furth-
er but shall, instead, return to the configuration
associated with Secs. II and III.

V. SAME GEOMETRY AS SEC. III, EXCEPT THAT
VARIOUS POLARIZATIONS OF Es AND Ev ARE

CONSIDERED

In Sec. III, we treated the case pg„H„, E iny-g
plane, at angle ewith respect to y axis, and we
have found that so far, this configuration pro-
duces optimal light scattering for 8 in the neigh-
borhood of 4m. In order to achieve this configura-
tion the propagation vector is oriented at angle g
from the g direction. We shall now consider the
same direction of propagation, with the possibility
that the E fields could have various polarizations.
A qualitative description will suffice to charac-
terize the phenomena. The point of difference is
that now the electric field components in the ~ di-
rection mill couple to no other field components,
nor will they influence the director angles, simply
because they are oriented perpendicular to the y-z
plane in which the director is constrained by the
dominant forces in the Pg, H, configuration. Hence,
these components mill propagate undisturbed
through the sample, taking on the usual phase
factor, exp(-ik, n,d) Accordin. gly, only the com-
ponents of E~ and E~ in the plane of incidence in-
teract and scatter nonlinearly; the diffracted field
will be completely polarized in the plane of inci-
dence, as would the amplification component of the
weak beam. Consequently, the weak beam, as
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amplified, and the diffracted beam would have po-
larizations which simply differ from the trans-
mitted strong beam, with the result that one could
conceivably perform downstream selection of the
radiational components through an appropriate
combination of analyzers.

VI. FREQUENCY DIFFERENCES IN Ez AND Es

E'=2( Ee '+ E~ '+(E~~E~exp[ t-(k 'E-Qt)]

+ c.c.]}. (37)

The frequency differences envisioned are small-
of the order of the inverse relaxation time r"' for
the optically induced excitations. The equation
governing the excitations would then be of the form

Let us now modify the incident beams so that
there exists a frequency difference

(es.s.( t t) —e„(t, t)), (38)

between the weak and strong beams. The squared
optical field replacing that given by Eg. (10) is then

assuming a single relaxation time, with 8"(t, t)
being the steady state value of 8, having been
obtained in previous sections of the present paper,
with E~sE~ now multiplied by e'"'

de„&e
(

IE I'+E*E exp[-t(k; t Qt)]—+ c.c.'I
do 8max & H'I, )I

The solution of Eg. (38} is then

cN b, c IE I' 1 EsE exP[-j(kl t —Qt)]

(39)

(40)

The corresponding expression for the dielectric
tensor is given by Eq. (A17) of the Appendix. Ac-
cordingly, the spatially modulated terms in the
phase retardation, 5 [Kqs. (14) and (34)], now ac-

quire the phase factor e'"'/(1+ tQt), or its com-
plex conjugate, with the result that to lowest order
in the phase modulation, the emergent optical
field is given by

.d5E espx(t[~ t —eke —5(t, t)]j =e "o E~e px[i(+ ts-k )e] i-
I

s do 8mhxII2~

]'IE, I'E exp[t(~ t-k x}] E'E*exPffK~S-Q)t-k x)) I'

)1+ iQt 1 - iQt

in analogy to Eq. (15}of Sec. II or its counterpart
in other sections. Accordingly, while the dif-
fracted amplitudes are effectively decreased, the
lowest-order contribution to the transmitted weak
amplitude has a component which is in phase with
the simply transmitted weak component (that which
is present in the absence of nonlinearities}.
Accordingly, a form of optical heterodyning oc-
curs, which leads to a true optical gain charac-
terizing two-photon interactions" as explained in
the Appendix. The optical amplification factor for
traversal of the cell by the weak beam is

Is( ,' d) 2Qt —d5&e IE~ I

Ig- ' d) 1+(Qt)' dv 8vayHsz )

for wide-angle separations between the incident
beams. The amplification maximizes for frequency
difference Q= -r ' (Stokes-shifted weak beam) in
agreement with that for nonlinear orientational
scattering in liquids. This frequency difference
wouM be quite small, particularly near the Freed-

ericks transition. The small frequency differences
simply act to provide a spatial phase difference
between 8„(t, t) and the fields which give rise to it.
Such frequency differences typically would lie well
within the laser linewidth itself, but could none-
theless be provided by a slight Doppler shifting of
one of the incident beams.

The measurement of optical amplification as a
function of Q could be useful to the determination
of nematic relaxation tiines for well-specified ex-
citations near Freedericks transitions. As an ex-
ample of the effectiveness of the optical heterodyn-
ing implicit in Eq. (43), if one worked with strong
beam intensities such that for zero frequency dif-
ference one obtained a 1/o weak-beam enhance-
ment, for Qr = -1 one would now obtain a 10% in-
crease. Even more important, however, may be
the fact that for Q= 0 one must work at 8 =—8, „as
explained in the Appendix, while the amplification
takes place for a wide range of angles and the dif-
fracted component tends to disappear for Q 0.
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VII. CONCLUSION

Several polarization cases have been examined
for nonlinear optical amplification and diffraction
of light beams transmitted through thin nematic
liquid-crystal samples. It is found that substantial
coupling between weak and strong light beams hav-
ing the same frequency should occur for relatively
low-level CW reference beam intensities (-O.l W/
cm' for cell thickness -100 p, m) for homeotropical-
ly aligned samples maintained near (slightly above
or below) the Freedericks transition, with exter-
nally applied magnetic field lying parallel to the
cell walls in the plane of incidence. The incident
optical beam should also have electric fields po-
larized in the plane of incidence, the angle of in-
cidence being approximately 45 . If, moreover,
a frequency difference exists between the beams
there will exist an optical heterodyning effect that
serves to enhance the lower-frequency beam at the
expense of the higher. This effect maximizes for
angular frequency separations equal to the inverse
relaxation time for the nematic director-field ex-
citations generated by optical interference signals,
and would take place for a wide range of angular
separations between the incident beams.
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APPENDIX: APPROXIMATE SELF-CONSISTENT
SOLUTIONS FOR MAXWELL'S EQUATIONS IN NON-

LINEAR MREFRINGENT MEDIA

We wish to prove our contention that the phase
integral of Sec. III, Eq. (33), is the important
quantity for producing weak beam amplification
(as well as the diffraction. component) for equal-
frequency incident beams, and to gain a deeper in-
sight into the scattering dynamics in general. In
addition, we shall analyze the effects of frequency
separations between the incident beams. We begin
by examining Marvell's equations under the as-
sumption that the incident beams propagate in a
direction forming (nonzero) angle P with the un-
perturbed director as illustrated in Fig. 3, and
described in Sec. III. Moreover, we shall confine
our interest to the case II&II„, . although other
cases may be handled similarly. In any event, we
assume B=.H (p=1), while

D= &'E

with &, a second-rank Cartesian tensor, assumed
to have the form

z=z + —', z(z)(~pz(' Xzp (z)exp ( (X —f ) dxl c c. '+ pzp (z)exp( —( (X~ —fz)'dx(ecc. . ()(()

Here z2 is linearly proportional [cf. discussion
preceding Eq. (31)] to the director tilt angle 8(z),
which would have resulted were the illumination
intensity constant in g, hence the perturbational
components of the dielectric tensor are assumed
proportional to their value in uniform intensity
optical fields times the actual. intensity as a func-
tion of (7, z). This assumption is jus. ified by noting
that 8 [and therefore 8(z)] depends linearly on o,

[Eq. (29c)] for z-independent intensity; that o is
only very weakly dependent on z by virtue of the
small magnitudes of E~(z) and ED(z) as compared
with Es; and that in the differential equations re-
sulting from the minimization of F [Eq. (19)], the
assumption that 8 is now multiplied by the ratio
~(z)/o, (z = 0) yields a differential equation sensibly
equivalent to the form which is found for constant
intensity. [This amounts to neglecting relative
changes with z in n(z) compared with those in

8(z).] As usual, we have neglected terms in ~E~~'
and ~ED~', although we are obviously including
the major effects of both the diffracted component
and the weak beam on &. The propagation vectors
for the three beams are assumed to be spatially
varying, the phase of the weak beam, for example,
being —J k~ 'dx where the line integral in each case,
is taken on a path from the entrance window of the
cell to the fieM point along the direction of k~ (ete.
for k~, kz).

Inasmuch as the term —,'c,(z) ~Ez ~' cs common in
the propagation of all three fields, we shall hence-
forth incorporate it into &0. (Since e, varies with
g, E, must now be regarded as having a slight spa-
tial variation as well. The propagation vector k~
wil. l be used to define the z direction, k~ and k~
lying on opposite sides of k~, forming small an-
gles with kz. ) The three optical fields now satisfy
the following equations,

-~ xv xEz exp i~ k-zdz —(dt =, , zo Ezexp t~ ~
kdz —-~t

~&gt2 o S ( )
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VxvxE~exp -il k~ dx —~t[ = »(c, +-,'z Ez ') E~exp i -k~ dX —~t I

Q2+, , (~ z,E'z ED) exp i-(2k~ —k~) dx —(df28)2 2 $ D

-vxvxEaexp -i k~'dx-~&l =
2 2(&o+kz2IEzl')Ez "p i-

)

,(—', z,E2~E~) exp -i ) (2k~ -k~)'dx —(dt I (A4)

Here we have ignored possible small effects on

z, associated with slight polarization direction
differences in E~, Ew, and ED associated with
their different directions of propagation. (These
differences disappear in case the polarization di-
rection is chosen as perpendicular to the plane
containing kz, k~, and kD at any rate. ) Inasmuch
as D must be perpendicular to the propagation
vector for each of its component fields (since V'D
= 0), the E fields in each of the three equations
above has a direction which, then, renders the
right-hand sides of the three equations perpendic-
ular to the respective propagation directions.
[Since z and the various field strengths change
throughout the sample the optical electric fields
(and secondarily the propagation vectors} change
direction slightly as they propagate through the
sample. Such changes will be regarded as very
small in their effects, and will be ignored in this
treatment. ] Accordingly, we keep only the per-

pendicular components of all terms in Eqs. (A2)-
(A4). Multiplying Eq. (A3) by the factor E~/E,„„
we note that the left side of the equation would then
be

A

(-V x V xE~)= ' V'E~ =-(V'E~)~,
gg w~

while the various perpendicular components of the
right-hand side of Eq. (A3) become

(~o'Ewh= &oEw
w~

Ew
2' W}i.

= ~2 )) e

w~

Ew (&a'Ea4= &2Es
w~

etc. Accordingly, with explicit evaluation of the
time derivatives, Eqs. (A2)-(A4) now become

)2 (v' ipeexp -i e de( = ——,
( e,p exp(-i e de),

I )2v' E~exp -i k~ dx
I

= — —
I (z,+-,'z, IE~I')Eexp -i k~ dx

I

(A5)

2

I z,E'zE~~ exp i(2k-~ —kD)' dxc) (A6)

together with a third equation having (E~, k~),
interchanged with (E~, kD). We now define

kz(z) = ((d/c) e,(z)'('

I

[given by Eq. (31), provided that c( contained only

Ez I' terms]. Assuming no depletion of the. strong
beam, VER=0, Eq. (A6} and its counterpart re-
duce to the coupled linear equations

2 fe
V., E =-ip(e) ', Eeexp -i fl ee(e)de))E )2 D

-4/ 2

ngz) = u,(z) -=a,(z)+g(z)
with

g(z) = (e,(z) IEs I'/4e, )kz

The quantity z, IEzI'/4e, i.s the fieM-induced in-
dex that would be produced by E~ acting alone

, and

with

E42 g

ED =—ig(z) z ,E~exp i —&(z)dz&l,
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E (z==,'d)=E"', E,(z= =,'d)=0.

Quite obviously, for rapid growth in ED and E~ to
take place f '„&,Xdz should be slowly varying in
z whenever g(z) is itself sizeable. Were g not
spatially varying (through the spatial variation of
e', in the present problem), one could choose 8 in
a manner such that K would be zero. There mould
then be perfect phase matching, and the conver-
sion of energy from E~ to E~ and ED would be
maximized at 8= 8„,= a(2gkz ')')' as is well
knomn" " in four-photon interactions in Kerr
liquids. In the present problem, we choose 8 so
as to minimize X throughout most of the region
of largest g,

8 = ~ [2g (z = 0)k-']'~'

Before proceeding, let us remark that if we ex-
amine intensities I~ and ID, which are propor-
tional to

I Eel
' and

I
E~

I

'~ E(ls (A7) and (AS)
rather directly reveal that

so that the intensities are equal, within a con-
stant, and

f jz) = fjz = -,' d)+ I,(z), - (A9)

as is characteristic of all four-photon nonlinear
optical processes"" in which, ultimately, two
laser photons become converted by the effectively
passive medium to a pair of photons, one belong-
ing to each of the g and D beams. As a result of
E(i. (A9) it is sufficient, for present purposes,
simply to obtain E~(z= —,

'
d), for example, which

one may approach through an iterative solution of
Eqs. (AV) and (A8). Our present interest concerns
situations in which fgdz is in the neighborhood
of unity, with g reaching its maximum value at
z = 0. Choosing 8 as outlined above, the phase
factors in E(ls. (A'I) and (A8) reduce, approximate-
ly, to the form exp(+z f'~&,X(z) dz) and the solu-
tion for E(ls. (A7) and (A8), consistent with the
initial conditions, may then be approximated by

X(z) = 2kz —k~- k~,

being directed parallel to kz (z direction), having
magnitude

X(z) = kz8' —2g(z),

with 8 (= k, /kz) being the angle separating k~ and

kz (not to be compared with director angles as de-
fined in the main body of the text).

E(luations (A7) and (A8) must now be solved, sub-
ject to the boundary conditions

Zgz) E=~~' tosh f g(*)d,
-4/ 2

42 0

E~(z) =E~(o', exp i-J x(z) dz ID S' [E )2

(A 10)

x sinh g z ds.
ff/2

(All)

(Als)
d/2

g(z) dz «1, 8 «(kzd) ' '.
g/2

The integral f ~~~&,g(z) dz appearing in this equa-
tion is, in fact, the phase shift to which was at-
tributed the scattering described in the main body
of the text.

The high degree of angular specificity implicit
in the present results [E(l. (A12)] might be re-
garded as an undesirable feature in many applica-
tions. This specificity is reduced, in large mea-
sure, if a frequency difference is imposed upon
the incident weak and strong beams, as may be
inferred from the work of Chaio et p)." In apply-
ing their calculation, we assume that the relaxa-
tion of the nonlinear part of the dielectric tensor

is characterized by a single relaxation time 7..
(This time could be very long compared with re-
laxation times in more usual nonlinear optical
processes. ) Accordingly

9~6(z, f) 1
=-, f&; '(z) —c.(z, t)] (A 14)

represents an appropriate equation for describing
the relaxation, with the superscript s.s. indicating
the steady-state value. For a frequency difference
between the weak and strong beams

=&w +sy

and with the diffracted beam shifted through'fre-
quency -Q from the strong beam, f then becomes

The intensities, following traversal of the cell,
are then

t'dl &d'I d)
D(2) w(2) w

d&=f~ — —
I s lllh g (z) dz ~2)

(A12)
8 =—(2g(z = 0)k ')'i'

If one frere to choose very thin cells, for mhich

fg(z) dz «1, and angles restricted to 8 «(k,d) '~'
[and hence fX(z) dz «1] one would obtain a re-
sponse which does not vary significantly with 8 for
small angles



19 NONLINEAR-OPTICAL PROCESSES IN NEMATIC LIQUID. . . 1769

E~E~exp[-t( f(k~ —k~)' dx —Qt)]
&(&, t}=&,+-' e;"(~) ~E~ ~'+ . +c.c.)

~

~
~

~ ~

. E~zE~ exp [ i(-f(k~ —k~) ' d x+ Qt) ]
+ ( . +CC. (A16)

With this expression, the methods of Ref. 14 lead
directly to a two-photon scattering optical gain
function for weak beam intensity

f,(~, Q)=r, --
~

d't

2)
2Qt

xexp — &, ) gz dz1+ Qt j (A17)

2nt
G(z, )))=-()

( ),jglz). (A16)

The optical gain leads directly to exponential
growth in the weak beam (and the corresponding
suppression of the diffracted beam) for negative
Q (Stokes-shifted weak beam},

[which is equivalent to Eq. (42) of Sec. VI] for
angles in excess of [2g(a=0}k,']'j'. This result
is remarkable in that there exists no sensitive
dependence either on 0 or d, provided that the
above condition on 8 is met, which should provide
for some ease of observation of the rveak beam
amplif ication.
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