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The paper reexamines the relationship between Auctuations and nonlinear irreversible processes. The
deterministic equations for nonlinear irreversible processes are shown to be derivable from a minimum

principle, which permits the introduction of a set of variables g canonically conjugate to the macroscopic
variables a. In terms of the action integral of the minimum principle and the conjugate variables q, we are
able to construct a covariant expression for the conditional probabili. ty of'the fluctuations for a small interval
of time, The short-time conditional probability is used to construct the. conditional probability for finite times
as a path integral. This path integral is a generalization of a corresponding expression of Onsager and
Machlup for the linear regime. An explanation for a difference with Graham s recent calculation is given.
The conditional probability is shown to satisfy a Fokker-Planck equation, which has the form derived from
statistical mechanics by one of us.

I. INTRODUCTION

The insight that there is intimate connection be-
tween fluctuations and the statistical-mechanical
theory of irreversible processes began with Ein-
stein, ' developed through the work of a number of
authors' and reached a certain conclusion in an
earlier work of one of ns (M.S.G.).' In this latter
work it was proposed that irreversible processes
can be represented by Markov processes governed
by a Fokker-Planck equation whose coefficients
are determined through certain statistical mech-
anical averages. Perhaps the most seminal ex-
pression of the relation of irreversible processes
and fluctuations is the representation of the tran-
sition probability between two macroscopic states
as a functional integral expression. 4 This so-call-
ed Onsager-Machlup functional gives a natural gen-
eralization to the time-dependent domain of Boltz-
mann's fundamental relationship between the en-
tropy and the probability.

The work of Onsager arid Machlup was limited to
the linear regime in which the transport coeffi-
cients are independent of the macroscopic vari-
ables and in which the thermodynamic forces are
linear in the deviations of the macroscopic vari-
ables from their equilibrium values. One of the
challenges that this work presents is to extend the
path integral concept to nonlinear irreversible pro-
cesses.

This challenge has been addressed in the work of
Graham' who has expressed the transition probabil-
ity in functional form for a Fokker-Planck process
with diffusion matrix and drift vectors that are ar-
bitrary functions of the macroscopic variables.
While Graham gives a rather complete answer to
the question of the form of the nonlinear Onsager-

Machlup functional, his basic Fokker-Planck pro-
cess has a purely mathematical origin. The pres-
ent work is motivated by the desire to put the non-
linear Onsager-Machlup functional in a physical
rather than a mathematical context. This physical
context is interesting in itself but it also has the
advantage of putting the very complicated calcula-
tions in a framework that helps in their understand-
ing. In our work the fluctuations are supposed to
come from the underlying molecular nature of the
system, which is primarily manifest in the form
of the deterministic equations of motion as a lin-
ear relationship between fluxes and forces. Fol-
lowing Onsager and Machlup we start from these
deterministic equations and make a hypothesis
about the conditional probability for a small time
interval. This hypothesis is a natural extension to
nonlinear processes of an analogous assumption in
their work. ,

The assumption leads to a functional representa-
tion for the conditional probability, as well as to
a Fokker-Planck equation which agrees with the
statistical mechanical Fokker-Planck equation. '
The connection with the work' of Graham, who ob-
tained a slightly different functional, will be dis-
cussed below.

The outline of the paper is the following:
In Sec. 0, we discuss deterministic equations

for the irreversible process that are nonlinear
gener alizations of Onsager's form. ""' The fluxes
are linear in the forces, but the proportionality
coefficients, i.e., the transport coefficients, are
not necessarily independent of the state, and the
forces can be nonlinear functions of the variables.
We demonstrate that these equations can be de-
rived from a minimum principle. Because they
are of first order in time this minimum principle
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differs from Hamilton's principle in classical
mechanics. Whereas in Hamilton's principle only
paths between determined initial and final states
are considered, here the minimum is sought for
among all paths starting out from a fixed initial
state.

The method for determining the minimum path
naturally divides into two steps. First the mini-
mum path between fixed end points is determined
by solving the Euler-Lagrange equations, and then
the final state is varied. This introduces a new

quantity g, which is in a sense a canonical conju-
gate to the macroscopic variables g. g must be
set equal to zero to pick out the actual path among
all solutions of the Euler-Lagrange equations.

In Sec. III, we turn to the problem of allowing
for fluctuations around the deterministic path. It
is natural to assume following Onsager and Mach-
lup that the minimum value of the path integral of
action as a function of fixed end points is connect-
ed with the logarithm of the transition probability
p(a'/a) A' from a state a to a state a' in the volume
element +'. In the nonlinear case the correct de-
termination of the volume element in state space
is essential. As pointed out by Graham, it is
necessary that the probabilities transform correct-
ly under arbitrary nonlinear transformations of
the state variables. The action itself is invariant
under such transformations. Using the invariance
of the volume element of the conjugate pair a, g we
are able to construct from the action a conditional
probability with the correct transformation prop-
erties.

In Sec. IV we explicitly evaluate the expression
for the conditional probability for a short time in-
terval v. Some of our manipulations are parallel
to calculations carried out in a quantum-mechani-
cal context. ' We use this result in Sec. V to repre-
sent the conditional probability for finite times as
a path integral. Since this integral is explicitly de-
fined as the limit of a sequence of discrete ap-
proximations, no so-called discretization ambi-
guities arise. Further, we show that the condi-
tional probability obeys a Fokker-Planck equation.

It is a consequence of the nonlinearity that there
are two natural generalizations of the Onsager-
Machlup functional, the functional whose minimum
gives the deterministic path and the functional
whose functional integral gives the conditional
probability. Either one of these functionals, how-
ever, determines the other one completely. The
fact that the functional in the path integral is de-
termined by the deterministic equations can be
viewed as the ultimate content of Qnsager's hy-
pothesis that the transport (deterministic) equa-
tions determine the process of spontaneous fluc-
tuations.

BS
Xi -8) -=

Ba' (2 1)

drive the system towards equilibrium. The forces
X cause fluxes a. The transport equations

a' =I."X (2.2)

determine the fluxes in terms of the forces. Here
and in the following we understand that a summa-
tion is to be carried out for repeated indices. Our
system will be nonlinear in the sense that the
transport coefficients I.'~ may be functions of the
state a, and the forces X are not necessarily lin-
ear inc. For a system described by even vari-
ables the matrix I, '& is symmetric

(2.3)
The second law requires that L, ~ is positive defi-
nite. Given an initial nonequilibrium state the
transport equations determine the future states
with certainty, thus ignoring the fluctuations that
take place in a realistic system. We shall refer
to (2.2) also as deterministic equations. They de-
scribe the global behavior of macroscopic sys-
tems. In many cases, fluctuations are only a
small correction to this global behavior.

B. Transformation properties

Instead of describing the system by the state
variables g we might just as well have chosen a
different set of state variables a*, which are quite
arbitrary functions of the g. Then, the fluxes as-
sociated with the new variables read

(2.4)Ba'

We introduce an affine geometry in state space
and look upon a' as a contravariant vector. Since
the entropy is a function of the state only and does
not depend on the chosen representation of the
state we have

s*(a*)=s(a),

which means that the entropy is a scalar. Using
(2.1) we see that the thermodynamic forces X
transform like a covariant vector

Ba'
X& B &OX' (2.6)

and from (2.2) we see with (2.4), (2.6) and
(Ba'/Ba~*)(sa~*/Ba~) = 5~~that the matrixof transport

H. DETERMINISTIC MOTION
A. Transport equations

Consider a system described by a set a
=(a', ..., a', ..., a") of macroscopic variables. The
variables are assumed to be even in time. ' Let
S(a) be the entropy of the system. The entropy is
maximal for the equilibrium state. In a nonequi-
librium state, the thermodynamic forces
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coefficients is

Li jg
Ba'

a contravariant tensor, i.e.,
I

Ba
Bal (2.7)

These transformation properties through which
the covariance of the transport equations is mani-
fest will be of some help below.

BO g ya2L iiiiilk f lily &
(2.18)

where we have used (2.8) and

L~I,) g L = —L~q Lk1 kl (2.19)

and the Euler-Lagrange equations (2.18) can be
tr ansformed to

L.gL~ =L ~L =5] ~ig gi (2 8)

C. Variational principle

The deterministic equations of motion can be
derived from a variational principle. Let us denote
by L,&

the inverse of the transport matrix defined

by

a' =f'+L "n, = L*'(X&+~i»

2.L
~
z'gy7)p-

e & gk ~f

These equations are of the canonical form

BII . BH
a =

p

B'g; Ba

(2.20)

(2.21)

(2.22)

The L,~
form a covariant tensor. We now define a

Lagrangian 0 by

O(a, a) =L-',„(a' f')(a' ——fi),
where

f* =L"x

(2 9)

(2.10)

d BO B0
dt Ba' Ba'

as well as the condition

(2.18)

is the deterministic drift. We also define an action
functional A by

t2
A(a(t), t, ~t ~t,) = dto(a(t), a(t)). (2.11)

Given the state a of the system at time t, we may
ask for the path a(t), t, &f &f, with a(t, ) =a that mini-
mizes the functional'. . The first variation of A is
given by

BO d BO,, BO
dt

8 i-dtsni 5a'+8 ~ ' ~i(t) (212)
Ba dt Ba

2

The second term on the right-hand side appears
because we allow for variations of the end point
and fix only the initial state a. The minimum path'
has to satisfy the Euler-Iagrange equations

where the Hamiltonian H is given by

II(a, il) =il,.a' O(a, -a) = 'L "q-;q, +f'q; . (2.23)

The condition (2.14) which comes from the varia-
tion of the final state reads

ni(tm) = 0. (2.24)

This condition extracts from (2.20) and (2.21) the
special solution withe(t)=0, and we see that the
minimum path satisfies the deterministic equa-
tions (2.2).

By use of the transport equations (2.2) and Eq.
(2.8) the time rate of change of the entropy can
be written

S(a) =Xp' = L,&a'a = L'iXiX& .
Onsager's dissipation function

y(a, a) =,L,)a'di—

(2.25)

(2.26)

expresses one-half of the rate of change of the en-
tropy as a function of the state a and the fluxes a.
The explicit dependence of this function on the
state a is a characteristic of nonlinear systems.
Introducing the corresponding function of the
forces

BO

Ba i (2.14)
+a X) =-'L"XiX,

the Lagrangian (2.9) can be written

(2.27)

From (2.9) we find 0 (a, a) = Q (a, a) +4(a, X) ——S(a). (2.28)

, =—,'L»i, (ai -fi)(a" f") L»(a" --f )f-f, (2.15) This form coincides with that given by Onsager
and Machlup.

Ba « =L;i(a f). -

If we introduce the covariant vector

., =I,,(a -f )

Eq. (2.15) can be written

(2.16)

(2.17)

III. HYPOTHESIS FOR THE CONDITIONAL PROBABILITY

A macroscopic system undergoes fluctuations
that are neglected in the deterministic theory. In

a stochastic theory we can not determine the future
state of the system with certainty, but rather ask
for a system in the state a at time t, for the prob-
ability p, (a'/a)da' to find it at time tm =t, +v' in the
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state g' in the volume element da'. For a closed
system this conditional probability depends only
on the time difference ~. The probability is nor-
malized to

I da'p, (a'/a) =1. (3.1)

From the work of Onsager and Machlup, it is
natural to consider a possible relationship of the
conditional probability p, (a'/a) for a, small time
interval 7 to the minimal increase of action as-
sociated with a change from the initial state g at
time t, to the final state g' at time t, +7. This is
given by

A, (a'/a) =
t~+V

dt 0 (a(t), a (t)),„, (8.2)

where the minimum is taken with respect to all
paths satisfying the boundary conditions

a(t, ) =a, a(t, +~) =a'. (3.3)

The minimum path from g to g' obeys the Euler-
Lagrange equations (2.13) but generally does not
fulfill Eq. (2.14), which characterizes the deter-
ministic path. Hence, the q(t) are nonvanishing
along a fluctuating path and we may say that the
q(t) cause the fluctuations. Since the q(t) are just
added to the thermodynamic forces in Eq. (2.20)
w'e call them random forces.

Instead of characterizing the minimum path con-
necting a with a' by the initial and final states, we

may just as w'ell characterize it by the initial
state a and the initial random forces q.' Then, we
have to solve (2.20) and (2.21) with these initial
values to obtain the final state as a function of
these values

a'=a'(a, q, ~). (3,4)

Vice versa, we might express the initial random
f q f t' f d'

q =q(a', a, ~). (3.5)

From (8.2) we see with (2.9) and (2, 1V) that the
.minimal action can be written

b y+7

A„(a'/a) = dt-,'-L, '&(a(t))q,.(t)q,.(t), (3.6)

where the integral is along the minimum path.
Since the random forces q(t) vanish along the de-
terministic path, A, (a'/a) vanishes if a' is the final
state according to the deterministic motion and it
is positive for other states g'. We now assume
that in the limit of a small time interval v the a,c-
tionA, (a'/a) is a measure for the probability that
a fluctuation from the state g to the state a' occurs
within the time interval 7. More precisely, w' e
make the hypothesis

IV. CALCULATION OF THE CONDITIONAL PROBABILITY
FOR SMALL v

In this section the conditional probability is de-
termined explicitly in the limit ~ -0. Though the
algebraic manipulations involved are rather ex-
tensive the method used is very simple, so that
we only present the basic steps. [The result of
this calculation is given in Eq. (4.29).]

A. Action

Our first aim is an expression for A, (a, q) in the
limit v -0. To this purpose we have to determine
the solution of (2.20) and (2.21) with the initial con-
ditions a(t, ) =a, q(t, ) =q. Choosing t, =0 for simpli-
city, the Taylor series expansion of the solution
re ads

a'(t) =a'+a't+ —',a 't'+. ~ ~,
o go ~q. (t) =q +q t+-.q;t + ~ ~, (4 1)

where the coefficients follow from Eqs. (2.20) and

exp[- (1./2k)A„(a'/a )]dqp, (a'/a)da'= (
——

—

[ (1/2 "~ (,/ )], (8.V)

where k is Boltzmann's constant and q has to be
viewed as a function of a' according to Eq. (3.5).

There are several comments in order: The nor-
malization (3.1) of p, (a'/a) is fulfilled by construc-
tion of (3.V). Boltzmann's constant appears since
the action has the dimension of the entropy such
that A,/0 is dimensionless. The probability

p, (a'/a)da' has to be invariant under nonlinear
tr ansformations of the macrovariables. Since
the Lagrangian 0 is a scalar, the exponential on
the right-hand side of (3.V) is itself invariant.
Hence, we cannot simply multiply the exponential
with the differential dg', which is not an invariant
volume element. The invariance of the right-hand
side of (3.V) is seen if one multiplies numerator
and denominator by da. Then dadq is a phase-
space volume element that is invariant under any
contact transformation and in 'particular under the
point transformation generated by an arbitrary
transformation of a. The invariance of (3.V) will
be seen explicitly below.

If we denote by sq/sa the Jacobian of the trans-
formation (3.5) with a and v as parameters, we ob-
tain

exp[-(1/2k)4, (a'/a)] sq/sa'

fdic ep[x-(1/2k)A, ( aq)]

for ~-0, whereA„g, q) =A,(a/a) if q and a' arere-
lated by (3.5). We shall see that the stochastic
process of the macroscopic variables is complete-
ly determined by this formula.



F L UCTUATION S A ND NON LINEAR IRREVERSIBLE PROCESSES 1751

(2.21}and their derivatives as

a" =f'+ L»jq„
e 1
g» 2L l»1@k f ii lj &

a ' =f'» ja j+L'j»ka"q j+L'jjj,
(4.2)

q„a' =O(v '+),

j,, a'=O(7 '},
a" =0(7 ' ').

(4.3)

Using this, we obtain from (3.6) by systematic ex-
pansion

A r™~ '0) -2L '/I Fl j~ - 2 L 'f
» P1»'0k ~

+ ,'L'j„f'q,.q -j~'+0(~'/'). (4.4)

Since the calculation is simple, we omit the de-
tails. Let us mention only that in the course of
the calculation there also appear terms of fourth
order in g that cancel. The action is invariant
and the same should be true for the systematic
approximation (4.4). The invariance is not mani-
fest since the ordinary derivatives f'ij, L'jik do not
transform like tensors. However, we may define
a covariant derivative of a vector by

f;j f»j+»jk/f ~- (4 5)

0» f »»ka "lj f l»~lj 2L»ila Oplk L I» iÃk~
ya 'r ga

and 80 on
To determine the actionA, (a, q) we insert the ex-

pansion of q(t) t(4.1)] and a Taylor series in a(t)-a
for I.'j(a(t)) into (3.6) and carry out the integral
from t, =0 to t, =~ term by term. We immediately
see from (3.6) that the leading contribution to
A, (a, ii) is given by L2»jii»iij7. Whenever this re-
mains finite in the limit 7 -0 it gives a contribu-
tion to (3.8). Hence, we have to consider initial
random forces g that are of order w '@. This de-
termines the order of magnitude of the Taylor co-
efficients (4.2). We find

tive in a Riemannian space with metric tensor L,,~.
It can be shown that f'., indeed transforms like a
tensor with one contravariant and one covariant
component. Using this, (4.4) may be written in a
manifestly covariant form as

A„(a, Z) = ', L'-jq»Z j~ ,'L-» -jf' jq,q. ,~'+O(~s™). (4 8)

x 1+—I, '& ".q,g, +Ox'~'

(4.9)

The integral over g can easily be done with the re=
suit

exp -2 A.,g, q =

x t+'- ~., +0~'~', 4.lp

where I, is the determinant of the matrix of trans-
port coefficients. The covariant divergence of the
drift can be written more explicitly

fl —I l /2(f »L i/2)-
which follows i'rom (4.5), (4.6) by use of

4'y'r= L"Lj»i= — L"»»Lj =

(4.11)

(4.12)

C. Transformation from q to a'

Our next aim is an approximate expression for
the transformations (3.4) and (3.5) from the ii to
the a' and vice versa. Since a"=a»(~) we obtain
from (4.1}

B. Normalization factor

Now, we can determine the numerator on the
right-hand side of E»l. (3.8). Since q,.lip

2 is of or-
der v we have

1
exp —

2 A, a, g =exp —4&I.'Jq;q&

where a"=a'+a'v +—2a''r' ++'a'w' +O(v'), (4.13)

(4.6)

(2k, lj- (L»j2»k+Lrkij Ljkl»)' (4.V)

This is the usual definition of a covariant deriva-

where we used the order of magnitude (4.3) of the
Taylor coefficients. The coefficients themselves
follow from the Euler-Lagrange equations and the
first two are listed in (4.2). By inserting the co-
efficients as functions of a and q in the needed ac-
curacy into (4.13) we find

a»' ai +L»jq ~+fit+i(L» j fk +Ljkf—i I »kfj )q g2
»

i.+(L»j Lkk Lql L»2Ljk La» + LikLjq Lkl L . L I
lpe 2 jpq ta

+L»kL»qL I L L QPllP +0(&) (4.14)
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To determine the inverse transformation we first
notice that we obtain in lowest order from (4.14),

Note that M,'. is at least of order ~'/' so that (4.21)
can be expanded to yield

q,. = (1/~)L..Aa'. +O(~'),

where

(4.15)
8- 1 (1+M'+-'(M')' --', M'M f +O(~'")). (4.22)

~a =a'-a .i i~ i (4.16)

This can be inserted into the terms of order ~ on
the right-hand side of (4.14) to yield a better ap-
proximation for g. Then, if we iterate once more
we obtain

If we insert (4.19) into (4.22) we find after some
algebra

[1-(lnL /) .ha» -R(lnL ) . Aa'ba»
Bg lii1, 1

q»
= L;&(&a—' -&f') +

2 (jk, i}Aa»&a
+—,'(inL'+)», .(lnL' ') .&a» &a»

—+R; &a' &a» +0(&'~)], (4.23)

+~(lj&, i}]» L"&ij-,p}I&i&q})
1

x Aa» Aak Aa'+O(~), (4.17)

where we have used (4.12) and where R,, is given
by

where we have used (4.7). Some terms cancel be-
cause of the form (2.10) of the deterministic drift
and $ )e Xe) $) ~ ~ ~

R&& =L 'R;»,

w'ith

j. (
R»kp» 2(L»»k» L»»»k& Lkg»»» +Lk»»»g)

(4.24)

Bg"
1» L (Bk pMk) (4.18)

D. Jacobian

As a next step, we calculate the Jacobian B)l/Ba'.
With (4.17) we have

+L"(bi P}Ii & ~} (g f}I-i& e}) (4 2~)

The R,.», form the Riemann tensor of a Riemann-
ian space with metric tensor L,. .. Equation (4.23)
can be written in a more compact form if we notice
that

where

Mk —Lk»g& f}gar+QLk»

&c(2Ij(r, l}», +IL» s, l}»&
—Lk'Jxs, p}fj&, q}

-2L"fj r, p}(is,q})Aa &a'+O(w'/') (4.19)
(4.26)

so that w'e may w'rite

L) 1»t2

= exp(lnI. '/' —lnI."@)
Lj

= 1 —(lnL' ')», ba» +—,'(lnL' ');(lnI ' ') Aa» ha~

--', (lnL' ) .&a»La~+0(r'@)

Since the determinant of a matrix has the proper-
ties (.g/k t1 -+~R;~&a»ha~+0(v'/ )] . (4.27)

Ba

detX5 = detX. det5,

detX = exp(tr lnX),

we obtain from (4.18)

exp[tr ln(6,'+M,'.)] .8 1

(4.20)

(4.21)

E. Conditional probability

Finally, we need the minimal action as a function
of the end points a and a'. Let us insert q as given
by Eq. (4.17) into the right-hand side of (4.4).
Then, w'e find in the considered approximation

A, (a'/a) =2 L;;(&a' -7'f»)(Aa» -vf') + —
L;&»k ha' &a&Aak

+
12 (L;;»» -&Lk'(ij, p}(kl, (I})Aa'Aa»&a" ba» -&(L»zf»)»kAa'bak+O(w'/). (4.28)

We now insert (4.10) and (4.27) into (3.8) and obtain for the conditional probability

p(a'/a) =( .

) ~ „~ exp(- —R (//a)) [1 ', a/e. ;-aR &Ca'aa~+O(a )]. -— (4.29)
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In this approximation A, (a'/a) is determined by
(4.28). From this explicit form of the conditional
probability we see that p, (a'/a)da' is in fact invari-
ant. da'/L" ' is an invariant volume element in
state space. The minimal actionA, (a/a) is invari-
ant as is most easily seen from E(I. (4.4). The ex-
pression (4.28) disguises the transformation prop-
erties to some extent. Note that 4a' has vector
character only in the lowest order in v where it is
approximated by 1."q&v. However, this approxi-
mation is sufficient in the term R,.&

hg' kg~ on the
right-hand side of (4.29) so that the terms in paren-

thesis form a scalar in the considered approxima-
tion.

V. PATH INTEGRAL AND FOKKER-PLANCK
EQUATION

A. Modified Lagrangian

Let us now examine some properties of the con-
ditional probability p, (a'/a) for small r If. we in-
sert (4.28) into (4.29) and make use of (4.26) we
find

p, (a'/a) =(4 e )„e&,a exp(-e ).e(ea' a/')(ea a-f~)) ()--e )
e~

eea' eaaa —(I L' x)e ea'+O(x. )).

(5.1)

Here we have omitted terms of order 7. These
terms are important for the proper normalization
of p, (a'/a), however, they will' not contribute to
the moments in order v that we shall determine
now. Using (5.1) and well-known properties of
Gaussian integrals we find where

xexp -2 A, a a &+0~ ~, 5.5

~ ~ ~da'&a~' ~ ~ t)a'mp, Ea'ja) =0(& /2) for m~3)
A, (a'/a) =A, (a'/a) +kf' ,

7' +—',k Rv. (5.6)

where

da'ba'p, (a'ja) =IP7+O(7' '),

(5.2) (5.V)

Here we have transferred terms of order v to the
exponent which gives only corrections of higher
order, and have introduced a Inodified action
A, (a'/a). With the modified Lagrangian

if) fe ykL1/2( L—e /L 1/2)

In determining the first moment we have made use
of (2.19) and (4.12). For the zeroth-order moment
we have to include the terms of order ~ omitted in
(5.1) and use the more accurate approximation
(4.29). Naturally, we will obtain

JI da' p, (a'/a) = 1+O(v'/') (5.4)

in this approximation, since the conditional prob-
ability is normalized by definition. To the normal-
ization integral the term -+R,

&
4a' 4a~ on the right-

hand side of (4.29) yields a contribution of
',R;;L'/k7 +O(v'—/'—). The normalization is the only

place where this term gives a contribution of order
Hence, we can replace it by ——',R,,-l.' ~ and

the conditional probability may be written

O(a, a) =O(a, a)+kf', + ',k'R-
=—', L;/(a' -f')(a' -f/) +kf'. ; + ', k'R, (5.8)-,

the actionA, (a'/a) may be written

t ~+V'

A,(a'ja) = dto(a(t), a(t)},„, (5.9)

where the integral is over the minimum path con-
necting a with a'. Of course, the new Lagrangian
O will also modify the Euler-Lagrange equations.
However, this change does not show up in the ac-
tion in the considered approximation neglecting
terms of order 73~'.

B. Path integral

It is shown in the Appendix that the conditional
probability (4.29) fulfills the Chapman-Kolmogorov
equation for small time intervals
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J
da' p.,„(a"/a')p, .(a'/a }

= p, (a/a)I'1+O(v' ')], w =~'+w". (5 10)

Hence, we may look upon (4.29} as the short-time
approximation of the conditional probability of a
Markov process. Then, the conditional probabil-
ity for a finite time difference s follows by repeat-
ed use of (5.10) as

p, (a'/a) =lim J da'. ~ ~ da" '
g~oo

es" that for a Markov process with the properties
(5.2} the single-event distribution p, (a} fulfills the
Fokker-Planck equation

—p, (a ) = , (-K'(a ) a t eI,'t(a ))p, (a ). (5.16)
t

Further, the conditional probability is the Green's
function of (5.16) so that the Fokker-Planck equa-
tion itself specifies the dynamics of fluctuations
completely. By use of (5.3) and f' = L'~S)&, Eq.
(5.16) can be transformed to

&~pt, (a'/a" ')p, (a" ', a" ). ~ p, (a', a)

(5.11)

B ~ BPg B SkL'~ ' —P --»L'~
BI,~' Ba' Ba' ' Ba ~ k

(5.17)

da&

f)1/2 p dtO(adl. ), ,

(5.12)

where 7 =s/N, and where the integralJ dtO(a, a) ).
is over the minimum path satisfying a80) =a, a(i7')
=a', a(s) =a'." This relation defines the condition-
al probability for arbitrary s.

Introducing a scalar measure of integration

where v. =s/N. On the right-hand side of (5.11) the
approximations (4.29) or (5.5) for the conditional
probability are sufficient since terms of order v' '
do not contribute in the limit N-~. With (5.5)
and (5.9) we obtain more explicitly

From this form of the Fokker-Planck equation we
see that

et(a) =,a esp —S(a ) t eaeet) (5.18)

is the stationary distribution. The normalization
constant can be absorbed by the entropy. Equation
(5.18) relates the fluctuations in the stationary
(equilibrium) state with the macroscopic state
function entropy and can be viewed as a version
of Boltzmann's principle. The factor L(a} '~' is
necessary in nonlinear systems in order that
w(a) da and S(a) should both be independent of the
chosen representation of the state.

D. k~o limit

From the Fokker-Planck equation (5.16) we find
for the average flux

(5.13)

we may write the right-hand side of (5.12) as a
path integr al

P(a /a) =, ,e ,P(a(t)] esP -& dtO(a, d)).
S

a 0

(5.14)

(5.19)

where ( ) is the average over p, (a). Generally
(f'& is different from f'((a)), however, in the limit
k-0 the diffusion matrix kL'& of the Fokker-Planck
equation vanishes and there is no broadening of a
distribution initially concentrated at one state.
From Eq. (5.19}, we see thai the center of such
a distribution will move in the limit k-0 accord-
ing to

This has to be looked upon as a shorthand notation
for the limit (5.12).

a' =f'(a). (5.20)

C. Fokker-Planck equation

The conditional probability p, (a /a) and the initial
single-event distribution p, ,(a) characterize the
Markovian process of fluctuations completely.
The single-event distribution at time g is given by

Hence, the deterministic theory is the limit k-0
of the stochastic theory.

This can also be seen from the path integral
representation (5.14) of the conditional probability.
Because of the factor of 1/2k in the exponent and

limO(a, a) =O(a, a) . (5.21)

p, l'a) = da'p. ..(a/a')p, ,(a') (5.15)

It is known from the theory of stochastic process-

the path probability concentrates in the limit k 0
sharply around the deterministic path and the fluc-
tuations vanish.
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VI. CONCLUSION

Starting w'ith the deterministic equations of mo-
tion of an irreversible system we have examined
the process of spontaneous fluctuations of the
state variables. The stochastic theory was based
on the "fluctuation hypothesis" (S.V). Logically,
there is no reason why the approximate determin-
istic theory should determine the stochastic the-
ory. Rather, the logical argument runs vice
versa, the deterministic theory is a limiting case
of the stochastic theory and the stochastic theory
needs direct justification.

The Markovian process of spontaneous fluctua-
tions has been considered from a statistical-mech-
anical point of view' in an earlier paper by one of
us.' There the Fokker-Planck equation"

(6.1)

is derived. mE'a) and the symmetric matrix ]"are

defined by molecular expressions. Contact with
the phenomenological theory is made if w'e define
the transport coefficients 1.'& and the entropy 5 by

(6.2)

Note that Boltzmann's constant does not appear
naturally in a statistical mechanical theory. With
(6.2) the transport coefficients and the entropy are
measured in the usual units of phenomenological
thermodynamics. By use of (6.2) the Fokker-
Planck equation (6.1) is easily brought into the
form (5.1V) or (5.16). Hence, the stochastic the-
ory presented here can be based on statistical
mechanics. The deterministic theory can now be
looked upon as the k-0 limit of the stochastic the-
ory and the fluctuation hypothesis (3.7) shows up
to give the correct connection of the conditional
probability for short times with the deterministic
equations. The mutual dependence of the various
equations can be summarized in a diagram:

Deterministic equations
(2.2)

Lagrangian 0 (2.9)

limit k 0 Fluctuation
hypothesis (3~ V)

it k-0

Lagrangian 0 (5.8)

Fokker-Planck
equation (5.16)

Statistical
Mechanics

Conditional probability

p, (a'~a) for ~-0
Path integral

representation (5.14)

As a special result our work gives the path-in-
tegral representation (5.14) of the Green's func-
tion of the Fokker-Planck equation (5.16). This
problem has recently been considered by Graham. '
In order to compare w'ith Graham's result we have
to put formally k =—,'. Then, the Fokker-Planck
equation (5.16}coincides with Graham's Eq. (3.1}
in Ref. 5(b) up to differences in notation. The La-

gr angian 0 defined in (5.8) reads for k =—',

0(a, a) = ', I.„(a'-f')(a-'-f')+2f'. , +~BR.

This differs from Graham's Lagrangian [Eq. (6.3)
in Ref. 5(b)] in the last term where he obtained
~»R. The difference is due to Graham's use of
the relation 4a' =a'7, w'hich is not accurate enough
in nonlinear systems" but has to be replaced by
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(4.14). The term +R is completely determined by
the proper normalization of the conditional prob-
ability which we take explicitly into account.

has in order 7 =7'+~" the same moments as
p, Q"~a). Because of (5.4) we find for the Eeroth-
order moment
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da'Z ...„(a"~a) = I +0(~"~) +O(~"'fl)

= 1+O(~' ~). (A2)

&
- I;, ~a'-~ ' ~a~ -7 ~

For the higher-order moments we can use the ap-
proximate expression (5.1) for the conditional
probability, which can also be written

APPENDIX: DERIVATION OF EQ. (5.10)

x (1+O(~)), (AS)

(A1)

In order to verify (5.10) we have to show that

Z...„(a")a)= da P, „(a"~a')p, .(a'(a)

where I, ,&
is I.,&

taken at the midpoint a =—,'(a +a')
of its argument.

Inserting (AS) in the right-hand side of (A1), we

fj.nd

z, , , (a")~a) =( ) z „„exp(- — X, (Au' rf')(6a~ —vf~))—

in, z—iI, exp -4 „L;&n'e~ 1+0T =p, a" a &+0 T (A4)

a' =n+(~'a +v'a")/7 (A5)

Here L,, is taken at the position —', (a+a ), and we
have made use of the transformation

By (A4) the first and higher moments of Z. ..„(a"~a)
coincide in order v with the corresponding mo-
ments of p, (a"~a). From this and (A2) we obtain
E(I. (5.10).
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