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Stochastic transitions and statistical features of one-dimensional chains
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Statistical consequences of the subdivision of the phase space of a classical nonlinear system {a Lennard-
Jones chain) into regions of ordered and stochastic motions are investigated by numerical computations on
two parameters, which are related to the average fluctuations and to the equipartition of the kinetic energy.
While the former parameter behaves as if it were an ergodic function {i.e., its time average is correctly given

by its canonical average), the time average of the latter cannot be so computed, and furthermore it exhibits
a transition consistent with previous computations. Comparisons are made with a harmonic chain and with a
Toda chain.

I. INTRODUCTION

Investigations on the statistical properties of
classical nonlinear systems, which have re-
cently undergone a great development, ' "have
tackled three kinds of problems of increasing
relevance to statistical physics. In the first
place one has to establish the existence of qualita-
tively different types of motions, i.e., "ordered"
and "disordered" or "stochastic" motions;
secondly, to characterize the regions of the phase
space associated with different types of motion.
In particular, if at all possible, one has to find
the connection between existence and extension of
such regions and physical parameters, such as
specific energy, strength of interaction, etc. In
this context of utmost importance is, of course,
the connection with the number of degrees of free-
dom, inasmuch as if in the thermodynamic limit
such features disappear, they would be of no
relevance in statistical physics. If, on the con-
trary, such features somehow are preserved, the
assumptions on which the usual prescription for
computing phase average is given are not satis-
fied. Consequently, in the third place, one has to
reformulate this prescription.

The present paper is mainly devoted to the
second type of problem. Moreover, it provides
some evidence for the necessity of tackling the
third kind. Along the same lines of Refs. 1, 7,
and 8, we study a one-dimensional chain of parti-
cles interacting via a nearest-neighbor Lennard-
Jones potential between fixed ends. By introducing
two parameters connected with the fluctuations
and with the equipartition of the kinetic energy
of the individual particles, the time averages of
these quantities are compared with. the corre-
sponding standard canonical averages. The time
averages are computed by direct numerical inte-
gration of the equations of motion. One may re-
mark that many of the early studies on stochastic

transitions were performed by looking at quanti-
ties expressed in terms of collective coordinates
(e. g. , normal modes). One reason to study pa-
rameters expressed in terms of the coordinates
of the individual particles is that they appear to
be directly connected with important physical
macroscopic observables. The analysis is car-

' ried out by considering the dependence of our pa-
rameters on different classes of initial conditions,
on specific energy, and number of degrees of
freedom.

Comparisons are also made with the corre-
sponding behavior of the parameters for two typi-
cal integrable systems, such as a pure harmonic
chain and a Toda chain. . Details about the models
we consider, and known results relevant to our
studies are given in See. II. In Sec. III we intro-
duce our parameters and discuss their numerical
evaluation in connection with their canonical
value. Results of the numerical experiments are
given in Sec. IV while in Sec. V we give some
final comments.

II. DESCRIPTION OF MODELS AND CONNECTION WlTH

PREVIOUS RESULTS

Most of our numerical experiments have been
performed on a one-dimensional chain of N+2
particles of mass m, interacting via a nearest-
neighbor Lennard- Jones potential

The extreme particles are fixed at a distance
I = (N+1)do, where do= v(2)'~6 is the equilibrium
distance. The values used for the parameters
are m =1,o = 1, c = 27.5. A characteristic time r
may be defined as the limit for N- of the short-
est period of the corresponding harmonic system,
and it turns out to be, in our units, 7 =0.079. For
comparison, an interaction potential of the follow-
ing type (Toda potential)
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Vr (t)='o' e.~"+yr (2)

will be considered. The constants o'. , p, and y
are choosen in such a way that potentials (1) and

(2) coincide up to second-order terms around the
minimum: o.'=h. d',e ', P=-1/do; y= —Ado where
X= V'„' ~(d 0).

The equations of motion have been integrated
using a standard third-order integration proce-
dure. A typical time integration step was 2.5
&& 10 'v', and typical runs were of about 3.&& 10'
integration steps. ""Before introducing our pa-
rameters, we briefly summarize here the rele-
vant results concerning the dynamical properties
of the considered models.

As is well known, both the Toda chain and the
harmonic chain are integrable systems, i.e.,
there exist N independent integrals of motion
which are in involution (the Poisson bracket of
any two of them vanishes). With reference to the
qualitatively different types of motion which can
occur in classical dynamical systems mentioned
in the Introduction, we recall that integrability
allows only one such type, the so-called ordered
one. In fact, if the system is integrable, the mo-
tion takes place on surfaces of lower dimension-
ality than that of the energy surface (invariant
tori). There is, however, an important difference
between the harmonic chain and the Toda chain, in
that the latter is highly nonlinear, and this has as
a consequence, for instance, that the frequencies
depend on the initial conditions, whereas this is
not the case for the former which is linear. From
a geometrical point of view, integrable systems
are characterized by a continuous foliation of the
phase space, i.e., by the fact that the phase space
is the union of invariant tori.

As regards the Lennard- Jones chain, which is
not integrable, no simple geometrical picture of
the structure of phase space can be given. It has
been established, however, that their does
still exist a region where the motion is "or-
dered. " A plausible interpretation of this order
consists in assuming that there are still invariant
surfaces which, even if they do not constitute a
continuous foliation of phase space, "fill it" in
the sense that their measure p, , is positive and,
denoting by p, the measure of such region, one has
p, op/ 1. Furthermore, there exists another dis-
tinct region where the motion is "stochastic, "
that is to say, the representative point of the sys-
tem moves erratically over practically the whole
energy surface. This kind of motion exhibits all
the features required by standard classical sta-
tistical mechanics: time averages of observables
are independent of initial conditions, any correla-
tion between nearby orbits is quickly lost, etc.

As before, one can interpret geometrically this
state of affairs by saying that invariant surfaces
(though still present) are statistically irrelevant
inasmuch a,s their measure is close to zero.

For all the parameters considered to establish
such results, the transition from order to stochas-
ticity sets in with continuity. Therefore there ex-
ist a third region in phase space where the rela-
tive measure of invariant surfaces is neither
close to 0 nor to 1 and where "solutions of differ-
ent behavior exist side by side. '"' Even if a sharp
picture of the boundaries between any two of these
regions is still unknown, in practice it is possible
to define two values of the specific energy, u~ and

u» such that "for energies lower than u„ the
overwhelming majority of initial conditions lead
to ordered motion and, for energies higher than

u„ the overwhelming majority of initial conditions
lead to stochastic motion. "" Qne can therefore
call "threshold energy" the value u, . Such a
threshold, as a function of the number of degrees
of freedom, decreases quite rapidly increasing N
from 2 to 10. For values of N around 20 one has
u, = 0.1, u~=1.0 in our units, and these values re-
main practically unchanged up to the maximum N
considered (N= 1000). These numerical estimates
are not sufficiently reliable to prevent the thresh-
old falling to 0 when N- ~. All one can say is that
they are not inconsistent with the possibility that
such a fall actually does not occur.

III. PARAMETERS-P, AND P2

I et us define two parameters P, and P, in the
following way: let k, (t) =mi2(t)/2 be the kinetic
energy of the ith particle, and K(t) = (1/N)Z, k, (t)
be the average kinetic energy at time t. Define

)=1
as the mean-square instantaneous deviation. Start-
ing from fixed initial conditions {x(0),x(0)) one can
follow the time evolution of S2(t) along the trajec-
tory and perform the time average up to time T:

Denote by S2 the limit for T- ~ of (S')r. Analo-
gously by K~ and E mill be denoted the time aver-
age of K(t) up to time T and the corresponding
limit. Then, our parameter P, is

P, =Sn/K3

P, is a dimensionless quantity mhich a priori'de-
pends on the initial conditions and thereby on
physical parameters of the system, like energy,
number of degrees of freedom, etc.



STOCHASTIC TRANSITIONS AND STATISTICAL. FEATURES. . .

S and K are observables for which the phase-
space canonical average can be easily computed.
Define, for instance, as usual

- —T
. P2

S2, e 58 Syx)$2 (p) dpdx
0 "0

e '"'"*'dpdx

where Q is the phase space and P, =mr,-. Denoting
byP;~ the ratio S',QIP„„one obtains then

P,'"=2(N' 1)/N .
This value is independent, of course, of initial
conditions and is also independent of the tempera-
ture. In the limit for N- one has P; =2. More-
over this computation of P,'"does not depend on
the potential, and therefore holds true in each of
the considered models.

If the system were ergodic, one should have
8'- S', , K'-E'„, and therefore P, -P, when
N- ~. In practice one may compare Py and

also when N is finite and sufficiently large. There-
fore I'Py Py ll can be taken as a suitable measure
of the deviation from the standard results of
classical statistical mechanics.

Now let K& and K be the time averages up to
time T of the kinetic energy of the particles and
of their average, respectively, and k„E the
corresponding limits when T- . We define then
the second parameter P, as follows

P, =~ g (u, -Z)2/N . (4)
i

This quantity is analogous to P„except for using
the time averages of the kinetic energies instead
of their instantaneous values to define the mean-
square deviation. Clearly, if k; had for every i,
in time average, the average value J7 (i.e. , if the
kinetic energy were equipartitioned in time) one
would obtain P, =O, and this is what one expects
according to standard statistical mechanics.
Therefore we have that while P, give a measure
of the average fluctuations of the kinetic energy,
P2 gives a measure of the deviation from equipar-
tition. Both P, and P, are directly related to the
kinetic energy of the particles and, from the
standard point of view, to the temperature of the
system. Therefore they can give information on
possible discrepancies, due to the existence of
ordered regions, with the expectations of classi-
cal statistical mechanics.

Since numerical computations to obtain P, and

P, are performed following the trajectory of the
system by numerical integration of the equations
of motion, what is actually computed are param-
eters expressed in terms of K~, S~, etc. , and
obviously not with their limits when T- . In
practice, however, with exceptions of special
cases which will be pointed out, P~ stabilizes

%-2.
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FIG. 1. P&~ vs time {expressed in number of integra-
tion steps). Curves 1, 2, 3, and 4 refer, respectively,
to specific energies u=0. 01, 0.1, 1.0, and 10.0.
Curves 1 and 2 are considered as stabilized, curves 3
and 4 as decreasing to 0.

very well within the used computing time, and is
therefore a good approximation to P, . As for P, ,
two types of behavior, which are illustrated in
Fig. 1, have been observed: in the first case,
P, reaches a well-stabilized value, and can. be
taken as a good approximation to P,; in the second
case, the value reached is not stabilized but defin-
itively seems to approach the value 0. The latter
behavior will be associated with final reaching of
equipartition, i.e., P, = 0. This conclusion is
arrived at by comparison of the order of magni-
tude of the considered quantity with the results of
calculations carried out in a region of the phase

/

space which is certainly stochastic. Such tendency
to vanish will be denoted by a star in the tables.

IV. NUMERICAL RESULTS

Recalling that the phase space can be approxi-
mately subdivided into three regions (region I of
ordered motion, region III of stochastic motion,
and region II of transition) the behavior of P, and
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P, has been analyzed in each of these regions sep-
arately, that is to say, at fixed N, by considering
several values of specific energy u. Moreover, the
behavior when the number of degrees of freedom
increases at given fixed value of u has been natu-
rally investigated.

The integration of the equations of motion re-
quires a proper definition of the initial conditions,
which turns out to play a rather important role in
our analysis. Therefore, the actual choice of the
initial conditions is presented here in some de-
tail.

One type is the following:

x& =&x,-s „x,=Br, + „s&+z,

where x,- and x, are the deviation of the i th par-
ticle from the equilibrium position and its speed,
respectively, the x, are random numbers gener-
ated by the subroutine RANE of the CDC 7600, the

s, are random signs, and & and B are two con-
stants used to fix a given value of the total energy.
This type of random initial conditions will be
denoted by HC.

Another type, which will be called semiordered
and denoted by SOC, consists in giving all the en-
ergy of the system to some modes of the corre-
sponding harmonic chain. Most of the results re-
ported here refer, for instance, to the following
conditions

x;=A(V+2+i)(-1)', i,.=B(N+2 i)(-1)"'-, (6)

which correspond to exciting practically only the
high-f requency modes.

In Tables I and II the results for P, and P„re-
spectively are summarized for several specific
energies u at N =50. Both random and semior-
dered conditio&s are considered for the Lennard-
Jones (LJ), the Toda (T) and the harmonic (H)
chains.

From Table I one can see that, for PC Py is
practically canonical for the LJ chain at all en-
ergies. Moreover, the largest deviations from
the canonical value occur in region III, and this
fact makes more striking the canonical behavior
of I', for small energies (i.e., in region I). While
the T and the LJ chains give similar results, the
behavior of the H chain is clearly noncanonical
for all energies. Semiordered conditions influ-
ence these results for both the LJ and the T
chains, besides the H chain increasing its non-
canonical behavior. For u &1, the LJ chain de-
viates from the canonical value more than the T
chain. Nevertheless, a transition is observable
at high energies for the LJ chain: taking into
account that the reported value of P, for u =10 is
still increasing, it is possible to conclude that
the canonical value is reached at this order of

T&BLE I. SumInary of results for P&, N= 50.

0.001

Type P& with RC

1.918 065
1.905 519
2.905 127

Pg with SOC

1.406 956
1.410 108

35.518 490

0.01

0.1

1.0

10.0

LJ
T

LJ
T

LJ
T
H

1.921 179
1.913658
2.215 623

1.901 009
1.882 233
4.550 271

2.012 305
1.894 914
3.082 786

1.856 786
1.923 274
3.353 681

1.226 921
1.337 401

38,650 220

0.719272
1.211761

44.106 480

0.678 913
1.386 542

35.639 410

1.805 705
1.138 668

38.858 300

Not stabilized increasing value.

TABLE II. Summary of results for P2, N= 50.

0.001

0.01

0.1

1.0

10.0

Type

LJ
T
H

LJ
T
H

LJ

H

LJ
T

P2 with RC

1.297 835 x 10-'
1.695121 x ].0-2

1.56418

8.907 245 x 10+
9.677 600 x 10
1.162 107

7.392 334 x ].0&
2.630 341 x 10-&

2.725 723

3.505767 x 10&
7.693890 x 10&
1.737 498

1.649 356 x 10&
7,744 648 x 10-3
1.917180

P2 with SOC

2.151463 x 10-~

2.161636 x 10 ~

23.526 07

2.275 891 x 10 ~

2.393 371 x 10-&

25.616 39

1.602 374 x 10-~
2.754 232 x 10-~

29.255 89

4,519 564 x 10-2
2.172 848 x 10-&

23.601 71

1.696 595 x 10&
2.1647p4 x 1p ~

25.755 43

~ Not stabilized decreasing value.

energy also for SOC.
Similar results are obtained also for P, with

SOC, as one can see also from Table II: in par-
ticular, for the LJ chain the same transition al-
ready noted for P, may be observed for P„ its
value decreasing to 0.

But the most interesting difference between P,
and P2 refers to the random conditions. In region
I we see that P, is well stabilized and differs from
0, both for the LJ and the T chains (for the H
chain P, remains different from 0 independently
of the energy). But, for the LJ chain, a transi-
tion toward equipartition occurs precisely on
region II, and the result is confirmed in region
III. In other words, P, behaves coherently with
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50

100

200

300

400

500

0.01
0.1
1.0
0.01
0.1
1.0
0.01
0.1
1.0
0.01
0.1
1.0
0.01
0.1
1.0
0.01
0.1
1.0

1.921 179
1.901009
2.012 305

1.966 929
1.947 240
1.860 479

1.987 725
1.998 815
1.935 643

1.987 509
1.995 760
1.963 771

1.984974
2.015 222
1.969 315

1.986 230
2.011861
1.957 522

8.907 245 x 10
7.392 334 x 10&
3.505 767 x ].0&

3.652 729 x 10
2.068 129 x 10 3

3.128 203 x 10&

1.045 973 x 10
6.378 348 x 10-4
2.336 750 x 10&

9.160 128 x ].0&
3.763 121x ].0&.
2.326 956 x 10-4

1.173471 x 10 3

3.516170x 10&
2.496 345 x 10-4

1.323 Q59 x 10
4.387 798 x 10-4
2.399 355 x ].0&

Not stabilized decreasing value.

TABLE III. Summary of results for P& and P2 vs ¹ qualitatively confirm the general pattern of Tables
I and II. Therefore, the following two points have
been considered in greater detail: whether or
not, by increasing N, (i) the canonical character
of P, for the LJ chain with RC is confirmed and
improved, and (ii) whether the stochastic transi-
tion of P, is still obtained.

As to the first point, . from Table III one can in-
deed see that the above question can be answered
in the affirmative. Also for the second point, the
answer is affirmative in the sense that the sto-
chastic transition for P, still occurs up to the
highest value of N considered (N = 500), and the
threshold specific energy u' does not seem to de-
crease to 0, as is apparent from Fig. 2 where the
curve corresponding to u = 0.01 shows a minimum
around N =300. Therefore, on the basis of our
computations, we can only give a lower bound for
the threshold energy: u'&0. 01. This bound is
slightly smaller than the one approximately indi-
cated by previous computations with other param-
eters.

the other stochastic parameters used to establish
the subdivision of the space into regions of sto-
chastic and ordered motions.

Several test experiments, which will not be re-
ported here, carried out at various values of N,

"P2

10

400

FIG. 2. Parameter P2 vs ¹ Curves 1,2, 3 refer,
respectively, to specific energies u= 0. 01, 0.1, and
1.0.

V. CONCLUSIONS

To clarify the analysis of our results, it is ex-
pedient to classify them in relation to the evidence
they give in favor of or against the viewpoint
which states that the existence of ordered mo-
tions is relevant for the foundations of statistical
mechanics. The former will be noted by (a), the
latter by (b).

(a1) Sensitivity to the initial conditions: the re-
sults are notably different for RC or SOC. To
this typical nonergodic feature one could object
that the special initial conditions fill a negligible
part of the phase space, or, at least, apart which
becomes negligible with increasing N. Further
experiments are needed to confirm or to reject
this plausible objection [see also (bl)].

(a2) The transition of P,: for RC (the class of
initial conditions which reasonably deserves a
greater statistical consideration) the parameter
P, exhibits a noticeable transition in the same
region already indicated by previous stochastic
parameters (this makes P„of course, a suitable
alternative to those parameters, taking into
account both precision and the computer time re-
quired).

(a3) Independence from N: the threshold of
s.tochasticity, while smaller with respect to pre-
vious rough estimates, appears to be stabilized
on a finite value when Ã increases.

On the other side are the following:
(bl) P, is practically canonical for RC even in

region I for the LJ chain. One could suspect P,
to be a function intrinsically ergodic; but if such
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conjecture were true, I', should not depend on the
initial conditions, as it does. As for the point (a1),
there remains the possibility that the part of the
phase space corresponding to special initial con-
ditions vanishes in measure when N- ~.

(b2) Even at ver low energies, P, is consider-
ably different for the LJ and the H chains. This
fact may be regarded as an indication of the
practical irrelevance of the conservation of the
invariant surf aces.

(13) In spite of the feature noted in (a3), the
maximum value of N reached in the experiments
might be not sufficiently large to give reliable
information on the stability of the threshold.

To recover completely the standard point of
view, both facts are therefore required: the
vanishing of the measure of special conditions,
and [against (a3)] the falling to 0 of the threshold
in the thermodynamic limit. So, apart from the

perspective of using P, as stochastic parameter,
the necessity of a precise definition and estimate
of the statistical weight of the different classes of
initial conditions emerges from these experiments
as the main direction for future work.

At last, among the results which have not yet
been classified against or in favor of any thesis,
and which are nevertheless noteworthy, there is
the fact that the nonlinearity seems to be a more
characterizing feature than the nonintegrability,
as shown by the substantial agreement at low
energies between the LJ and the T chains.
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