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Microscopic calculation of the nonlinear current fluctuations of a metallic resistor: The
problem of heating in perturbation theory

A.-M. Tremblay~ and B. Patton~
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

P. C. Martin
Physics Department and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

P. F. Maldague~
IBM Thomas J. 8'atson Research Laboratories, Yorktown Heights, ¹wYork 10598

(Received 18 September 1978)

The effect of a constant electric field 0 on the low-temperature Johnson noise of a metallic resistor is
calculated by nonequilibrium diagrammatic perturbation theory. The expansion, in powers of E, is shown to
diverge, and the divergence is associated with accumulating Joule heat. An insight into how to treat a' steady
state properly when there is heating is provided by the Boltzmann equation. A vertex function that
corresponds to a steady-state solution of this equation is identified. With this vertex function it is possible to
evaluate not only one-particle operators, for which the Boltzmann equation is sufficient, but also troublesome
contributions to the current fluctuations and other two-body observables for which a many-body approach is
required. The calculated corrections to the current correlations agree qualitatively, but not quantitatively,
with simple phenomenological agruments. -In' particular, it is not possible to describe the leading effects of
the electric field solely in terms of a variable local temperature. The model calculation illustrates and sheds
some light on several problems that only appear when nonlinear deviations from thermal equilibrium must be
considered: the complicated effects to which heat generation leads, the identification and treatment of these
effects in perturbation theory, and the difficulties these effects pose for hypothetical generalizations of the
fluctuation dissipation theorem, Some possible connections between the calculation and 1/f noise are also
briefly explored. In particular, recent experiments that may confirm the conclusion of this calculation, that
systems in which there is only impurity scattering do not exhibit 1/f noise, are noted.

I. INTRODUCTION

Ever since the work of Bernard and Callen'
theorists have sought in vain for an explanation
of nonequilibrium current or voltage fluctuations
that was as deep and general as the explanation
of equilibrium fluctuations in terms of the fluctua-
tion-dissipation theorem. To nonlinear order
there probably is no correspondingly general
explanation; the details of specific models play
a major role.

In this paper we report on a first-principle
microscopic calculation of the nonlinear response
and fluctuations for a specific model. To make
the necessarily lengthy calculations as short and
easy as possible we study a system of metallic
electrons that interact only with dilute, static,
and isotropically scattering impurities. This can
be a reasonable model for a metallic resistor
at low'temperatures. We calculate the proper-
ties of this system using a method developed some
time ago." The method has been widely applied
but it has not, to our knowledge, previously been
used to evaluate nonlinear fluctuations.

One motivation for performing these calculations
was our desire to understand the intriguing ex-
perimental phenomenon' (1/f noise) that non-

equilibrium current fluctuations are supposed to
exhibit. Our system does not appear to exhibit
this phenomenon. This result seems to agree
with recent experimental findings of Hooge and
Vandamme' on dirty systems. These authors argue
that their negative results show that. the noise
must be due to phonons. For reasons discussed
in the Conclusion, we consider this finding sug-
gestive but not compelling. In any event, we
agree with these authors that since most systems
exhibit 1/f noise, a counterexample may well be
useful in unravelling the riddle.

Although the calculation does not explain 1/f
noise and is not necessarily generalizable, it
does provide some new, interesting, and unex-
pected insights. For example, the reader may
be surprised, as we were, to discover that per-
turbation theory yields divergent current fluctua-
tions for the model. In retrospect this divergence
can be simply understood on physical grounds.
In thermal equilibrium, for frequencies uo much
smaller than both the collision frequency and the
average thermal energy, the spectrum of cur-
rent fluctuations is given by

gQ) g 0
2kT
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A is the resistance, k Boltzmann's constant, and
T the absolute temperature. We are interested
in current fluctuations about a nonzero average
current driven by an applied constant electric
field. If we treat the entire electric field as an
external perturbation, we cannot avoid the fact
that, to second order in this field, the tempera-
ture of the system will rise (Joule heating) during
a typical measurement. Indeed, if the resistance
is temperature independent, we should expect
to replace the expression 2kT/R by

(2k/8) [T(t,)+ (t —t,)dT(t, )/dt] .

It is the second term that produces the divergence.
our calculation shows how heat generation appears
in the lowest-nonlinear-order perturbation theory,
suggests how it must occur in higher orders of
perturbation theory, and indicates why it can be
neglected in linear response and what difficulties
it poses for generalized fluctuation-dissipation
the orems.

To obtain a finite result at long times, we must
explicitly cool the system. We must include the
interaction with the environment that compen-
sates the Joule heating and allows it to reach a
steady state. The-actual cooling mechanism is
neither general nor universal. We might expect
to be able to balance locally the heat generated
by the electric field and the thermal energy flux
produced by a thermal gradient. Although this
idea is qualitatively correct, we shall find that
the cooling mechanism in a true nonequilibrium
stationary state and a thermal gradient are not
precisely identical.

By eliminating the shortcomings of perturbation
theory and allowing the heat to flow away, we
obtain, with certain restrictions, finite non-
equilibrium current fluctuations. Our field-de-
pendent corrections to Johnson noise do not re-
solve the 1/f mystery. At best, they eliminate
some theories and offer some clues. We discuss
these matters briefly in the Conclusion.

Our discussion is organized as follows: In Sec.
II, using the Boltzmann equation, we study the
problem of heating and cooling for simple one-
body observables. In Sec. III we show, guided
by the results of Sec. II, that after the diver-
gences have been removed meaningful results
can be obtained to leading order. In Sec. IV we
summarize the results and in Sec. V we comment
on 1/f noise, how to go beyond our calculation,
and nonequilibrium perturbation theory in general.

II. JOULE HEAT FOR ONE-BODY OBSERVABLES:
STATIONARY DISTRIBUTION FUNCTION

Although it is unavoidable, Joule heat appears
in a slightly obscure manner when we calculate

&f ---- f f—+eE ~ V f+v V,f=-
Bt P (2 1)

where f is a, distribution function which depends
on the momentum (p = m v) and the position x,
is an energy-independent scattering time, and

(2.2)

Assuming the solution can be expanded in powers
of the applied electric field, we write

with

f (o) +f (i) +f (2) +. . . (2.3)

f (0) —(I/[ 8(P /2m-)L) + 1]J (2.4)

In Eq. (2.4) we have introduced the conventional
notations p for the chemical potential and P for
1/kT. Substituting Eq. (2.3) into Eq. (2.1), we
find in a uniform system, for times much longer
than ~, that

7eE. v f (o) (2.5)
A

pf'"= —7(eE V )'f")t.
4&

Equations (2.3)-(2.6), the "standard" pertur-
bation solution' of the Boltzmann equation, should
be contrasted with Huberman's' "long-time ex-
pansion. " The "standard" solution is valid only
for systems that remain close to equilibrium
(6T/T « I).

The second-order change in the energy density
can be calculated from

(2.6)

(2.7)

where 0 is the volume of the system, e =P'/2m
—)), and N(0) is the single-spin density of states
for a system whose Fermi wave vector is k~
(we take k = 1)

N(0) =mk /27('. (2.8)

Substituting Eq. (2.6) in Eq. (2.7), we find that

& 8 = (v '/R) t, (2 9)

where 8, the resistance of the system, ' can be

current fluctuations. To achieve a clearer under-
standing let us first discuss the effects of heating
on one-body observables using the Boltzmann
equation.

The results we shall establish will guide us in

interpreting and evaluating the infinite vertex
corrections that arise in calculating current fluc-
tuations and shed light on some general aspects
of heat generation in perturbation theory.

The Boltzmann equation corresponding to our
model can be written in the form
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expressed in terms of L, the length along which
the voltage V =EJ is applied, andA, the cross-
sectional area, as

produced by the electric field and thermal gradient
can be computed classically. For a uniform cur-
rent" (V ' j =0) we have

8 = rnf, /ne'vA;

n is the density.

n = a,'/3~'.

(2.10)

(2.11)

+ (VT)' -T (—V T) j + )(V'T,

(2.19)

Clearly, Eq. (2.9) represents Joule heating.
Since most experiments are performed in steady-
state configurations, we seek stationary solutions
of the Boltzmann equation. Intuitively, we expect
to be able to apply a "thermal gradient" to the
system that will take advantage of the electronic
thermal conductivity to carry away the heat
generated by the electric field and lead it to a
nonequilibrium steady state. Let us obtain the
stationary solution of Eq. (2.1) in the presence
of an electric field and a "thermal" gradient.
Expanding in powers of the electric field and al-
lowing f (') to be position dependent, we obtain
from the Boltzmann equation (2.1)

f (t) 7eE .& f (o) (2.12)

&q. vf (2) + 7-x[f (2) f (2)j &(eE.p )2f (o)

(2.13)

where q is the wave vector in the direction of the
gradient which we arbitrarily choose to be per-
pendicular to the electric field.

Equation (2.13) can be solved by expanding in

spherical harmonics and keeping only the first
two terms 'Subs. tituting the solution in Eq. (2.7),
we find that

58 = 2+(0)(eE/q)'n, (2.14)

~8=C,~T, (2.15)

U'/R=)(q'5T, Q, (2.16)

where C~ is the specific heat for our model, "
C), = 0 (m'/2) (kT/E), )nk,

and K is the thermal conductivity, "
C~ n~~'

K= =——O'T =——,To .Am33e'

(2.17)

(2.18)

The last equality has been written in terms of the
electrical conductivity. o to recover the Wiede-
mann- Franz law.

Equation (2.16) can be obtained by the following
arguments: Suppose that we include a thermal
gradient to remove the heat generated by an elec-
tric field. The change in the local energy density

which is identical to the result that can be heuris-
tically derived from

where Q is the thermopower and j the current
density. In the configuration where current and
temperature gradient are perpendicular, we have

V'T ~ j =0. (2.20)

6T, the difference between the maximum and
minimum temperatures across the sample, satis-
fies the condition

6T«T.
The inequality

(2.21)

I)(V'T
I
» -(~T)'

dT
(2.22)

follows because

(2.23)

and

KV'T - )(5T/I. ' (2.24)

where L is the length of the sample along the
thermal gradient. Equation (2.19) therefore re-
duces to

]. dg ]. y'
dt

(2.25)

Thus the energy density will be time indepen-
dent if

U'/0 R = —)(V'T . (2.26)

In Fourier space, this equation is identical with
Eq. (2.16).

It should be emphasized that the solution to Eq.
(2.13) is not exactly like the solution we would
obtain by applying a simple spatially dependent
temperature to the system and requiring that heat
be carried away by the thermal gradient. %e
elaborate on this point in the Appendix.

The second-order effect of the electric field on
gny one-body observable can be calculated from

(A) =2K(o)of de j I'"(e) (2.27)

where I'"(e) depends on the observable, e.g. , for
the energy density I'"(e) =e. Note that every one-
body observable will have a time-independent
value when the solution to Eq. (2.13) is used in Eq.
(2.27). In the case of the energy, that value is the
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t„-~'T(uT/est)', (2.29)

where t„ is the heating time of the system that can
be determined from

T Tcg" (2.30)

These results suggest the reason why, in linear-
response theory, we need not examine how the
heat is dissipated when we make realistic calcu-
lations. However it is done, as long as the heat
is dissipated the linear response is the same.

By contrast, a quantity that depends on f i'~ will
behave quite differently in experiments described
by Eq. (2.6) and Eq. (2.13). Joule heat is one
obvious quantity that depends on f".A less ob-
vious quantity is the current fluctuation to lowest
nonlinear order (Z') in the applied field.

The Boltzmann equation can only be used to
calculate one-body observables. To determine
the current fluctuations, a Aeo-body observable,
we must use a microscopic theory. As we noted
in the Introduction a straightforward application
of microscopic perturbation theory leads to in-
finities reflecting Joule heating. These infinities
in the current fluctuations can be identified with a
certain part of a diagram. %e can find how to
include the "cooling" mechanism that leads to a
steady state by establishing a formal equivalence
between the equation for the troublesome part
of that diagram (a vertex equation), and the per-
turbative solutions to the Boltzmann equation dis-
cussed here.

III. NONEQUILIBRIUM CURRENT FLUCTUATIONS

A. Model

1. Harniltonian

The resistor model' described by the Boltzmann
equation (2.1) consists of free electrons in a posi-
tive background scattering off random one-body
impurity potentials. The Hamiltonian is given by

one expected from simple macroscopic argu-
ments.

Although the two solutions to the Boltzmann
.equation we have presented correspond to dif-
ferent physical situations, the values of f i'~ [see
Eqs. (2.5) and (2.12)] are the same. Since the re-
sistance of the system, for example, can be de-
termined by calculating the nonequilibrium cur-
rent from f i'~, the value of the resistance de-
termined in a steady-state experiment [corres-
ponding to Eq. (2.12)] or in an experiment that
lasts for a "short time" [corresponding to Eq.
(2.5)] are the same. " Here, "short time" means

(2.28)

H= Ho+ H~, (3.1)

Ho= epCpsCps ~

p, s

H, = g Q u(-q)e'~'"'CP, CP, ~, ,
p, qs x&

(3.2)

(3.3)

where u(q) is the spatial Fourier transform of the
scattering potential, x; are the positions of the
random impurities, e&= (P'/2m) —p, and Cp,
destroys a particle in a state of momentum p and
spin s. The field operator 4, is given by

eg(x, t) = g Cpg(t)e (3.4)

In the dilute limit (an impurity concentration n,
of, say, less than lfo), it is possible to deter-
mine the properties of this model' by averaging
over the positions of the impurities. Indeed, once
the averaging is carried out, the problem is
equivalent to solving a field theory with an effec-
tive interaction Hamiltonian given, in the inter-
action representation, by

a, = —' g gc;...(t')c;. -„(t')
p, p', q ss'

&& [-ilu(q)l ]C&(t)CP,-„,(t) . (3.5)

where lt(q)l' is the t matrix for scattering off the
potential.

Many of our results are independent of assump-
tions (a) and (b).' The Coulomb interaction be-
tween the electrons can also be neglected since
we shall be concerned with space-independent
perturbations which do not alter the density and
therefore do not require us to take the long-range
Coulomb interaction into account immediately.
Finally, this model is realistic only when the
temperature is low enough so that electron-phonon
collisions are less important than impurity scat-
tering. For simplicity, and in line with this re-
striction we shall take the electrons to be a highly

We must also neglect all diagrams that can be
disconnected by cutting an arbitrary number of
interaction lines. We shall assume that the scat-
tering potential (a) has no bound states, and (b)
is so short ranged that it leads only to s-wave
scattering of the electrons at the Fermi surface.
Note that we do not need to assume that the Born
approximation is valid. "'" When it is not, we
may set

lu(q)l'- lt(q)l' (beyond Born approximation),

lt(q) l'- lt(0) l' (s-wave scattering), (3.6)

lul'-=lt(0) I',
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(3.7)

(3 8)
\

(3.9)

(3.10)

degenerate Fermi gas.
We shall need the following propagators"'":

G' (l, 1 ) = — &~(1)~'(1')),
G' (1, 1') = i &4'(1'H'(1)),

G (1, 1') = —i [&4'(1)4' (1'))

+ &+'(1')e(1))]e(f,—f, ),
G"(1, 1') = i [&e(1)e'(1'))

+ &~'(1')~(1))]e(f, —f,),

G' (k, (u) = if((u)A (k, (u),

G~(k, (u) = —i[1 -f((u)]A(k, u)),

where

(3.16)

(3.17)

obtain

i[G"(k, &u) —G"(k, (u)] =A(k, (u)

1/~
((u —c„)'+(1/2~)' '

(3.15)

where 1 and 1' stand for the space-time coordi-
nates and 6(t) equals one for t &0 and zero for
t&0.

2. Thermal equilibrium solution of the model

In the limit

k'~L» 1, (3.11)

where l is the mean free path [defined in Eq.
(3.13)], we can neglect all overlapping diagrams.
The solution for the electron propagator' equation
(Fig. 1) is then, in units in which 8 = 1,

f(&u) = (e + 1) ' . (3.18)

H~t —— gt x&tA& x&$ d x

This completes the solution of the problem in
thermal equilibrium.

3. Coupling to the external electromagnetic field

We wish to determine the effect of an electric
field described by the time-dependent transverse
(V A = 0) vector potential in the interaction Ha, mil-
tonian

G (i ~) f~"u=e " G-rx"~ "oo")
p, (, i)A, (, t)A, (, f)d' .

&PSC
(3.19)

= [G"(k, (u)]*. (3.12)

The collision time 7 and the mean free path / are
defined by

v '=—2vN(0)n, ~u~'; l —= @~7/m =v~T. (3.13)

We now make the assumption of thermal equili-
brium by using the boundary condition" valid
in this case

The index i refers to the vector Cartesian com-
ponents (with a summation convention). With the
notation of Schrieffer, "we have

j;(x, t)—= . g (kt(x, t)V, C, (x,t).
Vl 2

—[V;et(x, t)]e, (x, l))

p, (x, t)A, (x, t)
SlC

G' (k, (u) = —e ~G'(k, (u) . (3.14)

From Eqs. (3.12), (3.7)-(3.10), and (3.14), we
=-jf (x, t) + p, (x, t)A; (x, t) .

SIC
(3.20)

r(r) r % rh r +

~r fr( r let ~l

rr( r Lrl r )rf r Lr

~X-~

rt r ~ rfrI r ~ rlr

+ ~ ~ ~ ~ ~ ~ ~

FIG. 1. Propagator equa-
tion including all nonover-
lapping self-energy dia-
grams. The thick solid
line is the "fully dressed"
electron propagator with
the arrow pointing from
the + coordinate toward
the 0 coordinate.

r+i
/r f r 1
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The electric charge density is defined by

p, (x, t) -=—e g @~ (x, t)4, (x, t) . (3.21)

C. Current autocorrelation function in thermal equilibrium:
Johnson noise

We have described the electric field by a vector
potential and not a scalar potential for technical
convenience.

B. Method of calculation

Let us define the propagator"

tGG(1, 1') =(T,4'(1)C ~ (1')), , (3.22)

IIG(tt )=t(f jv , G', (t; v)G,(rt)G(v)', (3.23)

where A is a constant, U(~) an interaction po-
tential, and C the KBL contour, rules for re-
casting this expression in terms of the usual
propagators are useful. For this type of "series"
multiplication we have

co

&G'(t, t') =2 d~ [G,'(t, 7)G", (7, t')

+ G, (t, T)G,'(~, t')]U(~), (3.24)

G" "
( t, )II(IfIjt~G"I"-I(t~),

xG ( ~(~, t')U(T). (3.25)

These results can be generalized. Suppose that
(symbolically), we have

&G:A G0G0G0 G() ~ (3.26)

We may then write
)

6G' =W'[GGG"G",

+ GRGRG

. GA+ GRG'GA . ~ ~ GA

GA+. . .+ GRGBGR. . . P(]

where T, represents the time-ordering operator
along the Kadanoff-Baym-Langreth (KBL) con-
tour. The usual rules of perturbation theory'"'"
apply to nonlinear response if propagators are
time ordered along the KBL contour.

When perturbation theory" yields, for example,

Although the phenomenon of Johnson noise does
not depend on the specific nature of the resistor,
it is instructive to see how, without the fluctua-
tion-dissipation theorem, Johnson noise is pre-
dicted by the nonequilibrium formalism for our
model. The quantity measured in a Johnson noise
experiment can ordinarily be expressed in terms
of" /

(j' j' ) -=f e' "' "(j';(x, tjj,'(x'I')),
(d0 A0

&& dt dt' d x d'x' . (3.31)

The bracketed quantity on the right-hand side
can be regarded as a time-ordered product along
a Kadanoff-Baym- Langreth' or Keldysh' contour
with t always later than t'. Since the time order-
ing requires that t be later than t' we can write
Eq. (3.31) as

d'k d(d e'k;k;
~2 —(GPSS(IIGj . (2 )3 2 2

x G'(k, &tj)G'(k, &u+ ~,)QE . (3.32)

The total time of the experiment V' and the volume
of the system A enter because the Green's functions
depend only on the time- and space-coordinate dif-
ference. The expression (3.3) corresponds to the
diagram" of Fig. 2. Because the scattering is
isotropic and no momentum is transferred at the
current vertex, all of the vertex corrections
vanish (i.e., loops of the type illustrated in Fig. 3
vanish after integration over the direction of k).

Assuming particle-hole symmetry, we first
perform the c integration" and then the (d integra-
tion, obtaining"

2 2

0

From linear response theory' we know that the
resistance R of this model is given by Eq. (2.10).
From the definition (3.31) we have

R(A) ~IGR{A)GR(A) QR(A), GR(A)
0 0 0 0

(3.27)

(3.28)
&q'. jj ) =l.' dtdt'e* G" -"(I'(t)I'(t')),

(3.34)
The other rule we shall employ concerns parallel"
multiplication. If G(k, )

&(t, t') = G(l(t, t')GG(t', t) (3.29)
j (O, -cuo) j (O, cup)

(no integration implied) then we may write

&'(t, t') = G,'(t, t') G&(t', t) . (3.30)

Equivalent rules may be obtained by the analytical
continuation procedures of Gor'kov and Eliash-
berg or several other methods.

Q ( k v
QJ + GJp )

FIG. 2. Diagram for the current fluctuations. The
solid lines are dressed propagators. The vertex cor-
rections have not been included because they vanish:
see text.
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k ~+o

j (O, cup)

FIG. 3. Example of ver-
tex correction that vanishes
for our model.

=2R '[&u,/(e~o —1)] (&u,~«1)

- 2kT/R ((d, T «1,p~, «1).

(3.35)

where I is the macroscopically measured cur-
rent. In the limit ~,«1/v, we deduce from Eqs.
(3.34), (2.10), and (3.33)

D. Electric-field4ependent corrections to Johnson noise

In this section, we outline our calculation, em-
phasizing the technical difficulties to which we
referred earlier. In particular, we examine the
divergent terms that arise in perturbation theory,
and which will be treated more carefully in the
following section.

We want to find the current autocorrelation
function to second order in the vector potential
A for the interaction Hamiltonian in Eq. (3.19).
If we take the time integrals a,long the KBL con-
tour, we can proceed exactly as in the equilibrium
case.'" Using Eqs. (3.19) and (3.20) and letting
7;, inside the angular brackets denote a time-
ordered product along the KBL contour, we im-
mediately obtain

+ — d'x(r, j f(x)p, (x')j', (x)}A,(x')A, (x) +—,d'x (7,jf(x)jf(x')p, (x)}A„(x)A„(x}

2

+ — —, d xd x(T,j~~(x)j~~(x')j~~(x)jf(x))A„(x)A, (x) . (3.36)

Here x stands for the four coordinates (spatial
and temporal). The time integral extends along
the KBL contour and the spatial integrals over
the entire volume of the infinite sample. The
first term in Eq. (3.36) comes from the diamag-
netic contribution to j, and j;, the second and
third ones come from a first-order expansion of
the S matrix and a diamagnetic term (respectively
that ofj; and that of j;), the fourth term comes
from the last term of Eq. (3.19) in first-order
perturbation theory, and the last term comes
from the first term of Eq. (3.19) in second-order
perturbation theory.

Since the external field is real, we choose

(3.37)

(f)
A~~. ( )

(A -())t A g l))t)
C- Bt C

(3.38)

The Fourier transform of Eq. (3.37) is

e '(' "e' A,„,(t) d x dt

= 5 (q)[A5(z —p)+A+5((g+ v)](2v)'. (3.39)

If we substitute Eq. (3.37) in Eq. (3.36) we find
terms proportiona, l to A', A*, and AA*. We
shall calculate the latter terms which give the

desired time-independent contribution to the cor-
rela, tion function. "

As in the case of Johnson noise we shall be in-
terested in

x dt dt' d'x g'g' . . (3.40)

From Eq. (3.36) we can enumerate the diagrams
we need to evaluate Eq. (3.40). They are sketched
in Fig. 4. It is understood that each of these
graphs yields a11 of the "time orders" the rules
of Sec. IIIB require. As noted previously, only
the graphs proportional to AA* have been kept.
Parts (a)-(d) of Fig. 4 come, respectively, from
the first, second, third, and fourth terms of Eq.
(3.36) while parts (e)-(h) all come from the last
term of Eq. (3.36); parts (i) and (j) define the
shaded areas that appear in the graphs and repre-
sent vertex corrections. The various other sym-
bols are defined in the figure caption.

As they did in Eq. (3.32), the corrections to a
single current vertex [Fig. 4(i)] vanish for iso-
tropic scattering when q= 0. However, in general,
the corrections of Fig. 4(j) do not.

Gauge invariance imposes many constraints on
the calculation. In particular, the vertex cor-
rections in Fig. 4(i) (see, for example, Ref. 30)
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(- o+v)—

Cd+ V

td + Itlp

& (-v)
td + V

(- td p+ v) ' ' ' C' (tdp )

CCI+Cdp

f (v)
td ~ Cd +V

A

(-Cdp) -~ ~&e o «(cdp v)

td + td p

A" A

( v) (-v)

Cd+Id O

A

o- )

+(v ~-v)
(a)

td
A

(-tdp+ v)
e ~ ~ (e (Cdp)

td + tdp-V . Cd +Cdp

A ~(v~ „)
(-v)

(b)

(- o) A.& ~ ~ ~ (cdtl- v) ( C )

Cd + tdo ~ td +Ido- V

A +(v~-v)
(v)

Cd-Cdp

(- tdp)
- & ~ (tdo) (d)

+(v ~-v)
A A

( v) (-v)

as well as those of Fig. 4(j)" must be included
when the propagator in Fig. 2 is employed. Also,
since there can be no response to a pure longi-
tudinal vector potential at zero frequency, and
since the response must be even in v because of
the v ——v symmetry, the leading contribution
for the diagrams of Fig. 4 will be proportional
to v'.

We proceed to evaluate the diagrams of Fig. 4.
The only two-vertex diagram we must evaluate
is shown in Fig. 4(a). When the vertex in Fig.
4(i) is inserted for the shaded area, Fig. 4(a)
clearly represents a density-density correlation
function and vanishes at q= 0."

The three-vertex diagrams are those of Figs.
4(b), 4(c), and 4(d). For a system with particle-
hole symmetry these diagrams cancel" in pairs.
We can prove this fact by using the identities

A
&(-v)

A
0 (-v)

Cd-V

(-tdp)
(e)

(Cdp)

G'(Cd, ~) = -G"(-Cd, —e),
G'(Id, C) = —G'(-Id, —C),

(3.41)

(3.42)

Cd+ tdo td+ tdo- V

AII

(v)

Cd

(-tdo)

A" A

)( v) )(-v)
. Cd+ V

td+ Cdo

( v) .~v. (-v)

(-cdo) (Cdtl)

(-tdp) (Cdp)

A" A

( v) (-v)

(v}

Cd+tdp
~

td+Ido-V

(v) +(v~-v)
A" A

( v)g (-v)g
~ td+V .
I

(- Cdp) (tdo)

td +td +(v~ -v)

Cd - tdp

(-tdp) (tdp)
Cd ~--

I td
Cd-V yA" A +(v~ v)

( v) (-v)

Cd - tdp

(-Cdp) (Cdp)
I I td

+(v ~-v)
A A

( v) (&v)

I ~ I
I I
I I

X X + ~ ~ ~ (t)
I I

I I

and changing a few integration variables. The
same method can also be used to show that each
four-vertex diagram is exactly equal to its "up-
side down" counterpart.

Before evaluating the finite corrections that
the diagrams in Figs. 4(e), 4(f), and 4(g) yield,
let us consider the troublesome diagrams in

Fig. 4(h). As in the other diagrams in Fig. 4,
the vertex corrections in Fig. 4(i) vanish here.
lt is the vertex corrections of Fig. 4(j) that lead
to problems. Figure 5 shows schematically all
nonvanishing time orderings of the diagram ob-
tained by inserting the first term in Fig. 4(j) into
the first diagram in Fig. 4(h). (Each of the re-
maining time orderings demanded by the rules
in Sec. IIIB has a loop that consists entirely of
advanced or entirely of retarded propagators and
vanishes). Using the identity

I I
I

I I

I I I
I I I

I
I

X
I

I

X + ~ ~ - (j)
I I

FIG. 4. Diagrams for the current autocorrelation
function to second order in the applied field. The shaded
areas are defined by Fig. 4(h) and 4(i). All diagrams
must be time ordered with the rules of Sec. III B. Only
the frequency labels have been marked on the propaga-
tors. The frequency in parentheses is the frequency
that comes out at a vertex (momentum never comes
out of the v.ertices in these figures).

represents a j~ vertex [see Eq. (3.20)j;
~ & ' ' represents a p, A vertex [see Eq. (3.20)];

represents a j .A vertex [see Eq. (3.19)l;
represents a peA. vertex [see Eq. (3.19)].

Note that for each diagram there is another one with
(& -&). Additional diagrams obtained by this simple
variable change must be included in the final result.
Note that the vertex corrections in I'ig. 4(i) vanish for a
j or j ~ A vertex.

G (Cd, e) =G"(td, c)*, (3.43)

]
X v'+ 1/v' td,'+ 1/~' (3.44)

To include the remaining vertex corrections in
Fig. 4(j), we multiply the result of Eci. (3.44) by
the vertex shown in Fig. 6. Although we are
interested in the case &, = +,= ~, for the moment

and the fact that the product of G' and G' is real,
we see that the diagram in Fig. 5(b) is real and
that thediagrams in Figs. 5(a) and 5(c) are complex
conjugates. The sum of all these diagramS is real
and its value is

2e' N(0) ~k' Cd, —v

9 5 0-v ] e Mo ]



MICROSCOPIC CALCULATION OF THE NONLINEAR CURRENT. . . 1729

A" ( v) A(-v)

)
G"( GA

+V

A (v) A(-v)
JL

GRjG ) GA

G

A ( v) A(-v)

Gai G"i G»
+v

G

FIG. 5. Only nonvanish-
ing contributions to one of
the diagrams in Fig. 4(h).

let the frequencies ~, and z, remain arbitrary.
%e can write the solution to the vertex equation

I' = 1+n, iui' N(&) de
1 1

(d~ —E —z 2T Q2 —f +2 27

(3.45)

using (3.13), in the form

r = (o), —u), —i/T)/(o), —u),) . (3.46)

It is infinite when cu, = ~, = el Before discussing
this infinity further let us calculate the remaining
diagrams in Fig. 4(h) formally. For this purpose,
we add the (v —-))) term to Eq. (3.44), multiply
the result by I', and double it to account for the
"upside down" diagrams. The result is

c'm z 9 e ' o "& —1 e & o'"& —1 e o —1 (v'+1/7')(&u'+1/7') (3.4V)

%e shall come back to this equation.
For the diagrams of Figs. 4(e), 4(f), and 4(g),

we obtain after a calculation whose tediousness
cannot be overemphasized

(j j ) = v'ni —+—k~
$1 1 4 2e N(0)

field (v- 0), we have

(dp- V up+ V
(+0) o o(QJ -v& ~ + 8(uJ +o&

pp e p i e p

2(dp
p

= 3(csch' —,'Po)o)( —,'Po)o coth —,'P(oo —1) . (3.49)

(O)o —V) &do

g ((d p-V) ] Q(d p

1
X 2 i 2 o q 2AA*+(V~ —V) ~

v2+ ly v p+ ly v

(3.48)

Note that (a) this correlation function, as well
as Eq. (3.47), vanish when w=~. To verify that
this behavior is correct, observe that with non-
interacting propagators the calculation would con-
tain products of the form G'(e, e)G'(&u+ e„e)
which vanish due to the 6 functions in the spectral
weights. (b) Equations (3.47) and (3.48) also give
a vanishing contribution when p =~ (7 = 0) or &so= ~
as expected. (c) In the limit of a constant electric

To relate Eq. (3.48) to directly measured quan-
tities, let us consider a special case. In the ex-
Perimentally relevant regime, Puro«1 and
pv«1, the approximation

lim B(o)o) = 1
8QJ p~ p

is valid. In terms of the constant external elec-
tric field E, '4

(3.50)

2@~~+= c E (3.51)

in the limit vv«1, coos«1, Eq. (3.48) reduces to

(j „j~ ) - &Q —+ —
4 I),„N(0) 'roE—(3.52)

Using Eqs. (2.10), (2.11), and (3.34), we can write
Eq. (3.52) as

GA

QJl I
I+ X

Np
I

GR

FIG. 6. Nonvanishing
sections in Fig. 4(h).

GA

g

~l
Ix

QJp I
I

GA

Ml

Olg
i

GR

+ ~ ~ ~

contributions to the vertex cor-

dt' —te' p' ' ItIt' „, =—&I

= 0.156—

eEl ' 2'&

(3.53)
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where I is the length of the sample in the direc-
tion of the electric field and V =El. is the applied
external voltage.

Disregarding the infinite contribution from Eq.
(3.47), the total current autocorrelation function
including Johnson noise is given by Eqs. (3.35) and
(3.53) as

(II)-.= „1+0156 u, +
2kT eEl '

I

(3.54)

the dots standing for higher-order terms in a
power series in (eEl/kT)'. This parameter can
be simply interpreted as the ratio of the energy
gained between two collisions to the average ther-
mal energy kT: it must be small for the term
calculated in this section to be the dominant cor-
rection to Johnson noise. " Note also that in
thermal equilibrium and when Qpp7 «1, the cur-
rent and voltage autocorrelation functions satisfy
to a good approximation the relation

with &T, the small temperature increase, de-
termined by

dT d5' ]. t/'
6T = —,—~t=-

d8 dt Cp
(3.57)

where C~ is the specific heat. (For sufficiently
small V', OT will be small even after a relatively
long time. ) Using Eq. (2.17), the free-electron
specific heat appropriate for our impurity model,
we can calculate 5T in Eq. (3.57) and substitute
in Eq. (3.56) obtaining

( )
2kT E/~~1 5t

(p Q gT] g y) (3.58)

lf we combine Eqs. (3.45), (3.47), (3.49), (3.50),
(3.51), (2.10), (2.11), and (3.34), we can express
the contribution of the infinite diagrams in Fig.
4(h) in the form

(VV) = jt (jj)
This relation is not valid for Eq. (3.54) how-

ever. When nonlinear fluctuations are important
the nonlinear response cannot be neglected. In-
deed, the nonlinear fluctuations and the nonlinear
response are both related to various analytic
pieces of the same imaginary frequency four-
particle vertex. '"

The significance of the infinite vertex correc-
tions can be understood by considering how John-
son noise is modified when the Joule heat pro-
duced by the weak currents does not escape. After
some time, the thermal equilibrium noise should
increase by an amount

5(II)„=(2/jt )k5T, (3.56)

Clearly then, with"

9 5t 5t
7t' 7 7 (3.60)

the infinite diagrams correspond to the modifica-
tion of Johnson noise that results when the tem-
perature continues to increase linearly with time
forever. In the calculation of this section we
assumed implicitly that the experiment lasted for
an infinite time when we took the Fourier trans-
form in Eq. (3.40). The plausibility of the identi-
fication in Eq. (3.60) may perhaps be enhanced
by rewriting the vertex (3.45) in the limit cu,
= =seas2

I = ].+I'= 1+ 1+ 1+ 1+ 1+ (3.61)

p- ux —xi +s ++sx

(3.62)
where s is a spin index and x; is the position of
the impurities interacting with the conduction
electrons through the potential u(x-x;).

To calculate the total energy ckange produced
by an electric field (described as usual, by a
vector potential), we must evaluate the graphs
in Fig. '7, which correspond to

and arguing that if I" counts the number of col-
lisions that occur during the time of the experi-
ment, then it is indeed approximately equal to
5t/T where 5t is the time of the experiment (in-
finite in Sec. IV), and v is the average time be-
tween collisions.

Naturally, Eq. (3.58) is not valid when 5t is
large since the specific heat Eq. (2.17) is a func-
tion of temperature and thus will change with
time. [See also Eqs. (5.5) and (5.6) andaccompany-
ing remarks. ] We shall see in Sec, IV how the
i~finite quantities can be avoided and the heuristic
arguments given above put on a firmer basis.

E. Equivalence between the Joule divergent vertex equation
and a Boltzmann equation for the one-body distribution
function: Calculation of heating effects in the current

fluctuations

To relate the calculation of heating effects on
one-body and two-body correlation functions, it
is helpful to calculate the second-order effect
of the electric field on the energy density. We
shall find that this calculation has infinite vertex
corrections similar to those we encountered when
we calculated the current fluctuations.

We take for the energy density operator"

$(x) = p ——. + 4, (x) —.+ @,(x)
V eA ~ 1 7 eA

C SPZ 2 C

acr(e~zt)' r
(3.59) 8 (q = 0, v' = 0) = f 8 (x, t) d'C dt . (3.63)
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Note that we can evaluate the diagrams as if we
were calculating the time average of a quantity
independent of time, i.e., no frequency emerges
from the b vertex. Vfe know, on the other hand,
that the total energy must be a linear function of
time when a constant electric field is applied.
That is why the infinite-vertex corrections (pro-
portional to the "infinite" time of the experiment)
enter. I et us show this fact more explicitly.

First, note that the three-vertex diagrams in
Fig. 7 (in contrast to those in Fig. 4) may con-
tribute; the additional factor of (s =k'/2m —)i)
associated with the kinetic energy vertex changes
the parity of the integrands.

It is tempting to infer from this argument that
the diagrams with two corners vanish. However,
this conclusion is fallacious. %ith the additional
factor of e from the energy vertex, the integrals
extend far inside the Fermi surface and particle-
hole symmetry is violated.

Because the 4 associated with an energy vertex
is always later on the KBL contour than the cor-
responding 4, the rules of Sec. IIIB for "series"
multiplication can be used to enumerate the various
time Orders.

The most interesting graphs, those that give
rise to Joule heat, are illustrated in Figs. 7(i)-

V(l). Writing the contribution of Fig. 7(j) in the
form"

E, = —2i' 2@A* 2, —e GG

d'k'
x

)~
s'QQI"Q'g',

(3.64)

we can show, by performing an integration by
parts in the first integral, that 6,. equals mings
the v-0 limit of the expression corresponding
to Fig. 7(i)." Adding both terms we find that the
only nonvanishing time orders are those illus-
trated in Fig. 8.

Evaluating them, we obtain"

8, +~, =, ', 2~(0),

nial

~&* e'k~ V

3m v+1 72 (3.65)

which, with the help of Eqs. (2.10), (2.11), and
(3.51), can be written in the form

o,. + e,. = (V s/R) rVI'' (3 66)

Note that the vertex I' appearing in Eqs. (3.65)
and (3.66) is the complex conjugate of the one
appearing in Fig. 6 with cu, =~,=e.

The diagrams in Fig. V(k) and 7(1) cancel. The
leading contribution to the diagrams of Fig. 7

FIG. 7. Diagrams for the change in total energy caused by an appliedexternal. electrric field. -„- represents a
,.4",

kinetic energy vertex (c); '
— —'- represents a potential energy vertex. The potential energy vertices are associated

with a, factor n~ ~u~ ~(i)(-i) f dak' [G(k', a)]/(2z)~. The frequency &u is unchanged at the vertex. The other symbols are
defined in Fig. 4. The shaded areas represent vertex corrections.
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is thus given by Eq. (3.66)

FIG. 8. Nonvanishing contributions to the diagrams of
Figs. 7(i) and 7(j).
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I

CU —~A
(-v)

A—'~(-s)

I

X tg +
I QJ- V
I

Ql ~ ~A
(V)

, (
FIG. 9. Diagrammatic representation of the equation

for the vertex defined in Eq. (3.73). The time orders
of the inhomogeneous terms are the same as those of
the corresponding part of Fig. 5.

Figs. 7(i) and 7(j), with a net outgoing momentum

q at the energy vertex, can be written in the form

b- (V /R)f v I . (3.67) h(q, 0) = 2N(0) div &uf i'~gQ . (3.74)

%e may determine the value of the vertex
heuristically by noting that the overall factor of
1 in Eq. (3.66) arises from the a,ssumed time
independence of S. Consistent with this assump-
tion, we may write

$(q= 0, p' = 0)/K = h(q= 0, K) = (U '/R)TI'. (3.68)

In the limit v7 «1 the vertex I then obeys the
equation (see Fig. 9)

evp~ ., si(q, ro) = v, EE'+0(rrl) )'3 8&d

i dk I"(q, u)
T 4' —Vp ' q+1/7' (3.76)

But it is well known that for a resistor

~(t) = (~'/R)t.

We see that Eqs. (3.68) and (3.69) agree if

I"= r/7,

(3.69)

(3.70)

From this equation and the definition (3.73), we
deduce that

2 2 g2f'
iq'V f +7 &(f 2 -f )=7 ~ E

3 ~co
(3.76)

A'(t) =e(t)[Ae '"'+A*e'"] -e(t)[A+A*]

corresponding to the electric field

&'(t) =8(t)&(t)

(3.71)

(3.72)

[where E(t) is given by Eq. (3.38)], we can show
that the vertex equation we obtain is equivalent
to Eq. (2. 6) for the perturbed distribution function.
Since we are interested in stationary rather than
time-dependent solutions, we present instead
a proof of the equivalence between the vertex
equation with a finite momentum flowing through
and Eq. (2.13) for the distribution function. If
we define

f '~(u&, k 'q, q) =-I'(q, &u)/(v~ 'q-i/r), (3.73)

then the analytical expression corresponding to

in qualitative agreement with Eq. (3.60)." Thus,
even when the nonlinear response to a harmonic
perturbation seems to occur at zero frequency
(and be time independent), observable quantities
(e.g. , the energy in this section and the current
autocorrelation function in Sec. IIID), can depend
on the total time of the experimentt The similarity
between Eqs. (3.70) and (3.60) suggests that the
divergence that occurs in two-body and one-body
correlation functions has the same origin. Indeed,
using the vector potential

which should be compared with Eq. (2.13). The
vertex equation (3.75) with a nonzevo momentum
transfer q is equivalent to the Boltzmann equation
(~ &3) The solution of Eq. (3.75) to leading order
in (ql)' is

r (q, (g) = —
~

—,[1+0 (ql) '] .ere' s'f
g ) 8 (3.77)

x. . . [1+O(ql)'] .
(do+ 1/T

(3.78)

FIG. 10. The first diagram in Fig. 4(h) can be calcula-
ted by multiplying the piece of diagram illustrated here
by the vertex of Fig. 9 and various constant factors. All
the integrals except the one over ~ have been performed
in the result quoted for this diagram in Eq. (3.78),

The vertex that was infinite before is now finite
and it can be used to calculate the Joule divergent
diagrams. For this purpose it is useful to ob-
serve that the diagram element that appears in
Fig. 10 has the value

2/2
I s~ = 27I'N(0)if(co + (do)~ Sm'
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Using Eqs. (3.77) and (3.78), we obtain from all
the diagrams in Fig 4. (h)

that in equilibrium the current correlation function
is given by the combination G G' shown in Fig. 2,
or since

2kT m' 5T, eE/ '
// 9 T kT G = —i[1 -f((o)](1/7 ) [G (k, (u)G (k, (u)], (3.82)

where

B(~.)
((o,v')'+1 ' (3.79)

by the product of (-i)[1 f(-~)]v ' and the graphi-
cal elements shown in Fig. 10. The nonequili-
brium current fluctuations contribution in Fig.
4(h) is obtained from the sa, me elements with

Fig. 9 replacing (-i) [1 f(ur—)j~ '

kT
(3.80)

is the temperature increase consistent with Eq.
(2.16).

The difference between a pure thermal gradient
and this stationary solution for the vertex equation
(distribution function) is discussed in the Ap-
pendix.

The terms of order (q/)' in Eqs. (3.77) and
(3.78), give rise, in Eq. (3.79), to (eE//kT)' cor-
rections, smaller than the 5T,/T terms We.
have not evaluated these corrections. Indeed, they
give rise to a technical problem we have not re-
solved. It appears that the value of these terms
depends upon how the momentum q is distributed
among the current vertices. For example, if we
calculate the terms of order (q/)' in Eq. (3.78) for

(j(-,'q(1+ o.'), /) j(2q(1 o.), /')),

n being an arbitrary real number, we find, in the
limit ~,~ «1

e'k'
0(q/)'= 2m'(0) ~~ if(&u+ u),)

x [(v~q)'/15] v'[(- 7 —o.')/2] . (3.81)

An unambiguous result should not depend on o..
A similar difficulty appears to plague Eq. (3.77).
If we introduce a parameter P to describe the
division of the momentum between the current
vertices exhibited in Fig. 9, the value of the terms
of order (q/)' depends on P.

Finally, let us observe that (a) the change in the
current correlation function of a uniform system
is a factor of m'/9 larger than we would guess by
inserting the temperature change calculated from
Joule heating [see Sec. IIID and Eqs. (3.57) and
(3.60)]. This conclusion agrees with Huberman's'
observation that a uniform electric field does not
simply raise the temperature of a degenerate
electron gas. (b) The vertex in Fig. 9 describes
the change in the one-particle distribution function
produced by the electric field. This identification
may be substantiated diagrammatically by noting

IV. SUMMARY OF THE kESULTS FOR THE CURRENT
FLUCTUATIONS

e' o' ' ItIt' dt' —t

2kT m' &T, eE/ B(~,)
I/ 9 T kT ((nor} +1 '

(4 1)

where B(~,) incorporates the quantum correc-
tions [see Eq. (3.49)]

lim B(+ )= 10, lim B(eo)=0.
QQJ ~ p gQ) ~ac

In Eq. (4.1), 5T„ the amplitude of the Fourier
component of the "temperature gradient" in the
system, satisfies Eq. (2.16), T is the tempera-
ture, R is the resistance [Eq. (2.10)], k Boltz-

(4.2)

We have ascribed to Joule heating the divergent
addition to the current fluctuations we found by
perturbation theory to second order in the electric
field. More specifically we have shown that the
diverging vertex reflects the secular growth in
time of the E' correction to the one-body distribu-
tion function when there is no "cooling" mecha-
nism. A finite, time-independent solution of the
vertex equation (or equivalently the Boltzmann
equation) can be obtained by including an additional
"self-consistent" cooling gradient tra~verse"
to the electric field. With this stationary vertex,
we obtain finite current fluctuations.

The stationary distribution function cannot be
described precisely by a spatially dependent local
temperature [see Eq. (3.79) and the Appendix].
As a result, the shifted values of most observ-
ables cannot be obtained from simple macroscopic
arguments and the usual definition of temperature.
The energy density is a notable exception.

Our final result for the steady-state current-
current correlation function of an electron gas
with impurities (which is a good model for a,

metallic resistor at low temperatures) is
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mann's constant, I the mean free path [Eq. (3.13)],
and e the electron charge. The first term of Eq.
(4.1) is the equilibrium result (Johnson noise), the
second term, of order 5T,/T, represents the
fact that the "temperature" of the system is on
the average slightly higher when an electric field
is present [Eq. (3.79)], and the third term repre-
sents'corrections that have been calculated in
Sec. IIID [see Eq. (3.53)]. These corrections in-
volve the expansion parameter (eEl/kT)', the
square of the ratio of the energy gained between
collisions to the average thermal energy. " As
noted in Sec. III E, additional ambiguous cor-
rections of the same ordeg arise from the dia-
gram of Fig. 4(h) after it is made finite. These
ambiguous corrections may reflect the fact that
the corrections to the boundary dependent hydro-
dynamic terms are themselves sensitive to the
boundaries. However, by setting q- L~' in Eq.
(3.80) we find that

3 L eFt
(4.3)

which indicates that the ambiguous corrections
are probably unobservable. We shall therefore
not study them further.

Sufficient conditions for the validity of Eq. (4.1)
are listed below. They fall into several cate-
gories. Presumably several of the conditions
are not necessary.

A. Validity of perturbation theory

8. Validity of the impurity scat tering model

(i) The expansion parameters (eEl/kT)' and
5T,/T must be small. The latter expansion
parameter allowed us to use the "standard" per-
turbative solution of the Boltzmann equation for the
infinite vertex [see the remark below Eq. (2.6) and
Eqs. (2.13), (3.73), and (3.75)]. Note that Eq.
(4.1) describes the nonlinear current fluctuations
along the applied constant electric field. When
the corrections to Johnson noise are important,
the distinction between corrections to voltage and
current fluctuations is also important; they are
not, in general, simply related [see remark
following Eq. (3.55)].

I.i,terally, our model is restricted to impurity
scattering potentials which have no bound state
and are very short ranged [see Eq. (3.6)]. The
condition on the range enters through the assump-
tion of s-wave, isotropic scattering, If the scat-
tering is anisotropic, vertex corrections which
account for forward scattering will alter the
value of 7„, the collision transport time. How-
ever, in terms of T„our conclusions are probably
unchanged. '

C. Validity of hydrodynamic assumptions

(iv) The conditions for the Boltzmann equation
should be satisfied. In particular, the sample
must be large enough for the inequality I ~/l»l
to hold [see remark before Eq. (3.77)] (L, - q ').

(v) The frequency may have to be larger than
the rate at which the system exchanges energy
with the substrate or other parts of the apparatus.
Since, in general, these couplings involve long
relaxation times, they can only, affect correlations
at very low frequencies. If J ~ is the shortest
sample dimension, it is inconceivable that those
couplings could modify our conclusions at fre-
quencies higher than the thermalization frequency
(&/L, )'/3T

Some time ago, Hooge and Hoppenbrouwers"
reported observing high-frequency corrections
to Johnson noise that scaled with the square of
the applied voltage. Since 5T, in Eq. (4.1) is re-
lated to the electric field via Eq. (4.3), we sur-
mise that they were simply looking at the first
term of Eq. (4.1) (heating). (See Note added in
proof. ) The more recent experiments of the
Eindhoven group' mentioned in the Introduction
and in Sec. V maybe more relevant to our calcu-
lation.

V. CONCLUSION

In this final section we comment on the relation
between our calculation and 1/f noise, indicate
how to extend our calculation, and reflect on what
we have learned about nonequilibrium perturbation
theory.

{ii) Impurity scattering must be dominant.
Typically this condition holds at low temperatures
where phonon scattering is negligible (see Sec.
IIIA).

(iii) The impurities must be dilute. This con-
dition on their concentration may be expressed
in the form k~jt»1, where k~ is the Fermi wave
vector and l the mean free path [see Eq. (3.11)].

A. Could our model exhibit 1/f noise?

Our calculation does not give 1/f noise. This
result may be confirmed by recent experiments'
which show that as impurity scattering becomes
dominant, the amplitude of 1/f noise decreases.
However, the systems investigated experimentally
are Ohmic metal semiconductor point contacts
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whose modeling by free electrons scattering off
impurities is not entirely unambiguous. If our
model does not apply to the systems studied by
Hooge and Vandamme' and exhibits 1/f noise,
should we have found it'P

It might be argued that 1/f noise can only occur
in a regime in which perturbation theory fails.
After all, although 1/f noise is observed to be
proportional to E', for sufficiently small fre-
quencies it must become larger than the (fre-
quency-independent) term of zero order in the
electric field (Johnson noise). In addition, the
term of order E' is supposed to be larger than
higher-order terms since no dependence upon
E', E', etc. has been reported. We do not believe
that these arguments make a calculation to order
E' senseless. If our model contained 1/f noise,
we believe the lowest-order term in perturbation
theory should at least show an anomaly in the
frequency dependence. This does not mean that
it would not be valuable to treat our model with-
out making expansions in the electric field. " 4'

We doubt, however, that when 5T,/T&1 the re-
sults would differ qualitatively from those we have
found.

Some investigations of the stationarity of the
1/f phenomenon have suggested that I/f fluctua-
tions imply that there is no stationary state. Not
al1. experiments agree. " Since our calculation
does not yield 1/f noise, there is little reason
for expecting it to give additional credence to
nonstationarity. Indeed, at least in perturbation
theory, there is little doubt that our model has a
stationary state.

Moreover, the absence of 1/f noise cannot be
ascribed either to the omission of terms inversely
proportional to the volume, or to a disregard of
varying collision times. A slightly different model
with a distribution of scattering times would not
behave differently.

1. Factor of 1/N

Apart from the term of order 5T,/T, the current
fluctuations we have obtained in Eq. (4.1) are pro-
portional to 1/N, where N is the number of charge
carriers. This factor is present in the pheno-
menological description of 1/f noise' and might be
expected from general statistical arguments. In
our calculation, if we suppose that the nonlinear
resistance is given by

/

R(E) =8 1+5
i

+.
AT)

(5.1)

where 5 is a numerical factor, then, apart from
numerical factors, we can write

(5.2)

Using V =El, 0 =XI and Eq. (2.10) we find that

(5 3)

where N=nQ is the number of charge carriers.

2. Natthiessen's rule

We cannot obtain 1/f noise from our model by
including many decay times for the electrons be-
cause our system obeys Matthiessen's rule. " This
rule, which can be deduced from the propagator
equation in the dilute limit k~l ++ 1 implies, for
example, that if there are two types of scattering
impurities described by the lifetimes T, and 7,,
our result applies if we set 7 =7g +72 . This
composition law should be contrasted with the
addition of the current autocorrelation functions
due to 7, alone and T, alone. The latter composi-
tion law, which is sometiines used to explain I/f
noise, ' may be valid for distinguishable, inde-
pendent sources of noise, but it is certainly not
valid for impurity scattering in metal films, even
in the "classical limit" Pcyo«1.

To summarize, we do not believe that our model
or slight variants of it exhibit 1/f noise but our
arguments, which are based on perturbation
theory, are not rigorous. We cannot exclude the
possibility that 1/f noise arises entirely from
nonanalytical contributions that perturbation theory
omits.

B. Physical processes neglected in our calculation which
could lead to 1jf noise

The only microscopic time in our model is the
scattering time T. Longer times could be included,
for example, by taking into account the substrate-
sample interaction more realistically" and/or
including the effect of hydrodynamic modes.

Since our calculation was performed for the
bulk, " it does not account for all couplings to
hydrodynamic modes that can conceivably occur. "
However, it should be noted that our model cannot
give rise to 1/f noise via the mechanism of Voss
and Clarke. " Our model has a temperature-in-
dependent resistance and their proposal is based
on the temperature dependence of the resistance.
Despite this fact, our model does involve a coup-
ling to the energy density. " Although the re-
sistance is temperature independent, the current
fluctuations are not. Note also that the first term
in Eq. (4.1) is size dependent and thus in some
sense is sensitive to the manner in which Joule
heat is dissipated. This agrees indirectly with
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Obviously many other processes and more
sophisticated models could be investigated. For
example, we might consider phonons"'" that dis-
appear at the boundary of the system, liberating
Joule heat to the surroundings. Whether or not
such models would be qualitatively different from
ours is a matter on which we can only speculate.

C. Nonequilibrium perturbation theory

Our calculation shows that the manifestations
of heating must be understood before realistic
calculations on many-body systems beyond linear
order can be performed. It also sheds some light
on the general structure of high-order many-body
response theory.

l. Adiabatic s~itching

We have found that, in nonlinear order, when
an external perturbation is applied for a finite
time, secular terms that describe heating grow.
Thus if the perturbation is applied adiabatically,
divergences can occur. The secular terms that
occur when the field is adiabatically applied can
be eliminated by treating the transfer of "heat"
to the outside, simultaneously and "self-con-
sistently. " In the case we studied, this self-
consistency is achieved by including gradient
terms. Stationarity could also be achieved by
introducing phonons which can disappear at the
boundaries or are constrained to remain in
equilibrium. "'" Once a satisfactory "cooling"
mechanism has been included a calculation of the
effect of applying an external (electric) field adia-
batically will not diverge.

2. Fluctuation-dissipation theorems

The basic idea behind recent efforts" " to de-
rive generalizations of the Quctuation-dissipation
theorem resembles the idea behind the work of
Bernard and Callen' even though the methods that
have been employed have evolved considerably. "
The present work illustrates some of the dif-
ficulties that are bound to plague such efforts.

Even if our calculations were performed using
"equilibrium" diagrams so that what happens in
the nonequilibrium state is in some remote sense
associated with the behavior of the equilibrium
state, we wish to emphasize two difficulties (which
have not to our knowledge been appreciated pre-
viously) and which must plague any attempt to
relate the two-current correlation function for
steady-state nonequilibrium experiments and the
four-current equilibrium correlation function:
(a) Some of the "time-orders" of the four-current
correlation functions that are needed to calculate
the two-current nonequilibrium correlation func-

3. Structure of the perturbation expansion: dynamics
and heating

The successive terms of a perturbation ex-
pansion in powers of an applied external field
certainly represent for any physical system (e.g. ,
an atom) corrections to the dynamics of the sys-
tem induced by the field. For a many-body sys-
tem, however, there are also corrections to the
statistics of the system that occur naturally as
terms that depend on powers of the applied field,
multiplied by the time. Loosely speaking, we
can say that for statistical systems, there is a
new expansion parameter in the theory given by
5T/T, the ratio of the "temperature" change in-
duced by the field to the starting equilibrium
temperature.

The results derived in Ref. 60 suggest strongly
that these terms of order 5T/T occur as follows:
If the temperature T appears in the response of
an observable to a given order in powers of the
applied external field, then an infinitesimal rise
in the temperature caused by the field will mani-
fest itself only in the next-higher-order terms.
This is consistent with the behavior of the cor-
rections to the current fluctuations and to the re-
sistance in our model. "

We also surmise that if the temperature change
in the system is appreciable, it must manifest
itself through higher-and-higher-order terms
in the perturbation expansion. (Note that Joule
poles are rigorously excluded only in the zero-
and linear-order terms of the expansion. ) This
should be clear from the fact that Eq. (3.58) for
the nonequilibrium current fluctuations yields,
roughly speaking,

2kT(eEl)' 1 (lit) (5.4)

where 5t is the length of time (+T) during which
the field has acted. Equation (5.4) cannot be valid
for arbitrarily large 6t since we know that

tion cannot really be measured in. the equilibrium
state since they diverge as q- 0. (b) Any genera-
lized fluctuation-dissipation theorem must reflect
the restrictions implied by the fact that the non-
equilibrium state depends, to nonlinear order, on
the way the system is cooled. "

It is important to realize that, in our calcula-
tion, the equilibrium density matrix played the
role of an initial condition: it cannot act as a
thermostat preventing the system from heating.

The fact that in our model, when no cooling is
present, the current fluctuations are divergent

. to order E' while the resistance is finite" to
order E' further illustrates the difference between
response and fluctuations to nonlinear order.



19 MICROSCOPIC CALCULATION OF THE NONLINEAR CURRENT. . .

5(a).,- (2u/R)(r, r—), (5.5)

where T& can be obtained by integrating Eq. (3.57),
using the value (2.17) for the specific heat:

( )
2lrT -i 2 Zl~

aT) 7 (5 6)

Clearly, Eq. (5.6) reduces to Eq. (5.4) when 5t
is small enough. We expect that some of the
higher-order terms in the perturbation expansion
should correspond to the terms obtained from ex-
panding the square root in Eq. (5.6). If this is
true, it suggests that the perturbation series will
break down for a 5t (or a temperature rise) given
by the radius of convergence of the Taylor series
for the square root: [(Tz —T)/T 0.4]. (This is
clearly only a rough estimate. Other correlation
functions will in general have a functional de-
pendence on the temperature very different from
that of the current fluctuations. ) This also sug-
gests that a perturbation theory to order E'
might not be meaningful if the. heating effect of
the electric field makes the temperature grow to
an effective value T'»T. In such a case, many
higher-order terms in the perturbation expansion
must be taken into account and it is not obvious
that these would only lead to an effective tem-
perature T'.'

We summarize the most important remarks of
this section by writing the perturbation expansion
for the current response to an applied field
schematically

VI= —+ AV'+B 5TV i+0(V')+ ~ . (5.7)=8 '
BT

V is the applied external potential and V/R the
usual linear response. The first term in the
parentheses (AV') represents the change in the
dynamics of the system induced by the field; the
second term, the change in the temperature (sta-
tistics). The magnitude is also of order V' since
the leading term in 6T is of order V'.

4. Justifying 1ineur-response theory

There has been some criticism of linear-re-
sponse theory. Equation (5.7) clearly' shows that
the complete theory does involve terms which,
as a function of time, rapidly become larger than
the linear-order terms. For example, we can
estimate that at room temperature, the second
term in the parentheses of Eq. (5.7) becomes
dominant after less than 1 sec, for an applied
external field of 2.5x 10 ' V/cm, a mean free
path of order 10 ' cm and a collision time of order
10 "sec [see Eq. (2.29)].

One second is rpuch larger than the duration
time of most experiments. However, even for
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APPENDIX

In this Appendix, we show that the stationary
distribution function found from Eq. (2.13) or
(3.77) and (3.73) cannot be exactly described by
a local temperature. When the steady state can
be described by a Fermi distribution function
characterized by a local, spatially varying tem-
perature we find that for times much larger than
v, but much less than the thermalization time,
the perturbative solution to the Boltzmann equa-
tion satisfies

f ——7V'V f (A1)
A

f (2) ~l r (~v, Q )2f (o)t (A2)
~ 4m

Substituting Eq. (A2) into Eq. (2.7) we obtain

~8g,at
= KV' T+ —V'T

where z is given by Eq; (2.18). This supports the
interpretation of the solution Eq. (A2) in terms
of the classical notion of a temperature gradient. "

On the other hand, in the presence of an electric
field, Eq. (2.6) gave us

steady-state experiments that last a long time,
the use of linear-response theory can be justified
by allowing for the cooling mechanism that exactly
cancels the secular heating terms in Eq. (5.7).
If the cancellation were not exact the system
could not be in a steady state. Our calculation
gives an example of how such a cancellation
arises. Equation (5.7) then shows that as long
as the field is small enough so the terms of the
form A. V' in Eq. (5.7) are negligible only the
linear terms remain. Often the cooling mechanism
leads to additional linear effects but these are
usually easily treated. In the case of a thermal
gradient, for example, the cooling mechanism
would introduce a, thermoelectric term in Eq. (5.7).'0

Note added in Proof Age. neralization of this
hypothesis was verified by T. G. M. Kleinpenning
[Physica B 84, 353 (1976)].
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& ~.~OUie ——1. (A6)

This result should be compared with Eq. (2.26).
Equation (A6) determines the temperature field
and thus the solution (A2). Using this solution and
Eqs. (2.6) and (2.27) we find for an arbitrary ob-
servable, to leading order in kT/E~,

(A)...,. ez 'T ( "„,s'f,
( ))(A)„„, q 6T ( se'

x d'g e —1""c

This ratio differs in general from one observable
to another. " Consequently, when 6T is fixed by
Eq (A6), . for most observables we will obtain

(AB)

where C is a time-independent constant. This
proves that a distribution function described by a

We might prefer to set up a stationary state by
adjusting the temperature field so that the re-
sultant total energy is time independent

(A6)

From Eqs. (A3) and (A4) we see that when Eq.
(2.21) .is satisfied

local temperature cannot lead to a stationary so-
lution in the presence of an electric field.

The correct stationary solution Eqs. (3.73) arid
(3.77) is energy conserving, and thus can be in-
terpreted in terms of Eq. (2.26) but its detailed
energy and momentum dependence is different
from the simple ansatz corresponding to a Fermi
distribution with a spatially dependent temperature.
All of this is in agreement with. the results of
Huberman' quoted at the end of Sec. IIIE.

Note that Eq (A.7) can also be derived from dia-
grams by taking the ratio of the responses of a
one-body observable to an electric field (to second
order) and to a temperature gradient. " Since the
observable on which the "electric" and "thermal"
vertices are "closed" is arbitrary, it is not sur-
prising that the effect of both perturbations will
not be the same unless their .energy and momentum
dependence is the same. " Thus, in this context,
Eq. {A7) also says that the energy and momentum
dependence of a "simple" temperature perturbation
cannot exactly cancel the effect of an electric field
perturbation to second order.

Finally note that although a stationary one-par-
ticle distribution function can make all the observ-
ables in Eq. (2.27). time independent, we know
of no proof that the two-particle correlation func-
tions must be stationary whenever the one-particle
distribution function is. This is nevertheless what
we have found for the special case considered here.
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