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Exact lower bounds for the correlation energy of the one-component plasmas (OCP) with the r ' potential
are given in d dimensions 1 & d & 3. For classical OCP s with d = 2 and 3, this lower bound contains most
of the correlation energy in the high-density domain, and the residue is given by two integrals of positive-
definite functions, including the pair correlation function and the structure factor. For the classical OCP
with d = 3, a lower bound which improves upon known ones due to Mermin and to Lieb and Narnhofer in

the domain I & 15.3 is given.

Exact bounds for thermodynamic quantities are
useful when there exist no well-defined methods
to calculate these quantities. For the correlation
energy of the one-component plasma (OCP), the
system of charged particles in the uniform back-
ground of opposite charges, lower bounds have
been given by Dyson and Lenard, ' Mermin, ' and
Lieb and Narnhofer. ' For the classical three-
dimensional OCP, the lower bound due to Mermin, '
which is applicable only to the classical case, is
effective in the low-density domain and that due to
Lieb and Narnhofer' in the high-density domain.
In addition to these three-dimensional plasmas,
two-dimensional plasmas on the surface of liquid
helium and in metal-oxide-semiconductor (MOS)
inversion layers have recently become the subject
of experimental and theoretical studies. For two-
dimensional plasmas, where particles interact via
the ordinary Coulomb potential, no exact bounds
of thermodynamic quantities are known; three-
dimensional derivations by Mermin' or Lieb and
Narnhofer' which use the properties of the r '
potential in three dimensions do not work in two
dimensions.

In this paper, we show that simple arguments
applicable to both three- and two-dimensional
cases lead to exact lower bounds of the correlation
energy of OCP, and compare them with f'ormer
exact bounds" and the results of numerical ex-
periments on classical OCP's in three'" and two
dimensions. ' We also point out that these lower
bounds reproduce most of the correlation energy
of classical OCP's in the high-density domain
without essential information on the pair-correla-
tion function or the structure factor, and may
be used as a useful zeroth-order approximation in
calculations of thermodynamic quantities. In order
to show the dimensionality-independent applica-
bility, we give the result for the d-dimensional
case (1(d ~3), extending the number of dimensions
to noninteger values. '

The correlation energy per particle e, is given
by

ne2 drh(r)

where h(r) denotes the pair-correlation function,
z and e the number density and unit charge, and
dr the d-dimensional volume element. The pair-
correlation function is related to the structure
factor S(k) and the density fluctuation p„- by

s(l) =(Ip„- I')/&

pg =+exp(-ik r,.),
nh(r) = dk(2m) [S(k) —l]exp(ik ' r),

(2)

(3)

(4)

N being the number of particles. Equation (1) is
then rewritten

2

e, =— dk2m " j'p Sk —1

1 (-,'(d —1))
drr" 'r '

x d6) sin' '6 exp -ikr cos8
0

= (2m' ')~ 'I'(—'(d —1))h' 1 (d - 3 (6)

and dk denotes the d-dimensional volume element
in the Fourier space. Rewriting the Coulomb in-
teraction as

oo C CO

dtf)r, t)= 1 t dtf(r, t)
0 0 g

with an arbitrary parameter Q ~ 0, we obtain the
Ewald-type hybrid expression for the correlation

Here Q(h) is the Fourier transform of the Coulomb
interaction:

dr exp(-ik r)
r
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FIG. 1. Correlation energy of the three-dimensional classical one-component plasma. Closed circles are experi-
mental values. 4& ~ The dashed and solid lines describe the lower bounds {22) and {27), respectively, and the dotted lines
those due to Mermin~ and to Lich and Narnhofer. 3

energy

2

e, = dt drhr r t

e'
+

g
dt dk(2~) ~IS(k) —&]f(&,t)

0

dt drh r +1 x, t

+2 dt dk2m Sk k t +B,G, 8
0

where f(k, t) is the Pourier transform of f(x, t) and

e2
dtf(r= O, t).

0

Noting the trivial inequalities

h(r) & -1,
S(k) )0,
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FIG. 2. Correlation energy of the two-dimensional classical one-component plasma. Closed circles are experimen-
tal values, 6 and the dashed line describes the lower bound (23).

and assuming

f(r, t) ~ 0 and f(0, t) ~ 0, (12) ( / dr/(r) )'~'
(16)

we have an exact lower bound for the correlation
energy,

and the best lower bound within assumption (15)
is given by

e, -B[f,G].
The nonideal part of the Helmholtz free energy
+f gf is bou nded as fo1lows

d, drf(~)
2(d- 1) ' f(~=0)

f(~ = 0)s'
(17)

e2
d(inc')B [f,G] . Here the mean distance a = w 't'[F( —,'d+ 1)/n]'~ is

defined by
When the function f(r, t) has the form

f(r, t) =f(rt),
the maximum of B[f,G] is attained at G =G„

(15)
dr=1.

for the function f(x t) we now take'

(18)
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TABLE I. Comparison of exact lower bounds for the correlation energy vrith experimental
values, e,/T, for three-dimensional classical. one-component plasmas.

Experiments by
Brush et al.4 (BST)

or Hansens (H)

Present
paper tEq. (27)]

Lower bounds
Mermin~ (M) or Lich
and Narnhofer3 (LN)

0,1
0.5
I
2

10
15
20

5.477 x 10-~
6.124 x 10-~

1.732
4.899

13.86
54.77

100.6
154.9

-2.70 x10-~ (BST)
-2.52 x 10-~ (BST)

5.80 x 10-~ (H)
-1.318 (H)
-2.926 (H)
-7.996 (H)

-12.313 (H)
16.667 (H)

2.693 x 10-~

2.669 x 10-~

-6.572 x 1p &

-1.518
-3.322
-8.854

-13.49
-18.14

-2.739 x10 ~ (M)
-3.062 x 10 ~ (M)
-8.660 x 10 ~ (M)
-1.80 (LN)
-3.60 (LN)
-9.00 (LN)

-13.50 (LZ)
-18.00 (LN)

f(r, f) =f,(rt) = 2m '~'exp(-Ht') .
The function f,(rt) and its Fourier transform

(19)

d F(-,'I+1)' 'e'
d- 1 (21)

f,(k, t) =2m ' "I't "exp(-k'/4f') (20)

satisfy conditions (12). The correlation energy is
thus bounded as

the zeroth approximation and the remaining con-
tributions from the pair-correlation function in
the short-range domain and the structure factor
in the long-range domain, given by the integrals
of positive-definite functions, do not cancel each
other.

In the case of three-dimensional cia,ssical OCP's
Mermin' has shown that the structure factor is
bounded exactly by its RPA value

For d = 3 and d = 2, we have S(k) ~Sap„(k) =k'/(k'+k~), (25)

2z '~'e') ~
0

1.1284e'
d =2.

& (3/4v)' I'e~ 0.9305e~ d-3
a a (22)

(23)

where kD is the Debye wave number defined by
kD=4wne'/T Substitu. ting this inequality instead
of (11) into (8), we obtain an exact lower bound
which improves upon B[f,G]:

Our lower bound for d = 3 is lower by 3% than the
lower bound due to Lieb and Narnhofer, '

e, & --'-e'/a, (24)

which is very close to the correlation energy of
the three-dimensional Wigner lattices, e,(bcc)
=-0.89593e~/a, e,(fcc) =-0.89587e'/a, and e,(sc)
=-0.8801e'/a. In the case of two dimensions,
our lower bound is lower by 2/() than the correla-
tion energy of the Wigner lattices, ' e,(hexagonal)
= -1.106e'/a and e,(square) = -1.100e'/a. Our
results for d = 3 and d = 2 are compared with values
obtained by the numerical experiments on classic-
al OCP's' ' and other lower bounds for d =3 in
Figs. 1 and 2. There the values of e,/T are
plotted as functions of the nondimensional param-
eter I defined by I" =e'/aT, T being the tempera-
ture in energy units. It is shown that most of the
correlation energy of the classical OCP in the
high-density domain is obtained by the zeroth ap-
proximation k(r) =-1 and S(k) = 0 from Eq. (8),
with f(r, t) and G given by Eqs. (19) and (16).
Equation (8) with the same f(r, f) and G may thus
be useful, since B[f„G,] is already included in

2

e, — dt dk 2F 'S„p~ k k, t +B,G . 26
0

Assuming again Eq. (19), we have

e,/T ~=,'[x'+e exp(x')erfc(x)], x =kD/2G (27)

where & denotes the plasma parameter defined by
~=3' 'r' ' and

er)c(x)=2~'I'f dt exp(-t') (28)

e, /T ~ --,'(e —e'/m) for I', c «1
e, /T o-p (3/4m)'~'I +-,' for I', e» 1,

(29)

(30)

and reduces to Mermin's result' e, ~ ——,'E or Eq.
(22).

The author is indebted to Professor H. E. DeWitt
for useful correspondences.

After optimizing with respect to G for each value
of &, we have an exact lower bound as shown in
Pig. 1 and Table I. Our result improves upon the
former bounds'" in the domain I"((.) & 15.3(1.03 x 10~).
%hen the plasma parameter is small or large, '
this lower bound is given approximately by
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