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g factors and related magnetic properties of molecules. Formulation of theory
and calculations for Hz+, HD+, and D2+
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Department of Chemistry, Wake Forest University, Winston-Salein, ¹rth Carolina 27109

(Received 31 July 1978)

A theoretical framework is presented from which precise electronic g values for molecules may be
calculated. The theory is applied to the calculation of g fa,ctors and related magnetic properties. for H, +,
HD+, and 02+. The average g value for the ground state of each of these molecular ions is predicted to be
shifted by about 3 ppm from the g factor for atomic hydrogen, The results are expected to be accurate to
about 0.1 ppm, and when compared with future experimental measurements may provide the first precise test
of the theory of molecular g factors.

I. INTRODUCTION

The interaction of an atom or a molecule with an
external magnetic field provides an important
source of information concerning both the nature
of the electromagnetic interaction and also the
structure and dynamics of the composite atomic
or molecular system. In the case of atoms this
information is contained primarily in the Landb

g~ factor, which determines the magnitude of the
interaction between the atom and the external field
B when this interaction arises from the total elec-
tronic angular momentum J of the atom:

where p,~ is the Bohr magneton. In the case of
molecules the corresponding interaction is de-
scribed similarly:

3:"."„,„„=p,5 g.B, (2)

where 5 is the total electron spin, ' and where the

g factor is written in tensor form to indicate the
interaction may be different for different orienta-
tions of the molecule with respect to the magnetic
field. In recent ti'mes there has been a renewed
interest in the precise theory' ' and measure-
ment' "of atomic g~ values which has resulted in
a detailed understanding of the Zeeman effect for
simple atoms. In the case of molecules such un-
derstanding has been limited because most exper-
imental work has been restricted to large mole-
cules for which precise quantitative theoretical
work is very difficult. Consequently the theoreti-
cal calculations have usually been very approxi-
mite or have been parametrized to fit the experi-
mental data. In fact there appears to be no pre-
cise ab initio calculation of the g factors. for any
molecule. An important first step toward a better
understanding of molecular. g factors would be to
perform an exact calculation for the simplest pa-
ramagnetic molecule, the hydrogen molecular ion,

and to compare the results of this calculation with
experiment. Preliminary results of this effort
have already beei. reported. " Although no precise
experimental measurement has yet been made for
H, or its isomeric relatives, rapidly developing
experimental techniques, particularly ion )rapping
methods, make it seem likely that such measure-
ments wiQ soon be feasible. The information we
hope to gain from such studies will differ in im-
portant ways from that obtained from similar stu-
dies on atoms, since molecules possess vibration-
al and rotational as weO as electronic and transla-
tional degrees of freedom, and since such studies
may lead to an increased understandirg of the na-
ture of the chemical bond and its relation to the
Zeeman effect.

Consequently, then, the purpose of this paper is
to formulate a theory of g factors for molecules
and to apply the theory to the particular cases of
H,

' and its isotopic relatives. Although the theory
of the molecular g tensor has been given in a num-
ber of places to various degrees of approxima-
tion, " ' I thought it worthwhile to present here a
formulation which, at least in its most general
form, accurately includes radiative and nuclear
mass corrections as well as the lower-order rela-
tivistic corrections to the Hamiltonian describing
the Zeeman effect, and thus represents a more
complete theoretical formulation of the subject
than is usually given.

In Sec. II, I present as a starting point the Breit
formalism extended to include radiative and nu-
clear motion corrections. The initial formulation
is formally the same as one I have previously pre-
sented for atoms' and the development is also
quite similar. In the second stage of the formula-
tion a restriction is made to diatomic molecules
in preparation for the H,

' calculations, although a
simple generalization of the treatment should be
possible for polyatomics. A convenient choice of
internal coordinates similar to that for the atomic
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case is made. A unitary transformation of the
extended Breit equation is performed which par-
tially separates the center-of-mass coordinate
from the internal coordinates. The resulting equa-
tion is reduced to nonrelativistic form and the
terms which contribute to the g tensor identified
and interpreted. At this stage, nuclear mass cor-
rections of order n'mjM or higher are ignored
and restriction is made to one-electron systems
(H, +). Then, following Pryce, "a modified second-
order degenerate perturbation theory is used to
construct an effective Hamiltonian which operates
entirely within the linear manifold associated with
the ground electronic state. An explicit expres-
sign for the g tensor is obtained from this effec-
tive Hamiltonian. It is found that the g-tensor ex-
pression can be written in a very simple form':
a "relativistic mass" term is proportional to the
average kinetic energy of the electron, and a sec-
ond term is proportional to the nuclear magnetic
shielding tensor, the theory of which has been
given by Ramsey. " At this stage the expression
for the g tensor is simplified further by neglecting
radiative tt.rms of order o. ~ This gives a final
expression for the g tensor which is accurate to
order 0.'.

In Sec. III numerical calculations of the corn-
ponents of the g tensors for H, ', HD', and D, ' are
described and the results interpreted. The molec-
ular wave function is obtained in the adiabatic
approximation and calculations are performed in
a frame of reference which is fixed relative to the
internuclear axis. The zero-order (magnetic
field absent) part of the electronic wave function
is taken from the calculations of Hunter and Prit-
chard. " The first orde-r (magnetic-field-depen-
dent) part of the electronic wave function is ob-
tained by means of a variation-perturbation
scheme. The g-tensor components and their con-
tributing terms, i.e., the electron's. average kine-
tic energy and the components of the nuclear mag-
netic shielding tensor, are calculated as functions
of internuclear distance, tabulated and compared
with previous calculations. It is found that the
average g value for H~ at the equilibrium inter-
nuclear distance is shifted by about 3 ppm (parts
per million) frorq the g value for atomic hydrogen.
This difference is interpreted as primarily due to
the increase in the relativistic mass of the elec-
tron as the chemical bond is formed between the
H atom and the bare proton. Values of the g ten-
sor for some particular vibrational-rotational (VR)
states are then calculated. It is found that these
values depend on the average internuclear distan-
ces for the VR states in essentiaQy the same way
as the g values vary with the internuclear distance
in the adiabatic approximation. Finally, the effec-

tive magnetic Hamiltonian containing the compo-
nents of the g tensor is rewritten in a form con-
venient for use in the laboratory frame.

In Sec. IV an interesting relationship between
the second-order part of the nuclear magnetic
shielding tensor and the second-order part of the
electron spin-rotation tensor is pointed out. This
result leads to a relationship between the spin-ro-
tation tensor and the electronic g tensor. Numer-
ical calculations are performed which examine
some consequences of these relationships in the
case of 8,'.

Finally, a brief summary of this work is given
in Sec. V,

H. THEORY

36=+ 36(r)+g U(r, s),
r r&s

X(r) = n, n„+P„m„—~„(P,o„B„-iP„a„E„),
(

rrs

Q =-,'Bx'f„,

(6)

(~)

(10)

Here r„ is the mechanical momentum for the rth
particle, X„ is the magnetic vector potential at the
coordinate r„ in the laboratory frame, B„and E„
are the magnetic and electric fields experienced
by particle r, ~„ is the anomalous magnetic mo-
ment of particle r, and the other symbols have

A satisfactory starting point for a precise theory
of molecular g factors is the extended Breit for-
malism, which has been developed previously for
applications to many-electron atoms. ' This for-
malism accurately includes anomalous magnetic
moment and nuclear mass correction terms and is
expected to give accurate results for the Zeeman
effect of a many-electron system to order n'p~B
where e = (13V.03602) ' is the fine-structure con-
stant. According to the theory the stationary states
of an atom or molecule in a constant uniform ex-
ternal magnetic field 8 are described by the ex-
tended Breit equation

(3)

where, in natural units (5 = c = 1),
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their usual meanings. In Eqs. (3) and (4) and in
what follows I use summation indices i, j, k to de-
note electrons, X, F, Z to denote nuclei, and ~, s,
f to denote both electrons and nuclei. At this stage
the theory is quite general and is applicable to
both atomic and molecular systems. " From now

on, however, I will restrict the theory to diatomic
molecules, which is convenient for the subsequent
application to H, ', although in @&hat follows one
could treat polyatomic molecules by a simple gen-
eralization. It is now convenient to make a trans-
formation of variables from the set (r„,rB, r,.) (A
and B will be used to label the two respective nu-
clei) to the set of center-of-mass and internal
coordinates (5, , KBA, r, c) where

(25)g=K- e

and where K is the eigenvalue of the operator Q.
In the.case of an electrically charged molecule
ion we perform a similar, but only partial, sepa-
ration of the center-of-mass coordinate by apply-
ing a unitary transformation to Eq. (3) with the
unitary operator

is a constant of the motion whose vector compo-
nents commute with each other for an electrically
neutral system. Consequently, for a neutral mole-
cule, the exact solution to Eq. (3) can be written
in the form

@(Rc.m.iNBAi rf C}=4(~BA roc)e

where

~BA rB rA (12) ~= exp l-z 2 e~
r

(26)

~c.m. =PA+PB+ ~ P) i
f

BA A B} @ApB BPA)

m ~ m
P( c= P. -M ~.pg M (PA+ PB) ~

The inverse relations are

(14)

(15)

(16)

A ~c.m. +A B} B~BA M Z 4C i

-a m~
B . . @A™B)™ARBAM ~ rlc

f

(17)

mM
rg -~cm+rgc- ~ rgc y

'PA A/+ &m. PBA @A B} AZ PIC i
i

(19)

(20)

PB AB/M)pc m +~BA 0 A MB) . . Bg PjC i

p, =(m/M)$c. m.+p;c ~

(21)

(22)

rfc=ri rcpt

where

r C= (MA+MB) '(MArA+MBrB) (13)
and where M=MA+MB+Q, m, is the sum of the rest
masses of the particles. This choice of internal
coordinates reduces to the set used previ. ously
for atoms' if we let r~= r„and set M„=O or MB=0.
The momenta conjugate to 5, , RBA and r«are,
respectively,

This transformation has. been found to describe
the motional terms in the Hamiltonian in a par-
ticularly transpa, rent way.""The resulting
transformed Eq. (3) is found to have exactly the
same form as that given in Eqs, (4)-(6), but with
the mechanical momenta given in Eq. (7) replaced
with the transformed momenta

w„=p„-e„(A„-X, )-~Q e,X, ,
8

(27)

m„+X0+Xg + + ' '
r

(vB/2m„}++ (e„e,/r„,},
y&s

3C, =-Q (v„'/Sm„'),
r

3e, =-g g (ve„e,/2eP)(g„-1)6'(r„,),
sM

(29)

(30)

(31)

(32)

for which I now use the same symbol. In Eq. (27)
X, is defined by the equation

X, =X(It, }=-,'jxgj (26)

The result (27) is the same as the corresponding
result for atoms, and consequently the unitary
transformation gives a molecular Hamiltonian
which has the same form as the atomic one. As a
result, when this molecular Hamiltonian is re-
duced to nonrelativistic form using the methods of
Ref. 5, one obtains a nonrelativistic molec~»ar
Hamiltonian whi. ch has the same form as the atom. -
ic one:

Here, as in the atomic case, the quantity

Q= Q (p„+eg„) (23)

'; (g„—1)r„,'S„~(r„,xn„),
r svsy' 2™r

X =g g (e,e,/2m, mug, r„,'S„(r„&&w,),
r s see

(33)

(34)
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K,„=—g (e„/2 m„)g„S„B.[1—(B„/2m,') ]

—Q (e,/4m„')(g„- 2)S„~(s'„1—n„n„) 8, (35)

X,= —g 2
" ' [r,,%„n,+r.„,(r„,r„, m„) s,], (36)

r&s 2mrms

3:,=- Q " ' g~, [BBsS„~S,5'(r„,)
r&s 4' ms

with R =—IR» t,

(41a)

(41b)

(41c}

X(') = I B
2me+, (g, —1)s z„," +zB

me
' "y'eA y'ea

e3

2m
+ ( 1)S, eA eC+Z eB ' eC

e +eA

whee'e

g„p~ =2(e„/2m„+z„}

(37)

(33)

p c

+ 3 (ge 2) (Peer PecPec)
me

(41d)

(41e)

X ~(o)+X(x)
0

where

(39)

(0) p~ p ~ p' Z„e' Z~e' ZA'Z~e'

(40)

defines the g factor of particle x; for an electron
p~ is taken to be the negative of the Bohr magne-
ton pB = e/2m, (the charge on the electron is de-
fined to be -e, which makes the charge e, the Bohr
magneton p~, and electron g factor g, all positive
quantities).

Physical interpretations for the terms appearing
in the reduced Hamiltonian have been given in a
number of places. " It has been shown recently
that, except for the "Darwin" term R„all of the
terms (30)-(37) can be derived using entirely clas-
sical electrodynamics. ~ "

The theory which has been presented to this
point is apparently applicable to any diatomic mol-
ecule and can be readily generalized to include
polyatomics. From now on, however, the develop-
ment will be directed specifically toward the cal-
culation of the electron spin g factors for the 'Z
ground states of H, and its isotopic relatives. To
that end I will select the terms of the nonrelativis-
tic Hamiltonian which contribute to the g factors of
Z states and write them out for a one-electron
molecule. Such a selection must include terms
which contribute in both first- and second-order
perturbation theory. The latter class of terms
does not contribute in the atomic case but does
contribute in the case of a molecule due to the
departure from spherical symmetry. At the same
time numerous nuclear motional terms, which
give contributions of relative order a'm, /M~ 0.03
ppm and of higher orders and hence are much too
small to be detected experimentally at the present
time, are neglected. The resulting Hamiltonian,
correct to order a'p~B, is written for the center-
of-mass frame (P,, =R. = 0)-

with

eC reC~PeC P

L~„=re„Xpec y

Lea rea pe c ~

(42a)

(42b)

(42c)

and where the charges on the nuclei have been
written as Z„e and Z~e. The term Xo"' in the Ham-
iltonian arises from the magnetic-field-indepen-
dent part of Ko which has been given previously in
Eq. (30). The term Ku' contains several contri-
buting terms as shown in Eq. (41). The first term
(4la) is the usual orbital Zeeman effect, and comes
from the magnetic-field-dependent part of Xo in
Eq. (30). The second term (41b) is the usual spin-
orbit coupling term and comes from X, in Eq. (33).
The third term (41c}also comes from K, in Eq.
(33) and may be interpreted as a spin-orbit cou-
pling term in which the magnetic-field-dependent
part of the mechanical momentum [Eq. (27)] ap-
pears. The fourth and fifth terms (41d) and (41e)
come from R, in Eq. (35). The fourth term may
be interpreted as the usual spin Zeeman effect
with a relativistic mass correction, ""'"'and the
fifth term has a similar appearance but has no
simple physical interpretation in terms of the rela-
tivistic mass. According to the classical treat-
ment" of the Zeeman effect the sum of the terms
(4ld} and (4le) arises from just the interaction of
the electron-spin magnetic moment with the mag-
netic field experienced in the electron's rest
frame. The more complicated expression which
results when this interaction is expressed in the
laboratory frame (or in the molecular frame) is
due to three relativistic effects: (i} the difference
in time scales in the two frames, (ii) the Lorentz
transformation of the magnetic field between the
two frames, and (iii} the Thomas precession of the
electron spin due to the acceleration of the electron
produced by the magnetic field. It is interesting
to note in this regard that the quantity S is to be
interpreted as the electron spin in its ozvn ~est
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frame, even though the Hamiltonian (29) is written
for the laboratory or molec~r frame and not for
the electron rest frame. As a final remark in this
discussion of the Hamiltonian (39},1 call the read-
er'8 attention to the result that the angular. momen-
tum L,c which appears in (41a) and is defined in
(42a} represents the orbital angular momentum of
the electron about the nuclear center of mass,
whereas the angular momenta L,„and L,B which
appear in the spin-orbit coupling term (41b) rep-
resent the orbital angular momenta about the nu-
clei A and 8, respectively, as shown in Eqs. (42b)
and (42c).

Having now constructed the Hamiltonian appro-
priate to the electronic Zeeman effect for the

ground states of H, '-like molecules, one is faced
with the problem of finding the g values. This can
be accomplished in a most satisfactory way by
using Pryce's" modified degenerate perturbation
theory to construct an effective Hamiltonian which
operates entirely within the bnear manifold as-
sociated with the ground electronic state. In the
present case the unperturbed states go&(0», r, c)
are eiglnstates of the unperturbed Hamiltonian
(40); the perturbation X"& is given in (41a)-(41e);
the ground state |&t,"& is orbitally nondegenerate but
possesses spin and rotational degeneracies. Using
this method, one obtains the effective Zeeman
Hamiltonian

(43a)

t' e'
(g 1)S. Q g ( e &~&o&(roc'rlxl-rlcra&&

(
&o&)

2m, '
x=A && Pm r x

(43b)

(43c)

Notice that the second-order term in (43c) arises
as a cross term between the orbital Zeeman term
(4la) and the spin-orbit coupling term (41b); it is
this term alone which appears in Pryce's theory
of the g tensor and in many subsequent formula-
tions. It was Stone" who firstpointed out that the
first term of (43c) should also be present and that
its presence makes (43c) gauge invariant. l have
pointed out previously' that the sum of the two
terms inside the large parentheses in (43c) give
precisely Ramsey's expression" for the nuclear
magnetic shielding tensor 0» of nucleus Xin the
molecule. (A derivation of Ramsey's expression
with the present formalism is given in Appendix
A.) Hence a theoretical calculation of (43c) is
precisely equivalent to a theoretical calculation of
the nuclear magnetic shieldiag tensor for each
nucleus in the molecule, and suggests a fundamen-
tal relationship between the g tensor and the nu-
clear magnetic shieldiag tensor. ' From now on
I will use the symbol o» to represent the terms
between the large parentheses in (43c)~ To obtain
an expression for the g tensor itself, one may
note that the effective Hamiltonian (43a), (43b), and
(43c) can also be written in the form of Eq. (2).
The expression for the g tensor is then

&(&t l~&, ~&,
(

(&)

+2 .(Z. —2}&0'"IP.'cl-P. cP.elks".)2 me
(44b)

»=A, B
(44c)

This expression for the g tensor is apparently
accurate'to order a'. The first term in (44) is
an isotropic correction to the free-electron g fac-
tor arising from the "relativistic mass increase"
of the electron"'"'": the correction is of order
e . The second term is a small anisotropic cor-
rection of order 'at'. The third term arises from
the spin-orbit coupling terms (41b) and (41c); it is
also anisotropic and contains corrections of orders

3
tx and A ~

For the subsequent calculations on H, ', HD', and
D,' the above expression for the g tensor is sim-
plified by neglecting the contributions of order a'
= 0.4 ppm. The small numerical factors contained
in the o.' terms reduce their magnitudes even. fur-
ther, and consequently it seems improbable that
experiments will be sensitive enough to detect
their presence for some time. The resulting ex-
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pression, correct to order n', can then be written

&y(o)
~ T ~y(o))~I-

where T, =p,'c/2m, is the electron nonrelativlstic
kinetic energy operator and e is 'the nuclear mag-
netic shielding tensor for either of the two nuclei
in the molecule. The factor c' has been inserted
into Eg. (45) to show explicitly the ratio of the two

energies T, and m, c'.

(45)

~(0)y (0) Q (R)g (0) (47)

III. NUMERICAL CALCULATIONS AND RESULTS

The result of the preceding theoretical treat-
ment, Eq. (45), is used to compute the components
of the g tensors for 8,', HD', and D,'. The com-
putations are performed in a coordinate frame
which is fixed relative to the internuclear axis.
The s axis is taken to be along the internuclear
axis and directed from nucleus A. toward nucleus
B. There are two unique components of the g ten-
sor, namely g~ —=g„„=g» and gII =-g„. The adiabatic
approximation, "'"which should be exceDent for
these calculations, is made. According to this
approximation a molecular wave function, i.e.,
an eigenfunction of X0@' in Eg. (40) is written

g@'(R~„,r, c) = g'„'(R, r, c)R 'y„»(R)E„(R~„/R), (46)

where the electronic wave function g,'0„' is a func-
tion of the electronic coordinates r,~ and depends
parametrically upon the internuclear distance 8,
where y„»(R) is the vibrational-rotational (VR)
wave function and depends on the vibrational quan-
tum number g and on the quantum number N rep-
resenting the total orbital angular momentum of
the molecule, and where F„describes the orienta-
tion of the molecule with respect to the laboratory
frame and contains the dependence upon the rota-
tional and spin quantum numbers. Within the adia-.

batic approximation a molecular property is cal-
culated for an individual VR state by first calcu-
lating the property as a function of B using the
electronic wave function, and then averaging this
property over the VR wave function y„„."

At this point it is convenient to switch to Hartree
atomic units, which are commonly used for molec-
ular calculations. In this system of units 5=m,
=e=1 and c=o. ' is the speed of light. The Schro-
dinger equation for the electronic wave function
is written for H, '

with

V(R) =E«(R) + R + N(N +1)'(2~ ) +y(R) . (50)

In the last two equations p, is the nuclear reduced
mass

p=M~Ms(M~+Ms) '

and y(R) is an adiabatic correction"'" to V(R). It
is well known that Eq. (47) is separable in prolate
spheroidal variables A, , p,, y and that consequently
very accurate wave functions g'„'(R, X, Ii, p) can be
obtained. '37 For the present work the very a.c-
curate ground-state wave function obtained by
Hunter and Pritchard" is used. This wave func-
tion has the form

(51)

g"'= (2v) ' 'A(z)M(ii)

where

A(x) = (x + 1)'e ~i Q g,
~-I't'

t

where

M(p) = Z f,P,(p)
s even

(52)

(52)

(54)

=1 —a'&4."'I&.IP."'&+~. ,
gi(R

e

a'&&'"I7-'.It'"&+oii .(R) 2

e

(55)

(56)

The kinetic energy integral and the parallel com-
ponent of the nuclear magnetic shielding o It are
computed using only the zero-order electronic
wave function g". The perpendicular component
of the nuclear magnetic shielding tensor consists
of two terms

-g(&) +OP)J (57)

the first of which is computed using g+' and the
second of which requires a knowledge of the first-
order wave function for the molecule in the pre-
sence of a magnetic field B applied perpendicular
to the internuclear axis. According to Ramsey's
theory" we have

and where the subscript 0 on g,'00' has been dropped;
from now on it will be. understood that g" denotes
the ground state. The reader is referred to Refs.
26 and 37 for the meanings of the symbols in Eqs.

, (58) and (54).
The components of the g tensor computed as

functions of R, are, from Eq. (45),

with

and that for the VR wave function becomes
Sue

dR2
+ V(R)mv» E.»e.»

(48)

(49)

o 0(R) =e«(R) = ,'a'&p. ' It,-„'(x,'„+y.'„-)Ig,'), (58)

o."'(R)=op'(R) = 0a'&4" I~.~b.~y.c+s.~~.c)Ik."'&

(59)
and
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o "'(R) =eg '(R) = (2c)/B)&g,o)~r,„'L„,„~g'&&, (60)

where the first or-der wave function P,
") satisfies

the inhomogeneous equation

f„(R,&) = --,'(2v)-"zaaR'(X'- 1)'"

x() +1)%-&' x-1)"
A. +1) (65)

(~(0) @(0))y(&)+&~RL, g
&0& = 0 (61)

Note that o~»(R) and of '(R) correspond, respec-
tively, to the first and second terms within the
ls,rge parentheses of Eq. {48c).

The kinetic energy integral and the shieldiag in-
tegrals in Eqs. (58) and (59) are computed in a
straightforward manner by transforming the oper-
ators to prolate spheroidal coordinates. The ki-
netic energy integral can be obtained most easily
by using the tabulated values" for E, and the rela-
tion

Q "'jT, ly."'& =E.+2&/" I~.gl&1."'& (62)

which follows from Eqs. (4V) and (48) and from the
symmetry of the homonuclear diatomic molecule.
Each of the integrals contains a trivial integration
over y, an integration over p. which is done ana-
lytically, and a remaining integration over X -which
is performed using Gaussian quadrature tech-
niques. Some care is required in computing the
integral appearing in Eq. (59) because the inte-
grand contains an (integrable) logarithmic sin-
gularity of the form ln(A. —1). This problem was.
handled by isolating those specific terms in the in-
tegrand containing the ln(X —1) factor and by eval-
uating their contribution to the total integral by
means of a numerical quadrature technique de-
signed particularly for this type of integral. "
The remaining singularity-free integrals were
computed using a combination of Gauss-Le'gendre
and Gauss-Leguerre quadratures. " Since the sin-
gularity appears in the integral for the operator
s,„jr,'„, whi. ch may be separated from the inte-
grand in Eq. (59) using the relation z,c=s,„——,'R,
one can use the viria1 theorem to obtain the re-
sult

where P', (p) are associated Legendre functions of
order one and with l restricted to the even inte-
gers, and where the quantities o and p have the
same values as they do in the expression for g,'0'.
The coefficients A„,(R) were found by minimizing
the quantity

gr —
&y

6&) (5C(&))y 0)&
+ &/(& ) )~(&))q(o)&

+&&I&,"')X,' ' —E,(q"'& (66)

TABLE I. Expansion coefficients for the first-order
wave function with B= 2.00.

I

with X"'=—,'eBI.„,~. The resulting set of inhomo-
geneous simultaneous equations for the coefficients
A„, was solved by Gaussian ehmination. The
size of the basis set for a given value. of R was
chosen according to the criterion that the shielding
term p ~

' not charge in the fourth decimal place
(when expressed in ppm) when additional basis
functions are added. The coefficients obtained
when 8 =2.00, which is very close to the equilib-
rium internuclear distance, are given in Table I.
The resulting magnetic properties, including the
diamagnetic susceptibility components, X~, X~~

which can be computed from the same wave func-
tion, are presented in Table II and compared with
previous results. "' The present results for the
second-order properties in Table II are shown for
both the 15-term expansion whose coefficients are
given in Table I and also (the value in parentheses)
for a first-order wave function with the single
term ri = 0, I = 2, in order to indicate the rapidity
of convergence of the properties. The present
results confirm the previous results"' for the
5rst-order properties and represent a significant
improvement in the second-order properties, par-

gu&(R, X, p,, y) =sing QA„&(R)f„(R,X)P&()&), (64)

where.

and use this result to check the previous integra-
tion method. In aQ cases agreement was found to
five or six significant figures. All computations
were performed on a Hewlett-Packard 3000 com-
puter in double precision arithmetic.
. In order to obtain the first-order wave function
g" a variation perturbation scheme was used to
solve Eq. (61). A basis set was carefully chosen
to eliminate singularities in the differential equa-
tion and &I&,

")was expanded in terms of this basis

0

0
1

1
2
2
2
3
3

.2

6
2

6
2
4
6
2

6
2

6

-0.341527
-0.012 394
-0.000 191

0.006 459
-0.000 180
-0.000 007

0.021477
0.000 680
0.000 009

-0.005455
-0.000 203
-0.000 003

- 0.023 427
0.000 785
0.000 011
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TABLE II. Magnetic properties of H2' for R =2.00
a.u.

Property '

X))

~(&)

0 (2)

Present
result

-0.4382

0,0378 (0.0375)

-0.3209

9,8852

1 1142 (1 P72) c

12.2899

Previous
result

—.0.4382 ~

0 0314

-0.3209"

9.89-~

0842

-21.0610 (-21 1P3) c 21.56,d

S))«g.-I -19.7705 -19..80

Magnetic susceptibility X given in units of u g 30,

whereu 0 is the Bohr radius. The other properties are
unitless and should be multiplied by 10 ~.

"Reference 41.
Numbers in parentheses calculated with only one

term in the summation in Eq. (64).
~Reference 20.

ticularly in g~ '. As a consequence, the value of
g~(g, at R =2.00 is improved by 0.5 ppm. Similar
calculations were performed for a range of R val-
ues between zero and infinity, and the results are
given in Table III. AQ of these results are expect-
ed to be computationally accurate to three or four
decimal places. The values at R=O and R- ~ cor-
respond to a singly ionized helium atom and to a
hydrogen atom, respectively, and are calculated
from the expression for the g value of an hydro-
genic atom, ' ' which to order 0.' is

g/g. =&- l(«)'
As expected, the g values for H,

' vary with inter-
nuclear distance in a continuous fashion between
these two limits. . In fact, this variation of g vs 8
for H,

' must contain information regarding the
effect of chemical. bond formation, since H, ' can
be thought of as the chemical combination of a bare
proton with a hydrogen atom, the bond being formed
as the two nuclei are brought sufficiently close to-
gether from an initiaQy large distance apart.

TABLE III. g-values and related properties of H2 vs internuclear distance.

8 (a.u.)

0.00
0.015625
0.125
0.250
0.500
0.750
1.00
1.25
1.50
1.75
2.00
2.25
2.60
2.75
3.00
3.50
4.00
4.50
5,00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
14.00
16.00
18.00
22.00

35.5009
35.4656
33.8302
3.0.6794
24.5014
19.8341
16.4794
14.0462
12.2504
10.9044
9.8852
9.1100
8.5220
8.0809
7.7574
V.3798
V.2627
7.3189
7.4801
7.9177
8.3063
8.5650
8.7130
8.7910
8,8305
S.S502
S.s664
8.8703
8.8720
8.8740
8.8V52

(2)
J.

0.0000
0.0000
0.0052
0.0369
0.1801
0.3698
0.5601
0.7331
0.8833
1.0101
1.1142
1.196S
1.2590
1.3018
1.3258
1.3213
1.2536
1.1348
0.9818
0.6482
0.3728
0.1945
0.0963
0.0449
0.0207
0.0095
0.0021
0.0006
0.0002
0.0001
0.0000

35.5009
35.4717
34.1107
31'.4552
26.1173
21.9437
18.8413
16.5165
14.7438
13.3695
12.2899
11.4340
10.7517
10.2071
9.7735
9.1631
8.8047
8.6198
8.5502
8.5899
8.6966
8.7821
8.8332
8.8595
8.8717
8.8768
8.8791
8.8785
8.8778
8.8767
8,8752

106.5027
106.4029
M1.7712
92.8 141
V5.1200
61.6120
51.8002
44.6091
39.2446
35.1784
32.0604
29.6541
27.7968
26.3689
25.2883
23.9228
23.3302
23.2572
23.5106
24.4254
25.3094
25.9125
26.2596
26A419
26.5330
26.5776
26.6102
26.6190
26.6220
26.6241
26.6257

1-g&«a,

71.0018
70.937-3

67.9368
62.0978
50.4385
41.4081
34.7807
29.8298
26..1:109
23.2639
21.0610
19.3473
18.0 148
16.9862
16.2051
15.2217
14.8139
14.8035
15.0487
15.8595
16.6303
17.1530
17.4513
17.6060
17.6818
17.7179
17.7427

, 17.7481
17.7498
17.7500
17.7504

1-&ii«~e

71.0018
70.9312
67.6605
61.3589
49.0027
39.6683
32.9589
28,0926
24.5008
21.8089
19.7705
18.2201
17.0441
16.1618
15.5148
14.7697
14.5255
14.6374
14.9604
15.8355
16.6128
17.1304
17.4264
17.5824
17.6613
17.7008
17.7311
17.7405
.17.7442
17.7474
17.7504

All numerical values given in the table except 8 are unitless and should be multiplied by
1P 8
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In Fig. 1 the primary effect of chemical bond
formabon can be seen clearly. In this figure the
negative of the shift of the average g value of H,

'
relative to the hydrogen atom

6-

0/

II

4gav gav gH atom

Ee ge
(68)

is plotted (solid line) as a function of R, where

gav = a(Wa+gtt) (69)

is the average value of the g tensor for H,',
and where g„„,. /g, =1 —1V.V5x 10~. On the
same graph the shiR of the electron's kinetic en-
ergy in 8, relative to the hydrogen atom

'«T, &= '(&T,)-&Q ....) (VO)

is also plotted (dotted hne). The graph clearly
shows that the negative of the g shift and the elec-
tronic kinetic energy shift, which is proportional
to the shift in the relativistic. mass of the electr'on,
vary with internuclear distance in the same man-
ner, and in fact are nearly etlual for much of the
range shown. The difference in the curves gives
the small, but by no means negligible, chemical
shift in e,„[see Eq. (45)]. The variation of the
electron's kinetic energy with internuclear dis-

I l I

4 6 8
R ( atomic units )

FIG. 1. Effect of chemical bond formation on g values.
Shifts in -ga„/ga (solid curve) and in n2(Ta) (dotted curve)
for H&' relative to H atom are plotted vs internuclear
distance R.

tance and its relation to the chemical bond are
understood quite weQ. Hence most of the varia-
tion of the g tensor with R may be understood on
a si.milar basis. At the equilibrium internuclear
distance 8 = 2.00 a.u. one finds that the relativistic

TABLE Dt. g val'ues for vibrational-rotational states of H2+. '

&- (gi~ga &u ar &- (g tt ~go)uN (gll~+a)uN

0
0

0
0
0

0
0
0
0

0
0
0

1

1

1

2 '--

2
2

0

2
3

6
8

10
12
14
16
18
20
26
30
35

2
3

0
1
2

20.776
20.7M.
20.71V
20'.658
20.580
20.374
20.105
19.785
19.424
19.033
18.623
18.203
17.781
16.573
15.872
15.191

20.210
20.191
20.154
20.099
20.027
19.688
19.671
19.636
19.585
19.518

19.526
19.508
19.472 '

19.419
19.348
19.180
18.917
18.628
18.304
17.956
17.593
17.224
16.857
15.833
15.268
14.769

19.044
19.027
18.993
18.944
18.878
18.604
18.588
18.557
18.511
l8.451

3

3
3

6
8

10
12
14
16
18

0
1
2
3

0
1
2
3

19.209
19.193
19.161
19.113
19.051

18.773
18.758
18.728
18.684
18.626

18.025
17.446
17.043
16.829
16.832
17.093
17.615

18.206
18.191
18.163
18.120
18.064

17.848
17.835
17.808
17.770
17.718

17.252
16.81V
16.547
16.457
16.574
16.940
17.573

All numerical values in the table except those for v and N should be multiplied by 10 8.
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TABLE V. g values for vibrational-rotational states of HD+. '

N 1-(gg/ge)~» 1-(g)l/g~)„» 1-(gi/ge)~» i-Q ~~/g~)„»

2
2
2
2
2

0

2

0 0
0 1
0 2
0 3
0
0 6
0 8
0 10
0 20
0 30
0 40
1 0
1 1
1 2
1 3
1 4

20.817
20.802
20.772
20.728
20.669
20.511
20.303
20.052
18.389
16.606
15.240'

20.321
20.307
20.279
20.237
20.182

19.859
19.846
19.819
19.780
19.728

19.562
19.548
19.M1
19.480
19.427
19.283
19.094
18.867
17.384
15.858
14.798
19.139
19.126
19.100
19.062
19.012

18.748
18.736
18.712
18.676
18.629

4
4

6
8

10
12
14
16
18
20

0
1
2
3

0
1
2
3

0
0
0
0
0
0
0
0

19.429
19.417
19.392
19.355
19.306

19.032
19.020
18.997
18.962
18.9N
18.331
17.756
17.308
16.995
16.827
16.821
17.006
17.403

18.388
18.377
18.355
18.321
18.278

18.060
18.049
18.028
17.997
17.957
17.493
17.046
16.719
16.520
16.458

- 16.551
16.828
17.318

AQ numerical values except those for v and N should be multiplied by 10 ~.

mass of the electron increases by 5.43 ppm and

o,„by 2.55 ppm relative to the respective H-atom
values. The result is a g,„shift of -'2.88 ppm for
H, relati-ve to H.

Now any experimental measurement of the g
values for H,

' will measure these quantities for
an individual vibrational-rotational state or for a
statistical distribution of VR states. In order to
complete the calculation to find g values- for these
quantum states one must average g (R) and gI(R}
over the VR wave functions y„»(R) as discussed in
the first paragraph of this section. These func-
tions, which are solutions to the differential equa-
tion (49},have been found along with the corre-
sponding eigenvalues E„„by several work-
ers."'"'"" In the present work the potential en- .

ergy function V(R) in Eq. (50) was constructed
using the E,(R) values published by Wind and the
y(R) values published by Bishop and Wetmore, '4

and then Eg. (49) was solved for y„» for several
VR states using the Runge-Kutta method. ' The
corresponding g values were then calculated by
numerical integration using the trapezoid rule.
Results for H,

' are presented in Table IV. Simi-
lar calculations were performed for HD' and for
D,' and the results of these calculations are pre-
sented, respec;tively, in Tables V and VI. In the
case of the H,

' ground VR state goo one finds that
the shift in g,„ is -2.61 ppm relative to the 8 atom,
which may be compared--with the previous result

TABLE VI. g values for vibrational-rotational states
of D2+.~

(gJ./ge }o» (g II /ge }v»

0
1
2

10
20
24

20.865
20.455
20.068
17.737
16.834
17.287

19.603
19.253
18.924
17.032
16.575
17.178

All numerical values except those for v and N
should be multiplied by 10 ~.

-2.88 ppm for R =2.00.
The primary effect of the vibrational corrections

to the g values is illustrated in Fig. 2, where g,„/g,
—1 is plotted as a function of internuclear distance
and is represented by the heavy solid curve. The
heavy horizontal dotted line represents the asymp-
totic atomic hydrogen value, -17.75 x10 '. Also
shown in the figure by two heavy horizontal bars
are the values of (g,„/g, )~-1 for the vibrational
states v=0 and v=18 for H, '. The probability
densities for these two states are plotted in the
upper part of the figure, and the average values of
the internuclear distance (R)„,for the two states
are indicated by vertical dotted lines. From the
figure it can be seen that the major vibrational
effect is to produce a g value which is closely
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I I I

v=o

v= I8

2 4 6 8 lO

R (atomic units)

I I

l2 l4

FIG. 2. Effect of vibrational corrections to g values.
The heavy solid curve shows variation of ggy /gg 1 vs
internuclear distance R for H2 ., the asymp totic H-atom

1
' d ated by the horizontal heavy dotted li.ne;
f th ibrational states v=0 and v=18 are shown

by heavy horizontal bars. Probability densities or ese
two states are given at top of the figure (the values for
the v=0 density have been reduced by 2 for clarity). The
vertical heavy dotted lines indicate the average va1ue of
8 for each state.

associated with the average value of R for the vj.-
brational state. Because of the asymmetry of the
potential energy V(R) about the equilibrium i.nter-
nuclear distance R, =2.00 a.u. , the average value
of 8 increases mith increasing vibrational quan-
tum number v. Consequently the higher vibration-

1 tates have g values corresponding to larger
il-internuclear distances. This effect is further i-

lustrated in Fig. 3, in which the values of (g,„(g,)„,
—1 are plotted versus (R)„,for several vibrational
states;=the values of v for these states are written
insid'e the open circles. The g values are seen to

-l7 — '

Q8

~ooooooooofJQ oooooooooooooooooooooooooooo~oooo ~ oooo-ls-
Q4

Q

~~ -i9-
Qz

I I I I

2 4 6 8 l0
&R&

O
(atomic units )v0

FIG. 3. g values for vibrational states H&' with rota-
tional quantum number N= 0. The variation of (g,„/g~)~—1 vs average internuclear distance g)& is shown. The
values of the vibrational quantum number u appear inside
the open circles. The horizontal heavy dotted line indi-
cates the value of g/g~ -1 for the H atom 8 ground state.

lie along a curve which is very similar to the cor-
responding curve in Fig. 2. It may also be noticed
thai the Fig. 3 curve has been "damped" with res-
pect to the Fig. 2 curve in the region between R
=2 and R =10. This effect arises because the vi-
brational states with average values of R in this
region have probability densities which are large
over a region where g,„(R) is varying significantly
and hence there is an averaging effect. It was
found that not only the H,

+ g values, but also those
for HD' and D,' 1ie along essentiaQy the same
curve as long as one continues to plot states for
which N=0. There is a similar effect for states
with N0, except that each N value generates a
slightly different curve. The major effect of r'o-
tation on the g value is hence effectively the same
as that of vibration; due io centrifugal "stretchi. ng"
of the chemical bond, the states with larger N val-
ues have g values which correspond to larger val-
ues of R.

Finally, it is useful to incorporate the results of
these calculations into the effective Zeeman spin
Hamiltonian (2) written for the laboratory frame
o re erf eference in which the magnetic field B is taken

~ 48to be along the z axis. The result is
3t "=f„PsBSg+3 &2(g L HIi)&sB-(D S '100P2) 0o) 02)

where D and 8 are spherical tensor operators.
Matrix elements of the last term in Eq. (V1) can
be evaluated in terms of 3-j and 9-j symbol. s."
The first term in (V1)will be dominant due to the lar-
ger value of g,„compared to the anisotropy g~

@I'

IV. RELATIONSHIP TO THE ELECTRON SPIN-ROTATION
TENSOR

2 g+ (2)d )=—
2 ~ +gQX

x
(V3)

An approximate relationship between the g ten-
sor and the electron spin-rotation tensor d, which
appears in the interaction

(V2)

has been derived by Curl. Such relationships
between different magnetic properties are ex-
tremely useful because they provide consistency
checks for experimental measurements of the dif-
ferent properties as well as for the corresponding
theoretical calculations, and because they provide
conceptual unifications for the theory. In this sec-
tion I would like to point out a relationship between
the spin-rotation tensor and the nuclear qaagnetic

hi lding tensor which is exact for a one-electron
molecule and whi'ch may lead to useful approxima-
tions for a many-electron molecule. This rela-
tionship is expressed in Hartree atomic units as



28 ROGER A. HEGST ROM 19

d~s& = —(g, /gR')o,"', (V4)

which for the equilibrium internuclear distance
R, =2.00 gives the result

where d"' is the second-order part of the electron
spin-rotation tensor and the summation is over
all the nuclei in the molecule. The other quanti-
ties; appearing in Eq. (V3) have been defined pre-
viously in this paper. A derivation of (V3) is given
in Appendix B. The expression (73) for d"', when
combined with the first-order contribution d"' and
with Eq. (45), then gives a relationship between d
and g which, although more complicated than Curl's
expression, is exact for a one-electron system.
For example, for H, ' Eq. (73) becomes, after
terms of order e' are neglected,

plied to the calculation of g values and related
magnebc properties for H2 y HD, and D, . A
comparison of these results, which are expected
to be accurate to about 0.1 ppm, with experimental
measurements should provide the first precision
tests of the theory of molecular g factors.
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d,"'= -6.075 x10-"a.u. = -3.997 MHz (75)
APPENDIX A

when the value for o ~
' given in Table III is used.

This result is in excellent agreement with a re-
cent calculation" of d~ ' and in fact, the two cal-
culations agree exactly to four significant figures
if the nuclear mass correction used in Ref. 50 is
taken into account. The first-order contribution at
R, is

O.
' Z

rl &
~' e rl)~

Ramsey's expression" for the nuclear magnetic
shielding tensor is obtained readily within the
present formalism. Again one uses Pryce's
degenerate perturbation theory ' with the Hamil-
tonian of Eq. (39), but with supplemental terms
added to X ' to describe the interaction of the
nuclear spin. The additional terms, one for each
nucleus &, are

3cx = gxPefx ' ~

=7.2674x10 ' a.u. =47.817 MHz (76)

(without the nuclear mass correction). Hence we

obtain for d~'+d~' the value d~=43. 82 MHz. On
the other hand, Curl's approximate expression, '
which for H,

' may be written

L~x+ 8'XPn X'~ S
e iX

e'
~ ~ IL', xX„+ gXLILn X' ~ 3

e iX
(A1)

d",""= (g./N')(I -gi/g. ), (77)

V. SUMMARY

A theoretical framework has been presented
from which precise electronic g values for mole-
cules may be obtained. The theory has been ap-

gives the inaccurate result dc~uzi 75 56 MHz when
the value of I -g, /g, in Table III is used. Looking
at this in another way, one can say that Curl's ex-
pression, when. used with the exact value of d~,
predicts the result 1-g~/g, =12.21x10 ', in seri-
ous disagreement with the value 1-g~ /g, =21.06
x10 ' from Table HI.

where p,„=e/2M' is the nuclear magneton and
where the symbol f» is used for the spin of
nucleus X. The first term in the above expres-
sion comes from R, in Eq. (35), and the re-
maining two terms both come from the spin-
other-orbit term Xe in Eq; (34). [Note that when
the interactions are written in terms of the nu-
clear magneton g„, as in (A1), rather than in
terms of ex/2m», as in Eqs. (34) and (35), this
implies a slightly different definition for the nu-
clear g values. The definition used ip this Appen-
dix is the usual one for nuclei. ] These additional
terms give rise to an effective nuclear-spin
8amiltonian

+x = gxPn~x

2

'e* A
I

' ie"'ig "''"'*
e +iX

4( ~ ' ie"IKi~ *«*le."'&ie."'IZ « IeV'&I gg(0) E(o)
e 0 ne«

(A2)
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which may be written

3ex = gxkfx ' (1

The quantity inside the curly brackets in (A2) is
Ramsey's expression for the nuclear magnetic

shielding tensor gx for nucleus X. This same
quantity appears in the effective electron-spin
Hamiltonian given in Eq. (43).

APPENDIX 8
Here Eq. (73) is derived. Expanding Eq. (40)

in terms of the internal coordinates gives a term
K,'=-(1/gft') K c S. . (81)

When Pryce's perturbation method" is used this
term combines with the spin-orbit coupling term
(41b) to give a term in the resulting effective

Hamiltonian which is equal to

(H2)

Comparison of the quantity inside the curly
brackets of Eq. (82) with that inside the curly
brackets of Eq. (A2) then leads to Eq. (p3).

APPENDIX C

The major emphasis of this paper has been
placed upon the precise theory of the elecAonic
g tensor for a molecule. Homever, it should be
remembered that the molecular Zeeman effect
also includes the interaction of the rotational and
nuclear-spin magnetic moments with the external
field and that these interactions, although gener-
ally about 2000 times smaller than the electronic
interaction, must be taken into account when com-
paring the calculated results of the theory with
precise experimental measurements. The theory
describing these interactions is well understood
to the degree of accuracy required here. '5' ' Orie

simply adds the relevant terms to the effective
Hamiltonian of Eq. (V1) to obtain

X =g~gsS ' 5 —gsjl~Q ' 5 —Q gx/A~f' 5+Rggjso

(Cl)

where g, —=g,„ is the average electronic g factor
defined previously, g~ is the rotational g value,

X anima represents the last term in Eq. (71), and
where the other symbols have their usual .

meanings. Once the individual g values appearing
in Eq. (Cl) are known, angular momentum coupling
techniques may be used to combine them to form
a resultant molecular g value g~ or g„ in the
usual mays. " For the cases of H, , HD', and 0,'
the nuclear g values are readily availabld and the
rotational g values may be calculated from the
relation ' '

(C2)

where M~ is the proton mass, p is the nuclear
reduced mass, and X ~' is the second-order part
of the diamagnetic susceptibility component per-
pendicular to the internuclear axis and which is-
evaluated taking the origin of the electronic
orbital angular momentum K to be at the midpoint
of the internuclear axis. As a first calculation of
g„ the value X ~' =0.0378 given in Table II can be
used in Eq. (C2); this gives the results gs(H;)
=0.9244, g„(HD') ='0.6933, and g~(D;) =0.4622.
Vibrational-rotational corrections to these
values, which are expected to be of the order 1%
or 2% for the lower vibrational-rotational levels,
will be left for a future calculation.

~If the molecule possesses a net electronic orbital angu-
. lar momentum, there is an additional first-order inter-

action with the magnetic field; even so, the combined
interaction is often written in the form of Eq. (2) and
8 is then called a "fictitious" spin.
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