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The theory of optical Bloch equations with stochastic coefficients is discussed in detail. It is shown that
Bloch equations with stochastic fields lead to multiplicative stochastic processes for which exact solutions can
be obtained. The steady state and the transient regimes of the phase-diff'usion model of the laser bandwidth

are treated, and exact solutions of Bloch equations are obtained. The case of fluctuation due to collisions is

also discussed. A simple stochastic model of radiation-induced collisions is presented, For each stochastic
model of incoherences formulas for the longitudinal and transverse lifetimes are derived exactly. It is shown

that the finite bandwidths of light or the collision incoherences do not, in general, have a simple additive

effect in atomic equations of motion.

I. INTRODUCTION

In almost all problems when the resonance in-
teraction of. light with an atom is investigated the
starting point of many physical discussions is a
set of optical Bloch equations':

u = —Dv —u/Ts q

v =Du —v/Trs + A.8oto,

ut=-(to+1)/T, —Z8, v,

(1.1a)

(1.1b)

(1.1c)

o = ( itoo —1/-27, )o h. o+,A"',
tt'=(itoo —'1/2r )

'oohA+' 'tt„
(1.2a)

(1.2b)

o', = -1/wo —1/7'oo's —2Z(tr'A"'+A' 'o) . (1.2c)

In these equations the creation A' ' and the annihil-
ation A"' parts of the electromagnetic field op-
erators evolves freely from its initial value at
t=O when we have assumed that the atomic sys-
tem is decoupled from the radiation field.

For a typical fluorescence problem when the

where D = ur, —v~ is the detuning of the driving-.
field frequency v~ from the resonance frequency
Q)0, and T2 and T, are phenomenological trans-
verse and longitudinal homogeneous lifetimes.
The amplitude 80 describes the external driving
field which is coupled to the atomic system with
strength X.

When coherent effects are discussed it turns
out that the simple set of equations (1.1) is not
sufficient to describe more complicated pheno-
mena, for example, the resonance-fluorescence
power spectrum' or the photon correlation ex-
periments' where a fourth-order correlation func-
tion of the fluorescent light is required.

For this reason the starting point of many of
these considerations has been a set of optical
Bloch equations derived from the nonrelativistic
quantum electrodynamics ".

atomic beam is crossed perpendicularly by the
driving laser, ' the initial condition t=0 corre-
sponds to the moment when the atom enters the
laser beam. The damping 1/io is equal to the
Einstein A coefficient of spontaneous emission.
There is a close connection between the operator-
valued equations (1.2) and the phenomenological
equations (1.1).

If we assume that the driving source of light is
described by a single-mode coherent state,

A&+&(t) ~eo)=e ' ~'e, ~a,),
we obtain from Eq. (1.2) the phenomenological
equations (1.1) with

v(t)+iu(t) =Trio(t) e' t.'~eo)(So~Imp„j, (1.4a)

to(t) = Tr(its(t) ~eo)(no~Is p„). (1.4b)

where p„ is an arbitrary density matrix for the
atom. From this relation it is also clear that
T2 = 27'o and Tx = +0. As far as monochromatic-
laser interaction with the atom is concerned, the
set of Eqs. (1.2) with a single-mode coherent state
of the electromagnetic field has been an excellent
tool for the derivation of all relevant physical
properties of the system. "

In many high-resolution spectroscopy experi-
ments, the deviations from the ideal situation of
a single atom coupled to a perfectly monochromatic
source of light could become important. In a typi-
cal fluorescence experiment when an atomic beam
interacts with a pulsed or a cw laser we have
several sources of incoherence due to collisions,
fluctuating static fields, laser linewidth, etc. An
old way of proceeding in such a case has been a
phenomenological modification of the homogeneous
lifetimes in Eq. (1.1) in order to take into account
the incoherence effects in the system, atom plus
radiation.

A justification of such modifications of T,' and
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T, for a given phyHical situation would require a
nonperturbative solution of Eq. (1.2) with a real-
istic density matrix for the field and for the atom.
In most applications such a program of micro-
scopic calculations is extremely difficult to per-
form. "-" In order to avoid these difficulties a
simpler stochastic approach to the incoherences
has been developed. For example, in order to
take into account the incoherences of the driving
field, the free-field operators A"' and A' in Eq.
(1.2} have been replaced by random complex func-
tions 8(t) and 8*(t) with given statistics to model
a finite bandwidth of the laser. '~' In the last
year or so, many papers have been published con-
cerning the influence of the laser linewidth on dif-
ferent physical phenomena. ~ A nonperturbative
theory of atomic relaxation in the presence of in-
tense partially coherent radiation has been devel-
oped and applied to the resonance-fluorescence
problem. Since then, resonance fluorescence with
a finite laser bandwidth has been treated by sever-
al authors using different techniques and different
deeorrelation assumptions in order to find non-
perturbative solutions of the problem. "~ The
stochastic approach to the incoherence properties
of light interacting with an atom has an obvious
advantage being that without going into compli-
cated microscopic details of the incoherence it
can be easily incorporated in the proper atomic
equations of motion. A clear disadvantage is of
course the fact that in a stochastic approach one
is not taking into account all the very complicated
microscopic effects leading, for example, to a
finite laser bandwidth. In this sense the stochastic
description of the electromagnetic field compared
to a full microscopic treatment should be under-
stood as a phenomenologieal approach.

In this paper we are going to investigate the in-
Quence of various statistical models of incoher-
ences on the solutions of optical Bloch equations.
We show that Bloch equations with stochastic ran-
dom variables are examples of multiplicative
stochastic processes, ' studied recently by the
author. " We solve Bloch equations exactly, using
the previously developed methods for multiplica-
tive stochastic processes described by the follow-
ing general operator-valued equation":

cussion, we obtain the standard Torrey equation
for a perfectly coherent source of light described
by Eq. (1.3). This basic equation will be general-
ized in the next sections for various statistical
theories of incoherenees.

In Sec. III we discuss the phase-diffusion model
of the laser linewidth. We obtain proper general-
izations of the Torrey equation and we show under
what assumptions the results obtained by previous
workers' "are exact. or approximate. "

In Sec. IV we discuss exact solutions of Bloch
equations when the electromagnetic field is a ran-
dom stochastic process with a fluctuating ampli-
tude.

In Sec. V we solve the Bloch equations exactly
introducing a model description of collisions as-
suming that the energy separation of the two-level
atom performs random fluctuations around cop."

In Sec. VI we present a statistical model of radi-
ation-induced collisions assuming that the phase
fluctuations of the electromagnetic field are corre-
lated with the frequency fluctuations of +p. Finally
some concluding remarks are presented.

II. PERFECTLY COHERENT TORREY EQUATION

„, =(m, +m, x(f }+x+(f)M,)e,dC
(2 1)

where the vector operator% is defined as follows:

e(&) =(e"~'c(&),e '"'~'(t), ~,(f), 1), (2.2)

and the matrices Mp ~y and M, are given by the
following formulas:

iD —1/-2~,

iD —1/2wo

0

-1/~, -1/~,

For the purpose of this paper we write the optical
Bloch equations (1.2) instead of the standard spin-
precession form in the following matrix form [see
Eq. (1.5)]:

=(ftf, +x(f)m, +x*(f)m, ) e,d4 (1.5)

where M„M„and 3f, are arbitrary matrices
and x(t) and x*(t) are the random variables of
the stochastic process. We show that all the dis-
cussed stochastic models of the incoherences lead
to equations of the type (1.5) with proper M ma-
trices and with x(t} and x~(f) given random vari-
ables. In Sec. II, for completeness of our dis-

0 0 X 0

0 0 00
0-2x00
0 0 0 0

(2.3b)
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M =
2

0 0 0 0

0 OX 0

-2&000
0 0 0 0

(2.3c)

(x(t) x*(s))=8,8,*. (2.5)

It is also a well known fact that this equation can
be solved for the quantum expectation value of 4
exactly:

d(4) =(Mo+8oM) +80' M, )(4') . (2.6)

The solution of Eq. (2.6) can be written in the Lap-
lace-transform form:

(e(~)& j'.~'(z) &e=(o) ), (2.7)

where the matrix N(z) is given by the following
formula:

N(z) =zr -M, —8,M, -8,*M, . (2.8)

In formula (2.7) the contour of integration C lies
parallel to the imaginary axis in the complex z
plane, to the right of all singularities of the inte-
grands. In order to find the time behavior of
(4'(t)) we have to invert the matrix N(z}. The
determinant of this matrix plays an essential role
because its zeros are the poles of the integration
in Eq. (2.V). Taking into account the definitions of
the matrices M„M„and M, [see Eq. (2.3)], we
obtain the following algebraic equation for the
zeros of the determinant:

1 1 1 2, 1

(2.9)
The cubic equation inside the brackets is the well-
known Torrey equation with 0' =4k.'8p8p* the on-
resonance Rabi frequency, Ty Tp the longitudinal
and T2 = 2~p the transverse homogeneous Lifetimes. '

In the next sections we show how incoherences
affect the form and the meaning of this important
relation.

The time-dependent coefficients x(t) and x*(t) are
the free-field operators of the electromagnetic
field multiplied by simple phase factors:

x(t)=A"'(t)e'~~' x+(t}=A' '(t)e (~~' (24)

Equation (2.1) has the form of an equation of a
multiplicative stochastic process for which the
random variables are the electromagnetic field
operators A' ' and A' '. For the single-mode co-
herent state (1.3) we have the following correlation
function of the random variables x(t) and x*(s):

III. PHASE-DIFFUSION MODEL OF THE LASER
BANDWIDTH

A. Stochastic model of phase diffusion

The main goal of the stochastic approach is to
generate the following correlation function for the
random electromagnetic field 8(t) and 8*(s),

(8(t) 8g(s)) 8 80e iv)&(-t s)--r& ~t -sI (3 1)

8(t )
—8 e ital i - i-x (t ) 8e(t )

—8g e i (uz i + jx ( t )
p p

(3.2)

where co~ is the optical frequency of the laser
source and the random variable of the field is a
real function X(t) that represents the instantaneous
stochastic phase of the electromagnetic field.

The phase-diffusion model is based on the for-
mal analogy between the position of a particle
performing a Brownian motion and the random
phase X(t) of the electromagnetic field. The vel-
ocity of the particle has its counterpart in y(t)
=X(t).

We can now make the proper choice for the cor-
relation function of the phase X(t) based on the
Brownian-motion analogy.

It is known that the suitable correlation function
has the following form":

(X(t) X(s))„=r,(t+ s -~ t —e~) +e &'+e )"—2.
(3.3)

In the limit rzt »1 we have (X'(t)),„=2r~t which is
known as the Einstein-Smoluchowski relation in the
theory of Brownian motion with I'~ being the in-
verse of the diffusion time. In the limit 1"~t «1 we
obtain from Eq. (3.3) (X'(t)),„=r~ t'.

In the theory of Brownian motion the first limit
is called the irreversible limit and the second the
reversible one. ' '"

For lasers operating in steady-state the irre-

in order to have a power spectrum of the laser
(a Lorentzian in this case) with a finite bandwidth.
The angular brackets in Eq. (3.1) indicate a statis-
tical average over the random variables of the
stochastic process.

In this paper we assume only Gaussian stochastic,
processes, for which a11 higher correlation func-
tions can be obtained from the 'second-order one
[Eq. (3.1)] by permutations and multiplications. '4

A stochastic theory leading to the field correla-
tion function (3.1) has been known for a long time
as the phase-diffusion model of laser light and it
is based on the formal analogy with the theory of
the Brownian motion. "

In the phase-diffusion approach the following de-
composition of the stochastic electromagnetic field
ls performed:
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versible limit is the proper one to use. For trans-
ient times the reversible limit can become impor-
tant. "

From the correlation function (3.3), we can com-
pute the following correlations between the "vel-
ocity" (((t) = X(t) and the phase:

(X(t) (p(s))„,„=2r~e(t —s) r~-e "I',
(y(t) (p(s)),„=2ri 5(t s—),

(3.4a)

(s.4b)

where 8(t —s) is the unit step function. In the
limit of I ~t(r~s)»1, we have

(x(t) y(s))„=r~(t+s -I t —s I) (S.5a)

(x(t) (p(s)),„=2rie(t - s),

(q (t) q (s)),„=2r, 6(t —s) .
(3.5b)

(3.5c)

Let us note that the correlation function (y(t) cp(s)),„
remains unchanged in the reversible and irrevers-
ible limits. This shows that the phase-diffusion
model based only on the correlation function (3.5c)
cannot take into account the transient effects of
the phase autocorrelations given by Eq. (3.3). The
stochastic process characterized by the correla-
tion functions (3.5a)-(3.5c) (the limit r~t &I) has
its own interpretation in the framework of the ran-
dom-walk theory. A stochastic process with such
correlation functions is called the Wiener-Levy
process. '~ We see that the Wiener-Levy process
is the irreversible limit of the general diffusion
process characterized by the correlation function
(3.3).

Contrary to the Brownian-motion theory, the
phase Z(t) and its "velocity" cp(t) are not directly
observable physical quantities. What we are really
after in laser theory are the electromagnetic field
correlation functions:

(8(t) 8*(s)),„=8,8g(exp[-ip(t)+ix(s))), „
&&exp[-i(d~(t -s)), (3.6a)

(8(t) 8(s)),„=808'(exp [iX(t) +iX(s)]),„

with e = -1 for Eq. (3.6a) and e =1 for Eq. (3.6b).
After simple calculations we obtain

(8(t) 8g(&)) —8 8ge-j&ug(t -s) -I II ( s
~

(8(t) 8(s)),„=8',exp [-2r~ (t+ s) + 4+r~
~
t —s

~

—2e rx'-2e r~'-i~~(t+s)) .

(S.8a)

(3.8b)

In the limit of the Wiener-Levy process, we obtain
from Eq. (3.8) the following correlation functions:

8(t) 8+(s)) =8 8ge (IdL(t -s) -rl I~ -8
I (3 ga)

1"I(t+3s) t &S
(8(t) 8(s)) =8'e

e' I"L (s+3t) t +,S ~

(3.9b)

We see that the correlation function given by Eq.
(3.6a) has the same form in both limits I ~t »1
and rz t «1. The autocorrelation function (3.6b)
is different in these limits and depends explicitly
on both time arguments, i.e., is not stationary.

-iD —1/27'o X80 0

-2A.Qp -1/g 0 -2A.8g

X8O i D —1/2'
0

(3.11a)

8. Exact solutions of Bloch equations

The atomic equations of motion (1.2) with sto-
chastic fields (3.2) can be solved exactly. Using
the definitions (3.2) and Eq. (1.2) we obtain a ma-
trix equation (1.5) for a multiplicative stochastic
process with

y(t) (e(&g&( (t) c (t) e (x(() e ((ux( -x(x-(t&g+(t) e-jx(())

(3.10}

x exp [-t~,(t+ s)]. (s.6b) "0 0 0 0

To compute these statistical averages we use the
following characteristic functions for the Gaussian
processes'4:

0:l 0 0

0 0 -2 0

0 0 0

(3.11b)

exp s J7X7d7

( 1 ( m w

=exp~-
2 Jl d~, d7, Z(~,)(y(t, ) X(t,))„J(~,) ~,

»eo «oo

(3.V)

where J(7) is an arbitrary function. In order to
get the expectation values (3.6) we have to put
simply in the formula (3.V) J'(v) = &6(t- r)+6(s -v)

(3.11c)

The random variable of the stochastic process is
equal to x(t) =(p(t).

If we assume that the, atomic density matrix p„
is such that Tr [p~(r(0)] =0 and Tr [p„o,(0}]= -1,
i.e., at t =0 the atom is in its ground state; we
obtain an initial condition dependent from the ran-
dom Geld variables through the factor e '"( '. For
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such a multiplicative process it has been shown
that the following equation is an exact result fol-
lowing from Eq. (1.5)'~:

dt
'" =(M, -r~M', -r, M, e r~')(+).. .

(3.12)

with a statistically independent initial condition

(4'(0))p„= (0, -1,0, 1) . (3.13)

In the limit of the Wiener-Levy process Eq. (3.12)
can be solved exactly in the same way as it was
done in Sec. I, i.e., in terms of the Laplace trans-
form (2.7). Taking the definitions of the matrices
M, and M~ [see Eq. (3.11)], we obtain the following
generalization of the perfectly coherent Torrey
equation (2.9):

1 . 1
(@+I'z) z+iB+ z —iD+

2
+47 )70 70

1 2x~a+ +I' +4K'8 ii" s+ +21' ) =0.

nance we should modify the homogeneous lifetimes
in the following way:

1/T,' =1/2r, + 2r, , 1/T, =1/T, +r,
for the Wiener-Levy process and

(3.18a)

o(t)ei a&t + Ex(1) 1/ (3.19)

-2A.Q

XSO* i D —1/2ro 0

iD 1/2r -0-

1/T,' =1/27, +r, , 1/T, =1/~, (3.18b)

in the transient regime, in order to take into ac-
count the laser linewidth I'~.

As it is clear from definition (3.10) these rules
can be applied only for o(t) or o,(t) e '""'. In or-
der to obtain the expression for the time evolution
of the atomic inversion o,(t}, we can derive an
equation of the type (1.5) with the following defin-
itions of the vector operator 0 and matrices:

@(t)=(o,(t), o'(t) e '~~'

(3.14)

In the limit 1"~t&1 the algebraic equation govern-
ing the time behavior of the solutions of Eq. (3.12)
is the following:

1 & . 1: 1)
e ]e+tD+

2
(e-tD+

2
+2r, i ~+ — --

I270 ( 270 / 70

1+4~'e, eg Ie+ +r,
~

=0. (3.15)0 0 ( 2 I
)

0 0 0 0

0 -1 0 0

0 010
0 0 00

m, =0

0 0 0

(3.20a)

(3.20b)

(3.20c)
As we can see from Eqs. (3.14) and (3.15) the in-
fluence of the laser linewidth is different for trans-
ient times than for the steady-state regime. In
the limit of a perfectly coherent laser, i.e., I'~ =0
the generalized Torrey equations (3.14) and (3.15)
reduce to the standard form given by Eq. (2.9). At
exact resonance D=O and in the limit of high-in-
tensity field Qr0&1 and Q&I'~, we can compute the
approximate roots ofEqs. (3.14) and (3.15). After
simple calculations, we obtain

( )'—"=(M,-r, M', )(e)., (3.21)

with the initial condition

with x(t) =q(t) =X(t). A straightforward applica-
tion of the theory of multiplicative stochastic pro-
cesses leads to the following equation for (4'),„;

1 3 3z =-l" z = — —2l" z = — ——I" +iQL P 2 2~ L P 3~4 47- 20 0

(3.16)

(4 (0)),„=(-1,0, 0, -1/7.,) . (3.22)

for the Wiener-Levy process and

1 3 1
Zx=« =-. -~, Z, 4=- — ' ~in1 & 2 2g L& 3 ~ 4

0 0

. (3.17)

for the transient regime. These results indicate
that for high intensity-fields and at exact reso-

Equation (3.21) is valid for all values of r~t. The
difference between results (3.12) and (3.21) comes
from the fact that the operator [Eq. (3.10}] evalu-
ated at t =0 depends on the stochastic phase through
the factor e '""'. The operator 4 [Eq. (3.19)]
evaluated with the same density matrix p„at t=«
is statistically independent from the 1aser field.
The corresponding determinantal equation for the
solution of Eq. (3.21) is the following:



19 STOCHASTIC INCOHERENCES OF OPTICAL BLOCH EQUATIONS 1691

1/T,' = 1/av, +I"i, 1/T, = 1/~, . (s.a4)

In other words the incoherences affects only the
transverse lifetime T2. The rules given by Eq.
(3.24) are the same as the rules (3.19) for the
transient-laser regime and high 1aser power with
the important difference that Eq. (3.24) holds for
all values of 1 ~t and for all field intensities.

i z+ - - i~z+ +I'i
i

+I)'
TQ w VQ )

+4~ 8080~ ~+
2

+l ~ =0. 3.21
70

In the limit when I'~ =0 Eq. (3.23) reduces to the
perfectly coherent Torrey equation. In contrast
to Eq. (3.14) and (3.15) the polynomial (3.23) can
be otained from the Torrey equation (2.9) by sim-
ple replacement rules:

C. Atomic correlation function: Exact solution

The last quantity to be discussed in this section
is the following twp-ppint atomic correlation func-
tion:

G„(~)=o'(u)o(u+~), 7&0. (s.a5)

This correlation function plays an important role
in the definition of the power spectrum of the scat-
tered light by the two-level system. " From the
basic equations of motion (1.2) with stochastic
fields (3.2) we obtain an equation of the form (1.5)
with the time derivative computed with respect to
i. The matrices MQ and M, are the same as in Eq.
(3.11). The random variable is given by the follow-
ing relation: x(r) =y(u+~) and the operator-valued
vector 4 is given as follows:

@(f ) —(e ( ~r ro+((()o (r( + y) e ( KL& ( x(m + t) o+((()(r ((( + 7) e-( Mr (2u + 7) - (2 x (u + T) (r+(M}(r+((( + y} e ( tdLu - (x(+ + T ) o +(M))

(s.a6)

For the Wiener-Levy stochastic process we obtain, applying again the known technique for multiplicative
stochastic processes, the following exact equation for (4),„:

(3.27)

with the following initial condition:

(3.28)

The v dependence of the correlation function is
thus governed by roots of Eq. (3.14). The u de-
pendence is given by Eq. (3.14) and (3.23) as well.

D. Discussion

In this section we have presented the phase-
diffusion model of the laser linewidth based on
the Brownian-motion analogy. The specification
of the "velocity" correlation function (3.4b) as it
was done in many papers is not enough to define
the phase-diffusion model. Only in the steady-
state limit when the phase-diffusion model is de-
scribed by the Wiener-Levy stochastic process
the decorrelation assumptions used in the.previ-

ous works are exact and have not to be imposed
jtjpnal]y i4-xs The tj.me evplutj. pn pf the dj.pple

operator is governed by the roots of the general-
ized Torrey equation (3.14). In the limit of high
laser intensity, i.e., Ar, &1, Eq. (3.14) reduces to
the standard Tprrey equation with the following
formulas for the phenomenological lifetimes:

+21'i, —= +I'i+ ~ . (3.29)
2Dl ~

2 70 1 70

The longitudinal lifetime T, depends on the de-
tuning, laser linewidth, and Rabi frequency as
well.

For transient times the initial condition depen-
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1 1 1 1 Dl, (3.30)

At exact resonance the laser linewidth shifts uni-
formly the longitudinal and the transverse life-
times.

The atomic inversion operator is governed
by a much simpler Torrey-type equatior. (3.23)
which is valid for all values of F~t. The rules
given by Eq. (3.24} are exact for all values of
the field intensity and detuning.

For the Levy-Wiener process describing the
steady-state phase diffusion we obtain an exact
solution for the atomic correlation function (3.25).
It turns out that the proper generalized Torrey
equation has the same form as in the case of the
time evolution of the atomic dipole moment [see
Eq. (3.14)]. Because the power spectrum of reso-
nance fluorescence is related to this correlation
function, the detuning and the power broadening of
the lifetime T, leads for a finite bandwidth of the
laser to a slight asymmetry in the predicted fluor-
escence spectrum. ""This observation, without

any relation to power and detuning broadening of
T, has been already made in the literature. %e
note that the solution for the correlation function
(3.25) has been obtained without the regression
theorem used in previous discussions of this prob-
lem"

dence on the statistical properties of the field be-
comes important and the proper solution differs
from the steady-state situation. The techniques
of the decorrelation assumptions do not work in
this case.

The method of multiplicative stochastic process-
es that we have developed previously produces the
exact solution for the transient times in a straight-
forward way. The proper generalized Torrey
equation (3.15) leads to the following rules for the
homogeneous lifetimes in the limit of high-intensity
fields:

dom fluctuating variable with the following Gaus-
sian statistics:

(g(t) g*(s)),„=(I",/2z') 5(t —s),

(g(t) g(s)),„=(r,/2A. ') 5(t- s),

(g(t)),„=(g *(t)),„=0.

(4.2a)

(4.2b)

(4.2c)

M =
0

-2XQ0*

i D —1/2TO A.8f 0

-2xe, -1/7., 1

0

(4.4a)

Oo-iO
O0OO
0 2i 0 0

0 0 0 0

(4.4b)

%'e have introduced here two different arbitrary
linewidths I",and I', in order to investigate con-
tributions from correlation functions (4.2a) and

(4.2b) separately. The coupling constant factor
A.

' was introduced in Eq. (4.2) in order to have
I', and 1", of the dimension of the linewidth. The
stochastic fields introduced by Eqs. (4.1) and (4.2)
can have different physical justification. The
fluctuations can be associated with a different
stochastic model of laser linewidth based on amp-
litude fluctuations or with fluctuating external
fields 1.eading, for example, to collisions.

The atomic Bloch equations (1.2) with the fluc-
tuating fields (4.1) can be written in the form of
Eq. (1.5) with

@(t}=(e' &'(y(t), e ' &'g'(t), g,(t), -1/r, ) (4.3)

and the matricesM0, M, , andM, are then the
following:

-i D —1/2r, 0

IV. RANDOM ELECTROMAGNETIC FIELD AMPLITUDE

0 0 0 0

0 0 -i 0

2i 0 0 0
(4.4c)

In Sec. III we have found exact solutions of Bloch
equations if a random-phase description of the
electromagnetic field is introduced. In this sec-
tion we continue the same investigation but without
introducing the amplitude-phase decomposition
given by Eq. (3.2). We rewrite the electromagnetic
field amplitudes in the following way:

0 0 0 0

The random variables of the stochastic process
(4.1) are the following: x(t) =g(t) and x*(t) =g*(t).
From Eq. (1.5) with definitions (4.3) and (4.4) we
obtain the following exact equation for the stochas-
tic average of the vector (4.3):

e' i'e(t) =Wi, +g(t),
e-"~'e*(t)=Wi+ g*(t)

(4.1a)

(4.1b)

where I, is a constant intensity and g(t) is a ran- --,'1,(~,~, + M,m, )](~),, (4.5)
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with the initial condition

(4 (0))p„= (0, 0, -1, —1/ro) .
The determinant of the proper N(z) matrix for Eq.
(4.5) leads to the following algebraic equation:

(4.6)

z ~z+ + —+D z+ +r, 2X I I,1 I'~, 1
2Tp 2 70

r, 'I r',
+4m'I, z+ + '

~

— ' z+ —+1",
~

=0.
2~0 2 j 4 &O 'j

(4.7)

Eq. (4.7) shows how differently the autocorrelation
(4.2b) contributes to the generalized Torrey equa-
tion comparing to the cross-correlation (4.2a). If
the autocorrelation of the sotchastic field vanishes
i.e., I', =0 the solution of Eq. (4.5) can be obtained
from the perfectly coherent case by simple re-
placements:

1/T, =1/v, +I'„
1/T,' = I/2~, +-,'r, .

(4.8a)

(4.8b)

1 1 1 1

Thus the linewidth 1", affects both the transverse
and the longitudinal lifetimes but in a different way.
We have obtained then the same rules as in the
high-power limit (3.18) with the exception that off-
resonance the lifetime T, is not power broadened.

If the linewidth 1, of the autocorrelation (4.2b) is
not equal to zero we can obtain the following gen-
eralization of the relations (4.8) for high-intensity
laser field:

damping and external fields in the Bloch equations
(1.2). We can then write down immediately the
solution for the o (f) operator and form the follow-
ing correlation function:

((v+(t)a(s)), =(e px~i dtl7(td)7
s av

x exp [i&a,(t —s)] o'(0) o (0) . (5.2)

The stochastic average of the phase can be com-
puted using the general formula (3.7) for Gaussian
processes and the definitions (5.1):

(o'(t ) o(s)),„=exp [iver, (t —s) —I's ) t —s
~ ] o'(0) o (0) .

(5.3)

If we recall that the operator o (f) is the two-level
truncation of the momentum operator the interpre-
tation of Eq. (5.3) is clear. Due to collisions the
correlation function of the velocities is damped
with a characteristic coherence time I'~ . This
simple statistical model can describe the influence
of collisions on the solutions of Bloch equations.
With such a statistic we can write again a general
Eq. (1.5) x(t) =6&v(t) and 4' given by Eq. (4.3). A

simple repetition of the used procedure leads in
this case to a Torrey equation (2.9) with the in-
coherence affecting only the transverse lifetime

1/T,' =1/2~, +r, .

Due to the definition of the vector-operator 4 [see
Eq. (4.3)] this conclusion is valid both for the di-
pole operator o(f) and the population inversion
operator o,(t).

If the linewidth of the correlation functions (4.2)
are equal, i.e., I', =I, we recover from Eq. (4.9)
the known result for amplitude fluctuations of the
laser field. "'"

V. ATOMIC FREQUENCY FLUCTUATIONS

(5&@(t)),„=0,
(5&u(t) 5ru(s)), „=2Z's5(t —s) .

(5.1)

In order to find the physical interpretation of 1~
let us assume for the moment that there are no

As already mentioned in the Introduction, due to
collisions the energy separation v, of the two-level
atom can also fluctuate around its fixed value +0.
This means that in the atomic equations (1.1) we
should replace &oo by &@0+5&v(t) and assume that
5u&(t) is a random variable of a, stochastic process.
The simplest assumption about the statistical prop-
erties of 5~ is the following set of Gaussian corre-
lation functions:

VI. COLLISION INDUCED BY RADIATION

In Sec. V we have discussed a simple stochastic
model leading to a finite bandwidth I'~ of the vel-
ocity correlation function. In this section we gen-
eralize the previous discussion to the case when
the random fluctuations are not statistically in-
dependent from the phase fluctuations of the elec-
tromagnetic field. This simple stochastic assump-
tion leads to the effect in which the random phase
of the laser is coupled to the phase of the atomic
dipole leading to modifications of the velocity cor-
relation function coherence time due to radiation.
This model can describe a collision induced by
radiation. This model is the simplest stochastic
description of this effect. In order to describe
these collisions induced by radiation we introduce
the following random variables: 5m~ for the dipole
phase and X~ for the laser phase.

Following the results from previous qpctions we
assume the following correlation functions for the
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(x„(t)x„(s)),„=y,(t+s- It- sl),
(6(u„(t) 6(us(s)),„=2y, 6(t —s),

(6.1a)

(6.1b)

frequency fluctuation Dv~ and the laser phase X~
which is induced by collisions:

(5(o„(t)xs(s)),„=2y„8(s—t). (6.1c)

Formula (6.1c) couples the random variable 6&us

top+. From the theory of Gaussian stochastic
processes we obtain'easily the following character-
istic function:

exp i J,(~) 6&us(~)d~+i z, (~) x„(r)dT
I

av

~&(T,)(~~s(~&) ~~, (~,)~,(~)),„-—~t &,(T,)(x,(~&)xs(~, ) ),„~,(T,)

~x( x)(6~s( x) xs(~2)) ~2(T2) ~2(~x)(xs(~x) 6+s(~x)~2(T2))„
I ~

I 1
(6.2)

where J~ and J, are two arbitrary functions. In
order to understand the physical role of the cross-

correlation function (6.1) we compute the following
atom-field correlation:

t
(e'(t) 8(s)) =e' 0' '"&' expli dv6&o(v) —ix(s)

I
o'(o Qo,

p $ av
(6.3)

where the time-evolution of the dipole operator is
given by the free oscillation (X =0) of the fluctu-

ation 5coz around up. With the proper choice of
functions J', and J, in the formula (6.2) we compute

exp(-y, t-y, s+2y»s), t &s

j ., exp(-y, t —y, s+2y»t), s&t.exp i d7 6(os(T) - ix„(s) I (6.4)

The formula (6.4) leads to a damped correlation
function for all values of t and s only if

2y„&min(y„y, ) . (6.5)

This restriction for the cross-correlation line-
width assures the proper behavior of the atom-
field correlation function for t or s going to in-
finity. The requirement of having a stationary
correlation function (6.3) leads to the following
formula for yx2 '.

1
y» =2(yi+ y.) ~ (6.6)

We will not assume any particular formula for y»
in the following calculations. We remember only,
that a physical requirement restricts y» to satisfy
condition (6.5). With this kind of statistic we can
easily obtain a generalization of the proper equa-
tion of motion satisfied by the vector-operator

0000
0 0 I 0

0000
(6-7)

After a straightforward application of the theory
of multiplicative stochastic processes we obtain
the following generalization of Eq. (3.12) for ra-
diation-induced collisions:

d(4)„
dt

"-=(Mo —yqMq —y2M2 —2y»MqM2)(4'), „.
(6.6)

(3.10) with random variables x(t) =A's and x*(t)
=Geo~. The remaining definitions of the matrices
(3.11a)and(3. 11b)are the same with an additional
definition

-I 0 0 0
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The proper generalization of the Torrey equation
for Eq. (6.8) is the following:

of collisions induced by radiation at exact reso-
nance (D =0), which are given by the following re-
lations:

(& + yg) I~ - tD + +4' + y, - 4', (2' 1 1 1= 2I'I +
1 70 2 Yo

(6.13)

+4k'8 8f i
z + — + 2y, + y, —2y„

i
= 0.

(6 9)

In the limit of high-intensity field Eq. (6.9) leads
to the following formulas for the homogeneous
lifetimes:

assuming in formulas (6.9) that y~ = 21'I, y, =I'~,
and 2y» = y, . The usual interpretation of the life-
times is the following. The width I I is associated
with inelastic collisions and I'~ with elastic one.
Due to the flexibility of the results (6.5) and (6.6),
we can adjust y» y» and y» to model different
physical situations of collisions induced by radi-
ation.

1 1 2g)
+y~+ ~ (yx-yg. ),

1 +0
(e.ioa) VII. CONCLUSIONS

1 1
T =-. "y"y-'".

2 0
(6.10b)

We see again that the time evolution of the dipole
operator is governed by a power broadened T, .
As in Sec. III the time evolution of the inversion
operator o,(t) [Eq. (3.19)] is given by different
matrices (3.20). With x*(t) =eros(t), we have for
the collision an extra contribution due to the fact
that

0 0 0 0

0 1 0 0

00-10 (e.ii)

0 0 0 0

A repetition of the general method leads to the
following exact relations for the lifetimes valid
for all values of the field intensity:

1/r, = I/7„
1/T2 = 1/2~, + y, + y, —2y„.

(6.12a.)

(6.12b)

We see from results (6.10) and (6.12) that the sto-
chastic model of radiation-induced collisions leads
to solutions for which there are no simple univer-
sal rules governing the lifetimes of the dipole mo-
ment and the population inversion. Each of these
operators has its own homogeneous lifetime [(6.10)
or (6.12)].

It is impossible to incorporate the results of this
section by a universal introduction of phenomeno-
1ogical damping terms in the semiclassical Bloch
equations (1.1) as it was done in many referenc-
eS 28e29

If the fluorescence spectrum of light is investi-
gated the proper equation to work with is the. poly-
nomial (6.9) [see Sec. IlIC for the discussion of
the atomic correlation function]. For this case we

can reproduce the results of a microscopic theory

In this paper we have presented a general sto-
chastic approach to incoherence properties induced

by laser linewidth and collisions. Our treatment
was based on operator-valued optical Bloch equa-
tions with stochastic coefficients modeling differ-
ent sources of incoherence. The operator-valued
equations of motion with stochastic coefficients
have been studied recently by the author and exact
solutions for Gaussian stochastic processes have
been obtained. Applying the previously developed
techniques, we have obtained exact solutions of .

optical Bloch equations for the phase-diffusion
model of laser light. We have shown that the
phase-diffusion theory has two different time re-
gimes. The first one, the steady-state, is modeled
by the Wiener-Levy stochastic process. The other
regime, the transient, has not been discussed thus
far in the literature. We have shown that the de-
correlation assumptions used in previous calcula-
tions cannot be used in the transient regime. Ac-
cording to results of Ref. 14 the incoherences do
notact inan additive way to all phenomenological
lifetimes. The results of our discussion support
this opinion. More than that, we have shown that
in some cases the incoherence effects cannot be in-
cluded in the Bloch equations by simple phenomen-
ological damping terms. We have obtained exact
solutions of Bloch equations with detuning-depen-
dent and power-broadened decay constants. These
damping terms can be obtained from the homo-
geneous lifetimes T2 and T, by special rules.

We have also obtained exact solutions for simple
models of collisions and collision induced by ra-
diation. Again, there are no simple additive rules
in the Bloch equations to take into account the in-
coherences due to collisions. Different formulas
for T,' and T, have been obtained for different sto-
chastic processes. A full treatment of incoherences
would require a detailed microscopic discussion
of physic@1 processes leading to the laser linewidth
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or to collisions. It is interesting to estaMish to
which microscopic assumptions correspond the
stochastic description of the incoherence.

These problems in the framework of resonance
fluorescence will be discussed in a forthcoming
paper.
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