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The simultaneous oscillation of two standing waves in a solid-state laser is considered. An exact solution in
terms of continued-fraction expansion is derived. This method enables one to consider high-intensity fields.
Two distinct regimes are treated: a weak-coupling regime and a strong-coupling regime, depending on the
intensities of the two modes. The effects of spatial inhomogeneity are stressed in the two different ranges of
operation. The gain function turns out to be the sum of two parts: the first one includes gain saturation and
the second one derives from the direct coupling of the two modes. The dispersionlike behavior of this latter
term is discussed as a general result of nonlinear interactions. The amplification of a small-amplitude mode
in presence of a strong one is interpreted in terms of a hyper-Rayleigh effect.

I. INTRODUCTION

Laser light is often made up of several modes
of the resonant cavity with frequencies close to
the lasing transition frequency, while their spread
is limited by the atomic line shape. The compe-
tition between cavity modes is an intrinsic cause
of instability in the output light of lasers spiking
behavior in solid-state lasers, ' or free-running
operation in gas lasers, ' or it may even cause,
in other favorable cases, a stable operation in
which all the modes are locked together. ' The
competition itself is quite different, depending
on whether the atomic (or molecular) line of
gain is homogeneously broadened or not.

The recent progress in the semiclassical theory
of lasers allows one to treat high-intensity fields
in laser cavities through a suitable formalism
that gives convergent expansions of the atomic
variables involved in the interaction, however
large the intensities of the modal fields are.
Therefore we are in a position to have a general
view of the interaction phenomena which arise
in multimode operation in lasers. As a matter
of fact, the computational difficulty increases as
soon as the number of the simultaneously oscil-
lating modes is raising. In the present paper we
deal with a two-mode case in detail showing that
the main features of the multimode operation can
be deduced anyway. Most of these phenomena
are well known and are given a detailed descrip-
tion; others have received less attention. In this
simple situation, when two standing electromag-
netic modes of arbitrary intensities oscillate
simultaneously in a cavity in which an inverted
medium with homogeneous gain line supplies the

necessary power to sustain oscillations against
the losses, the saturated gain of the two modes
is independent of their relative phase. Therefore
we are not concerned with any locking mechanism
of the frequencies of the modes. However we
make a distinction between two kinds of energy
exchange among the modes: one which is always
phase independent, even in multimode operation,
the other which is basically a hyper-Rayleigh
effect, ' depending on the relative phases when
three or more modes oscillate. This latter
crossing term accounts for a phase-dependent
energy exchange or phase-locking mechanism.
The assumed homogeneity of the line of gain
greatly simplifies the problem. Actually inhomo-
geneities can appear even in a stationary atomic
array, both for diffusive effects' of for local
strain effects which can alter the atomic transi-
tion frequency. ' However both these inhomo-
geneity effects cause no trouble in our treatment,
since each active atom "sees" two frequencies
of the electromagnetic (em) field, whatever its
transition frequency is. The problem becomes
complicated when the inhomogeneity is introduced
by the motion of atoms relative to the laboratory
frame, where the modal frequencies are deter-
mined by the optical cavity. In this case, owing
to the stationary character of the modes, an atom,
with an axial velocity v, sees the two frequencies

a"d (d, :split by D ppl "e e ": i~+v and
c02 kKU Therefore a two-frequency problem be-
comes a four-frequency one. It appears that the
problem of two standing modes interacting with a
homogeneous medium which we describe in this
paper, is analogous to the case of two running
modes interacting with R.Doppler-broadened
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medium. This latter situation has been described
in great detail, ~ "because of its relevance in
saturation spectroscopy experiments. " Therefore
it is pertinent to compare our results with those
obtained in the quoted papers. In particular
Haroche and Hartmann' have dealt with various
effects that arise when a weak, nonsaturating
beam interacts with a Doppler-broadened medium
saturated by a strong oppositely-running wave.
Our results have a fairly simple interpretation
which parallels their discussion. The complete
solution of our problem is given in terms of a
continued fraction expansion. This expansion
was applied to microwave spectroscopy problems
by Autler and Townes, "and first applied to the
semiclassical theory of lasers by Stenholm and
Lamb. " Since then it received great attention
by a number of authors, " "who treated several
problems connected with the interaction between
a classical em field and a two-level atomic
system. Recently it has been extended to treat
multimode operation phenomena. "

One of the advantages of this expansion is that it
gives convergent results for arbitrarily high-
field intensities. Its lowest-. order approximation
makes it clear the features of the rate equations
approach in the prevj. ous perturbative treatment. '
Furthermore, the intrinsic limitations of the
perturbation expansion are avoided and all the
effects that arise in strong-signal operation can
be described. The analysis has been limited to
the gain interaction because the two-mode opera-
tion is phase independent and any frequency-push-
ing or -pulling effect has small influence. How-
ever these effects could easily be evaluated in
terms of the in phase component of the polariza-
tion of the medium whose expression is given in
Sec. III.

The paper is organized as follows: in Sec. II
we briefly derive the basic formulas for the two
mode operation; the inversion population density
and the polarization of the medium are given in
terms of a continued fraction expansion. This
expression of the gain experienced by each mode
is also derived and its physical significance is
stressed out. In Sec. III the results obtained by
numerical computation in the small saturation
regime are discussed and a few graphs are re-
ported in order to show the main phenomena which
occur in that regime. Section IV is devoted to the
discussion of the large saturation regime. When
this regime is achieved, the beating of the two
modes gives rise to the oscillation of the inver-
sion population density and this in turn is respon-
sible for a parametric coupling of the modes.
Although this regime could be hardly achieved in
a solid state laser, its features are relevant to

the phase-locking mechanism in any kind of laser.
Finally in Sec. V a comparison with previous
results is made, stressing out the analogies of
interpretation of only seemingly different prob-
lems.

II. FOURIER-EXPANSION ANALYSIS

The em field in the cavity is assumed to be
made up of two longitudinal standing modes,
whose electric field component is:

E(r, t) = E,(r, t)cos(ur, t+ P, )sink, z

+E,(r, t) cso((u, t+ y, )sink, z.
The resonance condition sin(k, ,L) =0, where L
is the cavity length, determines the possible
values of k» =N»w/L, where 1V» are very large
integers. The polarization of the electric field
is assumed to be transverse to the z axis (longi-
tudinal axis) of the optical cavity so that the z axis
may be chosen to be along the field vectors.
Furthermore, the two modes are assumed to be
plane waves, so that the field amplitude depends
only on z. In the stationary regime, the two field
amplitudes are constant in space and in time,
and accordingly are taken to be parameters in
our treatment. The em field is coupled through
an electric-dipole interaction with a stationary
atomic system, whose levels ~a) and ~b) are
separated by an energy E=h(d= E, —E„which is
close to the cavity resonant frequencies +, and

Accordingly, the atomic medium is described
as a two-level system, and its density matrix
p(z, t) obeys the equation of motion

p„=X,(z, t) —y,p„+iV(z, t)(p„—p„),
p„=&,(z, t) —r,p„+fr,p„~l'(z, t)(p —p ),
P b 4bP b iÃP b Z ( t)(P Pbb)

~ g
pba pa~.

In these equations, X, and X„represent the source
terms for the atomic-level population, and may be
supposed slowly varying in a time in which the
atomic variables vary appreciably. All the losses
of the two levels a and b are lumped in the terms
y,p„and y,p», respectively. If the lower-level
b is the ground levelo&thesystem, y,p» can ac-
count for the optical pumping to an upper level,
and the branching ratio f =1. The coupling with
em field is given by the term V(z, t) which reads

V(z, t)=-(S/k) E(z, t)= (a„/n)E(z, t),
where I' is the dipole moment of the resonant
atomic transition. The two frequencies of the
em field are close to the (optical) atomic-transi-
tion frequency, therefore we may neglect the



19 SATURATION EFFECTS AND STIMULATED SCATTERING IN. . .

Pif,y Py e

where

(4)

counter-rotating components in the coupling term
of Eqs. (2). Let us put

much longer than the inverse of their beating
frequency. Otherwise, each mode loses its
physical significance, and the description of the
laser phenomena is better given in the time do-
main. Let us introduce the Fourier expansions:

(p'= v't+ Q',
p (z t) P y( a )(z)e (m() (12a)

v' is an optical frequency, and (p' is a phase term
which is specified later on. We neglect all the
components of p, which vary as exp(+i2v't). This
approximation is a very good one at optical fre-
quencies and is referred to as the rotating-wave
approximation (RWA). Substituting Eq. (4) for
p„and p„, in Eqs. (2), we get

p„= )(, —y,p„—i[p,h(z, t) —p,*8*(z,t)],

p, =)( —y,p, +fr,p„+i[p,h(z, t) —p,*h*(z, t)], (6)

p, = -y„p, +i(v'+ (()'- (o)p, —i(p„—pbb)@*(z, t),

where

((l(z, t) = P, sin (k,z }'exp[i((o,t+ (t, —(() ') ]

+ P, sin(k2Z)exp[i((o2t+ (t 2
—y') ]

P (Z t) Q F( b)( )Zei m() (12b)

p, (z, t) = P p„(z)e™. (12c)

If we substitute Eqs. (12) in system (6), we find an
algebric system for the Fourier components r"',
g"', and p:
(i))2j +y,)-2")=)(,6, „i[P-,(p , -p*,)

P.(p.. -p*.. )1 (»a)

(i'(t) +yb)r' '=)(b8, +12„"+i[P,(p„ l —p*„ l)

+P (p.„-p*.„)],
(13b)

P,.=(PE,/2k (q=1, 2). (8)

[i(my —P'+ &u)+ y„]p
i[P (+(a) +(b) }+P (+(a) +(b) )] (13c)

Because the atoms are stationary, the variable z
is a paraineter in p, i.e. , Eqs. (6) give the time
behavior of those atoms at position z, interacting
with a field having amplitudes E,sin(k, z) and

E, sin(k, z), respectively. This spatial dependence
gives rise to phenomena which are discussed
in the next sections. With a suitable choice of
&t)'(t), we can give the function $(z, t) a simple
time dependence. Let us put

&f&
=—2(&i+ &2)t+ 2 ((t)i + $2) ~

Then

h(z, t) = P, sin(k, z)e*' + P, sin(k, z)e "
where

y =2(~, —~2)t+2(%, —02)

A stationary solution of system (6}, with the sub-
stitution (10), is readily obtainable if we allow
(P' and E„E,to be constant in time. Then the
four elements of the density matrix may be ex-
panded in terms of a Fourier expansion, just
because the coupling function b(z, t) is periodic
in time, with a fundamental frequency given by

However, these Fourier expansions are still
a good "physical" solution if the amplitudes E,
and E„as well as the tuned frequency Q', vary
little in a period I/(t) . These solutions are there-
fore valid when the cavity modes have sharp reso-
nances, i.e., when the modes decay in a time

where

(14)Pl 2 P1, 2 Sln(kl, 2Z) '

Eqs. (13) can be reduced to a single recurrence
equation for the levels' population difference

n(z, t) = p..(z, t) —p„(z, t),
whose Fourier coefficients are given by

)2 (z)=2 "(z)-&"'(z)~ (16)

(17)

where

r„= (r.+2r,), (18a)

(18b)

I = [in2(t) +y„—i((I)'- (u)] ',

'Y, Xp j
(2o)

is the stationary population difference in absence
of any em field in the cavity. A simple physical

Then the recurrence equation for n reads:

n =N, 6, (y, + yb+2im(t) —I')/[(y, bi +2P)2)(' —y ]

I.„[(L...I*. ,)P;.(L... J-*„.,}P:]
+ .„(L„„+L*.,)P,P.+,(I +f.*.,)P P,),
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interpretation of the recurrence relation (17) can
be given: the Fourier coefficients n vanish for
~OG, if P, (or P,) is zero, i.e., when there is
only one mode oscillating in the cavity. In this
case, no time modulation occurs in the population
difference n(z, t), and the steady value of n(z) is
readily obtained

B =0 [(I,+L*,)P', +(I „+I*„)P',],
(26b)

C = Q„P,Pp(L, +L* „), (26c)

then the average-population difference is given by

no =tto(1 + Bo++on2/no+ Con 2/no)

where
2y„- I' 2y„

y,r, r'„+ (~, —~)'

The steady state (21) is reached in a time &=1/y',

r' '=r, '+r, '=2y„/r, r, and

n2=

1+B2—

C2
A.2C~

A.4C6
1 +B 0 ~ 0

6
(28)

The validity of Eq. (21) is restricted to the cases
in which the em field amplitudes and phases are
constant or vary little in the time &. In two mode
operation, the product P,P, does not vanish and a
temporal dependence of the population difference
arises. If the modes amplitudes do not vary ap-
preciably in a time 1/y', then a stationary regime
is reached in which the population difference
oscillates in time. The period of the oscillation
can be readily found from Eqs. (12) and (1V).
Only even Fourier components of n(z, t) appear
in the expansion (12a) and (12b), [see Eq. (17}:
the odd components of n, namely n2 „form a
homogeneous system whose unique solution
n. ..= 0]. Therefore the period T of n(z, t) is
given by

T = 2w/2 j = 2m[(u, —(u, + (y, —y, )] '. (22)

As a matter of fact the difference P, —$, is much
smaller than the frequency spacing of the modes.
Hence we shall ignore this difference in the follow-
ing. The rate equation approximation (REA} in
two-mode operation (stationary regime) applies
when we can ignore the time dependence of n(z, t},
i.e., when the coefficient n, is much greater than

in, i. This condition yields

1 ~

»4p, p, (y„-—,'i 5)'+ [-,'((e, + (u,) —(u]'

(23)

n 2/no = ( n/2n)o (29)

The evaluation of the population density at the
stationary regime allows us to determine the
polarization of the medium. The latter quantity
is given by

P(z, t) = Tr(6 p) = 6„[p„+p„]. (30)

Making use of (13c) and (12c), we get

P(z, t) =p„[ iZ„L,(P,n„,+ Pn, ,)e'&" "+c.c]-.

(31)

= -(~at+ ~i) (32a.)

or

kP —Q'= -(v, t+ &f&,) .
The former relation if fulfilled by 0= —1, the
latter by k = 1. Therefore only two terms in the
summation (31) are relevant. The only population
difference components which are necessary in the
evaluation of the relevant part of P(z, t) are n,
and n„, which in turn can be derived from Eqs.
(27)-(29). We have, therefore,

P, (z, t) = ia,[y„—-i((o, + $, —a))] '(P,n, + P,n, )

x e 4( (dye+ gy)+ c (33a)

Actually we need only to evaluate the polarization
oscillating at the frequencies of the two modes:
i.e., we require that

ay-- y"= --'. [(~,t+ y, )(1 —u)+ (~,t+ y, )(1+t )]

with

6 = (d& —(d2 ~ (24)
P, (z, t)=-ia„[y., -i(~, + y, &)]-'(P,~+ P,n,)

x e ~~~2~+&2)+C C (33b)
Therefore in strong intensity regime the REA does
not apply even in a stationary condition.

The solution of Eq. (17) can be expressed in
terms of a continued fraction. "' If we denote

n =(r, +y, +im5-r)[(y„+-,'i~6)'-y'] ', (26)

A = 0 I6|p (L,2i+L*„ i), (26a)

The in-phase and the out-of-phase components
of the polarization determine the dispersion and
the absorption (or gain} of the mode under investi-
gation. For example, the average power per unit
length absorbed by the medium from the em field
at frequency v, is given by
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G,(z) = (P(z, t)E, cos((o,t+ y, )sin(k, z))
p2

= -28+ Re
y, ~

—i((u, + j,—(e)

+Re ~ ~

x., —i (~, + y, —~)) (34)

coupling of the modes through the pulsation of
the population difference plays animportant role.
This operation range is referred to as strong-
coupling regime (SCR).

III. WEAK-COUPLING REGIME

G» + Gj2 ~

In the weak-field limit, n, N,-and ~n, ~«no, we

get the familiar absorption law

G,(z) = -2K~N, y„P', /[P, + ((o, + (j), —(o)']. (35)

A net absorption is achieved if G, &0, i.e., when

N, &0 (the lower level is more populated than the
upper one). Otherwise, G, &0 and the em field
gains power from the medium.

We note that the absorption (or gain) per unit
length depends on z through P, and P„ as a conse-
quence of the stationary spatial pattern of the
em field. In a running-wave configuration, the
field peaks sweep all the cavity, and the z depen-
dence disappears. The total absorption or gain
of the mode can be evaluated by calculating the
integral of G, (z) over the active medium length.

In general, gain (or absorption) of each mode
has two contributions, as indicated in Eq. (34).
In the limit that only one mode s atur ates the gain
function we can give these two terms a simple
interpretation. G» represents that part of the
gain which the mode oscillating at frequency +,
experiences directly through interaction with
the inverted medium. However the medium itself
is saturated by all the modes oscillating in the
cavity and by this approach the whole effect of
saturation is taken into account in the steady
value of the population difference n, as shown by
Eq. (2V).

The second term G» has a different origin: the
nonlinear interaction between the two modes
gives rise to an oscillation of the population dif-
ference at frequencies n

~
&u, —~,

~

(being n = +I,
a2, . . . ). This oscillation in turn is coupled with
the polarization at frequency &„giving rise to a
component of the polarization at (dy which acts as
a source for the mode oscillating at the same
frequency. When both modes saturate the gain
function, these two effects become intertwined,
and saturation couples strongly the two oscillating
modes.

In the following we consider two different cases.
In the first one the intensity of the two modes is
strong enough that the effect of the saturation of
the inverted medium is important, but the pulsa-
tion difference can still be neglected as a coupling
mechanism. This range of operation is referred
to as weak-coupling regime (WCR).

In the second case the intensity in the cavity is
such that the term G» becomes relevant and the

In this section we describe the two mode opera-
tion in the weak-coupling regime. Here, pulsa-
tions of population difference are not effective to
induce a direct coupling between the modes. As
a matter of fact, this regime is certainly achieved
when the pulsations are vanishingly small, where
the REA applies.

Although the continued fraction approach allows
for an exact evaluation of n„ the main features of
this regime, i.e., spatial inhomogeneity effects,
or saturating properties of the modes, come out
already in the REA, where pulsations are neglec-
ted completely.

The condition of applicability of the REA has
already been given in (23). At this point we stress
a remarkable difference between the present ap-
proach and the approach of perturbative expansion
in ascending powers of the field amplitudes. In
the latter cases it is not possible to make a sharp
distinction between terms coming from saturation
and terms coming from pulsation of the population
difference. Indeed, at third order in the field
amplitudes, the coefficient of P, P', include a con-
tribution coming from G» and a contribution
coming from G». Such a distinction is feasible
by the continued fraction method. For instance,
let us consider a two-mode operation in a ruby
laser, with y,&=1.8~10 sec, y, =0.3 &&10'

sec ', and a frequency spacing 5= 0.16y„. As is
shown below, spatial inhomogeneity allows for
two mode operation, and the two modes can have
comparable intensities. As a matter of fact, even
with an intercavity energy flux of 1 Kw/cm ', for
which the perturbation expansion breaks down,
effects of saturation are relevant, while the effects
of pulsations are still negligible.

As is well known 4(b) in the REA, the gain of
the mode frequency w, is given by

G, (z) = 2Kar P', (z)no Re[y„—t(ur, —v)] ', (36)

and the stationary inversion density is

n, (z)=N, 1+4 " P', (z)
y, yb

' y,;+ (o, —(o'
1

+ p,'(z)
y,'~+ (v, —v)'

(37)

The mode at frequency w, experiences a gain
whose analytical expression is the same as (36),
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with the obvious substitutions P, = P„(&,= &o,. We
have considered a stationary condition for the
phases, i.e., (t&, = ((&&, = 0.

In order to shown the relevance of spatial in-
homogeneity, we compare the results obtained
both by neglecting and considering the different
spatial patterns of the standing waves. The first
case is simply achieved by setting k, =k,. The
total gain is obtained by integration of Eq. (36)
over the active medium length.

This integration yields":
\

L2 5 E

O
O

O

~&0 i—,38

O
CV

O
T

where I,—I, is the length of the active medium,
and n is given by

(39)

When the saturating fields are sufficiently high,
the total gain G, + G, becomes independent of the
field amplitude as well as of the frequency. The
sum of the two gain factors gives the maximum
amount of stored power which can be "extracted"
from the medium. It depends only on the medium
length and on the inversion population density.
A simple argument shows that, in this situation
of complete homogeneity of the gain line, a regime
can be achieved where only one mode oscillates.
Let us denote by A the losses of the two modes.
The equations of motion for the field intensities
are simply

1.0 2.0 3.0 40 5.0 8.0 7.0 8.0 9&0 10.0

I, 10

FIG. 1. Maps of G~(I~, I2)/I~= &&/K (solid lines) and
G2(I&, I2)/I2 ——A;/& (dashed lines) are reported for differ-
ence values of A&/K in the plane (I&,I2) in the WCR.
0.31, 0.41, 0.51, 0.62, 0.72 are the values of Jt;/E' cor-
responding to the curves intersectirI, in the points from
1-5, respectively. The ruby parameters at room tem-
perature were chosen. Mam'ely p~ =1.8 && 10 sec ~, y&=0.3 &(10~ sec ~, y(, =0.4x 103 sec ~. The frequency of
mode 2 is equal to the resonant frequency & of ruby
material; w= 2.71 & 10 rad sec- The frequency of
mode 1 is M~= u+0.16pao.

The maps of G,/I, = const and G,/I, =const are
reported in the plane I„ I, of Figs. 1 and 2, for
two values of co,. The other frequency co, is, in
both ca,ses, equal to the resonant frequency. A
two-mode stationary regime is achieved in the

O
O.

KGx- AI

I, =KG,—Al„
(4Oa)

(4ob)

where Kis a, constant nadI=(P y/, ~)'. A stationary
regime cannot be achieved as the condition

I~ =I2=0 (41)

would imply

G,/I, =G /I . (42)

Equation (38) shows that (42) cannot be satisfied
if (d, &~,. 'Therefore, if the spatial dependence of
the two standing modes is neglected, two or more
modes cannot oscillate simultaneously because the
mode closer to the resonance condition (oy 'M satu-
rate the line of gain. Let us consider now the real
situation, where k, 4k„so that the spatial pattern
of the standing modes is taken into account. Here
the integration of G, and G, is performed by com-
puter.

O.

~ea

llag '1a~

O.

1.0 2.0 3.0 1.0 5.0, 8.0 7.0 8.0 9.0 10.0

I1x10

FIG. 2. Same maps of Fig. 1 are reported for differ-
ent valu s of A;/If {0.23 and 0.30 for 1 and 2, respec-
tively) and for &&=~+ 0.84',~.
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intersection point of thehese curves, where G,/1,
2~f2 [~a. (42)]. Th«wo curve»n

."t"l'.h-. t ff
s o e frequency &„showin th

enex y effects are of
o e curve of gain. The

in Figs. 1 and 2
g . The curves reported

in the medium, and the
ap appreciably

different regions.
ium, and the two modes can aing in from

The position of thethe medium enhances the effects
of spatial inhomogeneity when the f
the modes are

en e frequencies of
es are very close to each other. In f

the difference between ke ween k, and k, is multiple of s/L

O

%ay

Os ~ a~

k, —k, =n(v/&),

therefore the tw-
amount

two-mode patterns diff bi er y the

(43) eeyzz ae~~
v

Oa ~

2.0 3.0 4P 5.0 LO 7.0 SA) 9A)

I, x10
SA) 9A) 1LO

I
sin'(k, s) —sin'(k, s)

~

= (sin(k, +k, )s~ x~sinn7r/&s~ . (44)

Apart from the ra idl vpi y varyi g facto r si k, +k, )s
e ifference reaches its maximum when

n(v/1, )s = .'v, .'v—, — (46)

and is very small in the re ions
ium where

e regions of the active med-

O
F

Q

(b)

n(s/f )a=0, v, 2w, . . . (46)

At the center of the cavity z = —I . Therefore the

number.
s j. erence is achieved whenn is an dd0

Figure 3(a) shows the behavior of th

mogeneity is much more effective i
the for'mer case than i th

sve xn

xn e latter one. If we
drawn the curves for the h

we had
r e omogeneous case, E .

, then we would have obtained two
straight lines withwi no crossing point.

From the analysis of the graphs one can draw
the conclusion that the oscillation at th

Let us consider a sin le dig g
por e in Fig. 4, correspondin to

erent from the stationary ones (point A in F' .
, are not equal to zero and can

l tdb E . (40)a and (40b). As is af"- h. g. h. f.
the value ofKG /I

s o igs. 1 and 2 in thehe point A

, is greater than A', while the
values ofXG,/I, is smaller. 7

en o, is positive, while the increment
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constraint can exist which is capable of locking
the phases of the modes. In Sec. IV we dea.l with
another kind of interaction, which arises from
the pulsation of the medium population difference.

O IV. STRONG-COUPLING REGIME

O
'It

0

1.0 2.0 3.0 4.0 5.0 L0 7.0 8 0 gA) 1OA)

I1x10

FIG. 4. Stability diagram for two-mode oscillation.
The two curves refer to G&/I& = G2/I2= const. The value
chosen for the constant is arbitrary-. The gradient of
both the functions G; (I&, I2)/I; points towards the left.
Starting from A the oscillating point moves towards C.
The same argument applies for any point of the phase
plane, so that the oscillation at C turns out to be stable.

In strong-field operation, one cannot ignore pul-
sa,tions in the popula, tion difference, and the full
expression (34) for the gain must be taken into
account. The strong-coupling regime (SCR) is
achieved when the Fourier component ~n,

~
of the

population difference becomes comparable with
the static component n„ i.e. ,

(49)

For most solid-state lasers, two oscillating modes
are separated by a frequency 6 much larger than
the damping rate 'Y,

& of the population inversion.
Therefore, when the two modes are close to the
atomic transition frequency &u, (i.e. , when

~

4&, -+ ~, ~
v, —&u ~«y, ~), the pulsations in the pop-.

ulation appear for em field amplitudes sufficiently
strong to compensate the frequency detuning.
When these conditions are fulfilled Eq. (49) yields

4P,P, /r, ', &
~
~, —~,

~
/r„, (5o)

6, = t,I,/(1+ u,I, + aj,), . (47)

where x„&„and o'2 can be found by inspection.
Then

BQ 'Q2
Q 2

~I 2 1+ &~I~+ Q2I2
(48)

i.e. , the variation of t", is a small fraction of the
gain itself if the mode 1 is strong enough. There-
fore, if a regime is reached in which the satur-
ation of the inverted population dominates then the
multimode operation (allowed by any kind of in-
homogeneity) is stable and any variation in time of
each mode has little influence on the others.
Moreover, this interaction is phase independent,
because the saturation of the medium occurs
through the intensity of each mode. 'Therefore no

intensities a,re high enough that a perturbative ex-
pansion of Eq. (37) is inadequate to evaluate the
inversion population density; we have therefore
chosen to discuss the interaction phenomena in
the I„ I, plane by means of the phase curves. We
end this section by drawing some conclusions. In
the WCR the two modes interact through the satur-
ation of the medium. However, a small variation
in the intensity of the second mode has little in-
fluence on the gain of the first mode. This can be
shown by using Eq. (38), although in this formula
the spatial inhomogeneity is not taken into account.
In the limit &»1, this formula reads

i.e. , the product of the Rabi frequencies of the two
modes must be of the same order as the detuning
of the two modes.

The relationship (50) involves the field ampli-
tudes and comes out directly from the continued
f raction approach.

'The above reported limit and consequently the
SCR cannot be described by a theory based on a,

series expansion in terms of powers of the em
field amplitudes, since the latter diverges for
high-intensity fields.

A new kind of interaction arises when the two
modes are so close, or their amplitudes are so
strong that the frequency shifts associated with
the Rabi flopping" are of the same order as the
detuning of the two modes. As pointed out by
Haroche and Hartmann, ' the Rabi frequency
shift, while absent in the stationary single mode

' operation, manifests itself in the nonlinear inter-
action between the two modes. An interesting in-
terpretation of this phenomenon in terms of non-
linear amplification of a single amplitude-modu-
lated em field has been given in the same paper. '
In our case, two modes with the same amplitude
may be considered as a single mode, with fre-
quency 2(&o, + ur, ), whose amplitude is 100% mod-
ulated with a modulation frequency &

~
ur, —ur, ~, and

the discussion of Haroche and Ha, rtmann applies.
We only note two differences in our case: first,
the two modes are approximately of the same
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strength, and therefore both their Rabi frequencies
appear in Eq. (50). Second, the local amplitudes
[modified by the spatial pattern term sin (k;, p)]
are involved in Eq. (50), i.e. , this effect is not
uniform in the whole interaction volume.

The phenomenon has a resonance when ~, - ~,
within the level's radiative width y, ~. This reso-
nance is a second-order effect, and its shape is
very complicated, but in the limit yt), «y, ~ it is
dispersionlike. In fact, from the second term in
the gain function (34) we have, at second order,

Be-(
1 n,

y &+ i(co&- co) No

1
@A y„+i (~, —~) y, &+ i(~, —~,)

~ ~y„+ i(&u, —~) y„+i(e, —~))~

(51)

Then in the range y„&
~
~,—ur,

~

«y, ~ the gain
changes its sign passing from M, &~y to 4)y~G02.

Furthermore, the gain transfer is lower in the
range wy 2 ~, while increases when cd, and &,
are detuned from the transition frequency +. A

photon is absorbed from the mode 2 and emitted
in mode 1, or vice versa, and the net energy dif-
ference N(&o, —v, ) is transferred from the medium
to the em fields (or vice versa). The appearance
of a dispersive part in the gain is shown in Fig.
(5). Here the gain of mode 2, averaged over the
whole length of the active medium, versus its
frequency, which is swept across the frequency
of mode 1, is plotted. In this graph the amplitudes
of the two modes are kept constant at a value at

which these phenomena are remarkable, although
a value sufficiently weak so that the expression
(51) for the second order gain applies.

%e want to point out that a dispersive shape of
the line of gain comes out also from apparently
different physical situations. As is known a small
signal can be amplified when passing through an
absorbing medium in presence of a strong em
field due to the nonlinear interaction arising with
the temperature fluctuations. A theoretical anal-
ysis" of the process predicts a maximum amp-
lification of the signal when its frequency is shifted
by the amount v = 1"z/4 from the frequency of the
strong em field. Here, ~& is the lifetime of the
temperature fluctuations. A symmetrical max-
imum of attenuation is also obtained at a frequency
shift v=-I'z/4v, and the whole loss-gain curve
displays the characteristic dispersionlike-shape
around v =0, in the steady-state regime. Experi-
ments were performed to measure the gain func-
tion in the Rayleigh region of the spectrum, " but,
due to the short duration of the laser pulses in

comparison with the temperature-fluctuations
lifetime, a stationary regime could not be reached,
so that only a change of sign of amplification has
been detected passing through v=0. Another fea-
ture of interest in the SCR is that the stimulated
scattering term, which gives rise to the direct
coupling between the two modes, may be much
greater than the emissive term when the two modes
are far enough from the center of the atomic trans-.
ition. It follows that a second-order laser emis-
sion occurs when a strong radiation field interacts
with a sample of nonresonant atoms. This is the
physical situation in the free electron laser
(FEL), where the stimulated scattering provides

G2

1.0

FIG. 5. Gain function t"
2

(in arbitrary units) is re-
ported versus the fre-
quency of mode 2. The
frequency of mode 1 is
kept constant (co&= v
+ 0.42 p,&). The inten-
sities of the two modes are
high enough to ensure the
operation in the SCR. The
values of co2 —co is re-
ported on the x axis in units
of y~.
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the source of gain (no absorption or emission of
radiation occurs from a free electron). The basic
process of the FEI turns out to be a Thomson (or
Compton) scattering rather than a Hayleigh scat-
tering; just because no bound state of the scatterer
exists. '

If the gain for the two modes is provided mostly
by the same part of the active medium, then, as
already noted, the crossing term in the gain is
greatly influenced by the overlapping of the spatial
patterns of the two modes.

As an example, we show in Fig. 6 how the cros-
sing term in the gain modifies the phase curves
for the two-modes operation. We have noted ear-
lier that in the WCR two modes cannot operate
in a completely homogeneous line of gain, i.e. ,
when k, =k, . But, even in this case, the crossing
term can induce two modes to oscillate simulta;
neously [Fig. 6(a)]. However, as can easily be
shown using the same considerations as in Sec. III
the oscillating regime, which occurs at the cros-
sing point C, turns out to, be unstable.

When the difference in the spatial patterns of the
two modes is taken into account, the oscillation
regime moves to stability. In Fig. 6(b) the phase
curves of the two modes are reported, for the
same oscillation frequencies &, and ~„but with
different k. It is worth comparing the graphs in
this figure with those of Fig. 1, which have been
obtained with the same parameters, but where
the crossing term in the gain was ineffective.
Figures 7(a) and 7(b) correspond to Figs. 3(a) and

3(b). In the SCR case shown in Fig. 7 the cross
term of the gain introduces strong deviations in
the phase curves. In particular the ei.ght-shaped
graph of Fig. 7(b), obtained by choosing n= 2, is
of significance. Three oscillation regimes are
obtained, the central being unstable, [correspon-
ding to the stable but critical oscillation of Fig.
3(b)], while the others are stable. These two
stable oscillations occur in a nearly symmetric
way (owing to the large curve of gain, the two
modes' frequencies are in a region of nearly equal
unsaturated gain). In each oscillation point, one
mode has a strong intensity and the other one a
much lower intensity. Passing from WCR to SCR,
the phase curves are distorted: the direct transfer
of energy from one mode to the other gives the
characteristic eight shape to the phase curves.

Although the phases of the modes do not appear
in (34), a simple argument shows that this inter-
action mechanism is phase dependent when more
than two modes are simultaneously oscillating.
We have chosen the Fourier expansion (12) in
order to eliminate any phase dependence in the
Fourier coefficients n~. 'This comes into evidence
in the recurrence relation (17) for n„ in which the

0
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0.05 0.10 0.15 0.20 0.25

N,
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O ~a ~

~\»»
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FIG. 6. Effect of spatial inhomogeneity is stressed
out in the SCR. (a) The inhomogeneity is dropped out by
evaluating the maps of G&/I~ (solid lines) and G2/I2
(dashed lines) setting k& = k2. The oscillation at the
crossing points is unstable. (b) The introduction of
spatial inhomogeneity changes the intersection so that
the oscillations result stable. A part from the value of
h/K all the parameters are the same used to get the
maps of Fig, 1 ~

phases of the two oscillating modes appear ex-
plicitly. Fourier expansions other than (12) could
also have been chosen, and in that case the Fourier
coefficients n~ would depend on the phases of the
modes. However, the coupling term in the gain
relation (34), namely

~0

(52)
12 y f((g ~)

is invariant for any choice of the Fourier expan-
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2

1.575
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FIG. 8. The separate contributions to the gain func-
tion of one small amplitude mode in presence of a
second strong mode versus the frequency shift with res-
pect to the center of the line of gain are reported. The
intensities of the two modes are I&=1 and I2=10 ' . The
frequency of the strong mode is ~&= —e2. The dashed
and. solid lines represent the self- and cross-gain,
respectively. We have dropped out the spatial in
homogeneity effects by setting k&=k2. In such a way the
analogy with the problem treated by Haroche and Hart-
mann is closer.

formula (36) of this paper.
The cross term in the gain, Eg. (52), arises as

a parametric coupling between the two modes and
the inversion population density, oscillating at a
f requency &,—, . Therefore the above mentioned
mechanism can be interpreted as a parametric
amplification of one mode in presence of a second
one. It is noteworthy that this second-order" gain
may exceed by several order of magnitude the self
gain if the two modes are close to each other, but
far enough from the center of the line of gain. In
this connection, the transfer of energy from one
mode to the other can be interpreted as a Bay-
leigh scattering. At the lowest order of its ap-
pearance, its width is the radiative width of the
levels involved in the transition, i.e. ,

y„=—,(y, + y, ). The appearance of a nonlinear Ray-
leigh process has been pointed out also by Haroche
and Hartmann. '

Another feature of interest is the gain behavior
of a small amplitude mode in presence of a strong
mode when the f requencies of the modes are sym-
metrically tuned with respect to the center of the
line. This is the analogous of the problem dis-
cussed by Haroche and Hartmann, who considered
two running, waves with the same resonant fre-
quency ~„but oppositely directed wave vectors,
interacting with a set of atoms moving with an
axial velocity v. In the moving reference frame
the two running waves have frequencies +0+ kv and
co p kv, re spe ctively. We have reported on the
graph of Fig. 8 the self-gain and the crossing term
of the small amplitude mode, as a function of its
detuning from the line center. The strong mode's
frequency is symmetrically swept on the other side
of the line gain. It appears that the self-gain is
nearly constant in this frequency range
[& —ur,

~
«y„, while the shape of the crossing

term displays the dynamical Stark effect as a peak
in the gain, at a frequency linearly dependent on
the amplitude of the strong mode's electric field.
This effect has been extensively discussed in the
paper by Haroche and Hartmann.
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