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Calculated Auger transition rates for HF

K. Faegri, Jr.~ and H. P. Kelly
Department of Physics, University of Virginia, McCormick Road, Charlottesville, Virginia 22901

(Received 7 July 1978)

We report ab initio calculations of Auger transition rates for hydrogen fluoride, using Hartree-Fock
molecular orbitals from finite-basis Slater-type-orbitals calculations. Continuum orbitals are calculated as
spherical waves in the single-center expanded-molecular potential. Results show reasonable agreement with
experiment and with previous calculations for neon. The effect of final-state configuration mixing is
discussed, as well as the use of perturbation theory for improving the continuum orbitals.

I. INTRODUCTION

Auger processes have in the past provided an
interesting testing ground for various theoretical
treatments of atomic structure. ' Recently, mole-
cular Auger processes have received increasing
attention due to advances in experimental tech-
niques as well as in the theoretical treatment of
molecules. ' " Quantitative calculations for these
processes have been restricted to transition en-
ergies. . Transition rates have been estimated
either by comparison with isoelectronic atomic
. systems" or from population analyses com-
bined with the use of atomic matrix elements. '
Ab initio calculations of transition rates have
foundered on the lack of a convenient description
of the continuum orbitals of the outgoing electron.

In this paper we present calculations for Auger
transition rates of hydrogen fluoride. Molecular
orbitals for singly and doubly ionized states, and
also transition energies, have been obtained from
separate Hartree-Fock calculations. In the cal-
culation of transition rates we have used continu-
um orbitals obtained as spherical waves in a
single-center expanded molecular potential. This
type of continuum orbitals has been used success-
fully previously in the calculation of the photo-
ionization cross section for H, .' HF is particular
ly suited for this type of calculation as it is well
described in a single-center approximation.
Also, the similarity between Auger processes in
HF and Ne, asnotedin previous investigations, ""
offer the opportunity of comparing the molecular
calculations with high quality calculations for the
isoelectronic atom. "

The theoretical and numerical background for
the calculations as well as lowest-order results
is described in the first part of this paper. The
following section discusses configuration mixing
in the doubly ionized final state, particularly
with regard to 'Z+ states. Finally, we discuss
the possible improvements in the description of
the continuum orbitals by use of perturbation

theory and show the effect of this for two of the
transitions.

All calculations presented here have been car-
ried out at a fixed internuclear distance of
1.7328 a.u.

II. LOWESTARDER TRANSITION

ENERGIES AND RATES

A. Transition energies

The electronic ground-state configuration of
HF is Ig'2g'So'v~('g'). K-I.I. Auger transitions
take place between the state with a io hole and the
possible final -states with two electrons missing
from the 2p, 3o, and lg orbitals. The transition
energies have been discussed previously both in
a limited configuration interaction (CI) calcula-
tion' and in an extensive Hartree-Fock study
using Gaussian-type orbitals (GTO). For this
calculation we have recalculated the transition
energies using a basis of Slater-type orbitals
(STO) given by Cade and Huo, "enabling us to use
the single-center expansion formalism for STO."
The program used by us for this part of the cal-
culation consists of an STO integral program"
combined with the UIBMOL SCF program. ' %e
find that the STO transition energies as well as
the total state energies differ very little from
those obtained using an extended GTO basis
(Table I). For the transition energies, basis set
deficiencies tend to cancel when the two total
energies are subtracted. The largest discrepancy
between the GTO and STO calculations appears
for the transition energy to the 2o'So'('Z'} state
with a shift of 1.4 eV. The problems involved in
restricted Hartree-Fock calculations' for states,
of this type, i.e., singlet states with two holes of
the same symmetry, have been discussed else-
where. 2 The total energies for this state were
obtained using orbitals optimized self-consistently
for the 2o'So'('g'}. Agreement with experiment
is seen to be somewhat worse for the STO basis;
some of this discrepancy can possibly be removed
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TABLE I. Total energies and transition energies for HF.

State
Total energies (a.u.)

GTO basis ' STO basis
Auger transition energies (eV)
STO basis Experiment;"

1o22( 23o 2 1g4(&g+)

]o i (2++)
1r2(3& )
lw'( 4)
3~'1~3('rr ~

i~'p z+)
3o'].7t'I('g)
3o'o(& 2:+

~

2o'1x'('D)
2o 13o.i (3g +

)
2o~ln 3(g)
2o'3o' ( Z )
2~'('Z')

—100.0583
74.5878
98.4140
98.3056
98.2952
98.1994
98.1805
98.0005
97.5318
97.4 141
97.1662
97.0810
96.3270

—100.0704
74.5985
98.4236
98.3152
98.3005
98.2091
98.1896
98.0072
97.5495
97.4298
97.1852
97.0402
96.3646

693 09c
648.28
645.33
644.99
642.44
641.91
636.95
624.50
621.25
614.59
610.64
592.25

694.25'

644.28

642.35

636.92
625.1

616.2
6 14.1
595.6

'Extended Gaussian basis (Ref. 9).
Reference 14.
1o ionization potential (Ref. 14).

by using a Fock operator specially formulated for
orthogonality constrained calculations. "

The 2cr'('Z+) transition energy shows a shift of
0.74 eV in going from the GTO to the STO basis
(improved agreement with experiment). How-
ever, a differential shift between calculations
and experiment, resulting in progressively poorer
agreement in going from high to low energies, is
present also in the STO calculations as in previous
GTO calculations for HF, NH„and H,O.""
This supports the view that this discrepancy is
not a basis set effect, but must be ascribed to
correlation and geometry distortions.

B. Calculation of continuum orbitals

The orbitals calculated in the. restricted Har-
tree-Fock calculations described above were ex-
panded about the F atom. An STO centered on
the H atom is represented as a linear combina-
tion of spherical harmonics:

Here V, (rr) is a function related to the modified
spherical Bessel function by a set of recurrence
relations. " In the present calculations, the sum
over ) was truncated at &= 18' for o orbitals and
at )=17 for g orbitals.

From these single-center expanded orbitals and
a multipole expansion of the H nuclear charge, we
form a single-particle Hamiltonian for the con-
tinuum orbital. The orbitals are coupled to a
state of correct symmetry, and for a heteronuclear
diatomic molecule the orbital will be characterized
by its gag quantum number, the only good quantum

number for the symmetry. This Hamiltonian can
now be partiti. oned using the set of spherical
harmonics centered on F such that

PE(r, 8, y) =g Il,m)(l, mIAIl', m)(E', mI

=h +h',

where the bracketed expressions imply integration
over g and p, and the prime on the second sum-
mation excludes the case $= &'. For an atom the
second sum will vanish, as the spherical har-
monics are eigenfunctions of g. For a diatomic
this sum must be retained, but if HF is regarded
as an atomic system perturbed by an off-center
charge, P' may be neglected as a reasonable
first approximation in calculating continuum
states.

For a given energy e of the outgoing electron,
we now have a continuum orbital R, (r)I l, m)
determined by the equation

h R, (r) I t,m) =
I l, m) h» (r)R, (r)

=eR, (r)Il, m). ~

This differential equation is solved by standard
numerical methods; because of exchange terms
in h»(r), the solution must be found iteratively.
For one pjg quantum number, there are in prin-
ciple infinitely many solutions corresponding to
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TABLE G. Calculated transition rates for &-LL Auger transitions in HF and Ne. ~

1651

Hartree-Fock transition rates (10"3a.u.)
HF state HF Sum HF Nec

Correlated
rates (10 3 a.u.)

Ned Ne state

171 2(3Z )
3o~17I3(3Q)

17' ( E)
1~'P Z')
3o'1~3('a)
3o 0(~ Z+)
2o 17r {Q)
2o 3o~( Z')
2o. 17'. ( Io
2o~so~( Z+)
2o0(~ Z+)

Total

0.0
0.021
1.986
0.5&4

1.692
0.564
0.574
0.302
1.288
0.642
0.983

8.646

0.021

4.272

0.564

0.676
1.930

0.983

8.646

0.0

5.685

0.789
2.034

0.951

9.914

0.0

5.198

0.864

0.502
1.396

0.488

8.448

3+

3Q

In fhis table HF transitions are ordered by correspondence to the Ne transition and not
by decreasing energy.

Sum of terms corresponding to one Ne transition.
cReference 1
Reference 15. All correlations through first order.

different ) values. For the present calculation
only the first few of these were considered. We
have generated continuum oribtals up to )=4,
but their importance is rapidly diminishing for
higher &, and no orbital with & quantum number
higher than 2 contributes significantly to the
Auger transition rate for HF. The continuum
orbitals are normalized such that

Re, (r) = (1/r) cos[kr + 5, + (q/k) ln2kr

- -', (1+1)~],
where 0 =42e.

(4)

C. Transition rates

With the normalization in Eq. (4) the Auger rate
~ s21

P=(4/k) Q,lg ..l~;&
m&n

where (z and g, are the final and initial states,
respectively. The problems arising from the use
of nonorthogonal orbitals optimized in separate
self-consistent field (SCF) calculations have re-
cently been discussed in relation to the Auger
transitions in neon. " In the present case
orthogonalities between different orbitals from
different states are reasonably good. Overlaps
between different orbitals are less than 0.007,
except for (2o l3o). This overlap integral is less
than 0.04 for all final states except 3o'Iv'('ll)
(which has a very small transition rate) and
2o ('g') where the overlaps are 0.075 and 0.088,
respectively. We estimate that the error arising
from the use of Eq. (5) for the transition rates
should, be less than 9% for all final states (wi'th

the possible exceptions mentioned above). By
comparison with the calculation of transition rates
in Ne, this is in all cases considerably less than
the correlation contribution to the rates. ' Qur
error estimates are consistent with the conclu-
sions reached by Howat et al."for Ne.

Calculated Auger transition rates are shown in
Table II, where Hartree-Pock results for Ne are
listed for comparison. The transition to the
lm'('g ) state is not allowed because this state
cannot be coupled to one continuum orbital to
give a 'p' state. The other hydrogen-fluoride
Auger transition corresponding to the forbidden
2p4('P) transition in Ne is to the 3o'lv'(~11) state.
For the diatomic this is not forbidden, but the
transition rate is proportional to

l (3o Iv
l
v

l
lcr kw) —(3ole l v ) kilo) I',

where ke is a continuum orbital of p symmetry.
In the atomic limit (3o and le- 2p) this quantity
vanishes. In hydrogen fluoride the transition rate
is very small, and is due mainly to the Q~ channel
(outgoing continuum orbital with p symmetry,
i.e., 1=1), while the two matrix elements in-
volving the kd channel cancel almost completely
in Eq. (6).

The group of transitions corresponding to the
dominant 2p'('D) transition in Ne also dominates
the HF Auger spectrum. However, the rates are
not in the statistical 2:2:1 ratio for the z, Q, g
transitions, indicating the possible error in the
simple model used previously for obtaining in-
tensities. ~ The sum of the rates in this group
(4.272x10 ' a.u. ) shows the greatest absolute
difference from the corresponding Ne transitions



&652 K. FAEGRI, JR. AND H. P. KELLY

TABLE III. Contribution to Auger transition rates in hydrogen fluoride from different
outgoing channels. ~

Final state
Partial rates (10 3 a.u.)

ks kP A'd Total rate (M 3 a.u.)

1m (4)
3o~1~~(3II)
1n' (1g+)
3o-'].x'('Il)
3o'('~ )
2o~1g3(S'il)

2o 3o.~(3Z+)
2g'lw'(ta)
2o3o(Z )

0(g g+)

0.262

0.067

0.0

0.115
0.975

0.021
0.0
0.049
0.040
0.574
0.269
1.265
0.516
0.013

1.986
0.0
0.332
1.643
0.457
0.0
0.033
0.023
0.011
0.0

1.986
0.021
0.594
1.692
0.564
0.574
0.302
1.288
0.642
0.983

No outgoing channel with l greater than 2 contributes in lowest order.

I I

600 610
I I

620 630 . 640 650
eV

FIG. 1. Bar spectrum based on relative transition
rates. The experimental spectrum (Ref. 14) is included
for comparison. Note that the experimental spectrum
is shifted up from the zero level for clarity. Also,
experimental intensities are in arbitrary units.

(5.685x10 ' a.u. ). This decrease of 1.4x10 ' a.u.
relative to Ne is essentially the difference be-
tween the total Auger rates for HF and Ne (1.3
x10 3 a.u. ). Transition rates to other final states
are in reasonable agreement with the correspon-
ding Ne results.

Table III summarizes the contributions to the
total transition rates from the different partial
channels. The fact that one channel accounts for
more than 80% of the transition rate in all transi-
tions except lv'('Z'), supports a view of the
&-&1.Auger transition in HF as a largely atomic
effect and also explains the relative success of
simple intensity estimates from the Ne spectrum. 9

The one exception of this one-channel behavior
[lm'('Z')] has sizable contributions both from the
kz and kd channels. Unfortunately, the peak cor-
responding to this transition is not resolved in
the HF Auger spectrum recorded by Shaw and
Thomas. " A bar spectrum based op the relative
HF transition rates (Fig. 1) appears to give a
reasonable approximation to the experimental
data. However, for Ne most Hartree-Fock transi-

tion rates are changed appreciably by correlation
effects, "and one might expect that this wi1.1 be

the case also for HF.

III. FINAL-STATE CONFIGURATION MIXING

Previous studies of K-l.g Auger transition rates
in atoms have shown the importance of accounting
for the mixing of the 2s 2p'('S) and the 2s'2p ('S)
configurations. "" Analogous mixing occurs be-
tween 'g' states in HF, but because of the lower
symmetry there are now four possible states that
can mix: 1w'('Z'), 3g ('Z'), 2g'3g'('Z'), and
2oo(Z'). The two go('Z') states correspond
to the 'S states for Ne, while the 1g'('Z')
and the 2o'3g'('Z') are the M=O components
of the 2s'2p'('D) and 2s'2p'('p) states. ~e
have calculated the mixing between these
four g+ states by diagonalizing the full mole-
cular Hamiltonian. To avoid nonorthogonality
problems we have used the orbitals optimized for
the 2g'3g'('Z') state for all four states. The cal-
culated coefficients shown in Table IV indicate a
significant mixing between all four states. The
mixing between the 1w'('Z') and 3g ('Z') states,
which do not mix in the atomic case, is especi-
ally notable. The possible mixing of these two
states, facilitated by the lower symmetry and the
small energy separation in the molecule, was
pointed out by Shaw and Thomas. '4

The only Auger transition energy appreciably
affected by the configuration mixing is that for
the 2go('Z') state. The total energy for this state
is higher than before, which is to be expected as
this state is mixed only with states of lower en-
ergy. The transition rates are, however, more
sensitive to configuration mixing than the en-
ergies as shown in Table V. The rate for transi-
tion to 2oo('Z') is reduced from 0.983 x 10 ~ to
0.771x10 ' a.u. , in excellent agreement with the
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TABLE 1V. Total energies, configuration mixing coefficients, and transition energies for the Z+ final states from
limited CI calculation.

Main configuration Total energies (a.u.)
Configuration mixing coefficients

1r2 3o' 2o'3o'

Auger transition
energies (eV)

CI Hartree —Fock

1w(z )
so'Pz')
2~'S(r'P Z+)
2o. (f1+)

—98.2493
—98.0122
—97.0468
—96.2892

0.9680
-0.2084
—0.0138
—0.1385

0.2232
0.9660

—0.0619
0.1150

0.0448
0.0392
0.9913
0.1178

0.1056 643.53
—0.1481 637.09
—0.1150 . 610.86

0.9767 590.24

642.44
636.95
610.64
592.25

calculation for Ne which shows a decrease from
0.951 x10 ' to 0.701x10 ' a.u. for the 2s02p'('S)
rate. " However, the Ne results show an increase
from 0.456 x 10 to 0.707 x 10 ' a.u. for the
2s'2p ('S) transition, whereas the transition rate
for HF So ('Z') decreases from 0.57S x 10 ' to
0.404x 10-' a.u. as a result of configuration
mixing. This decrease is partly compensated by
an increase in the lm'('Z') rate such that the net
change in the transition rate to these two highest-
lying 'p+ states is very small. Note that the re-
duction of the So'('Z') rate is due to the inter-
action with the lower-lying lg'('Z') state, a fea-
ture that is absent in the Ne atom.

The lower symmetry of HF as compared to Ne

also allows for mixing of the 'g states and of the
'lI states. %e have not calculated these mixings
explicitly, but expect them to be smaller than
for the 'g' state.s, as the g states do not mix in
the atomic case, and the energy separations are
quite large. As for Ne, these limited configura-
tion interaction effects will only correspond to
a part of the total correlation effect, other con-
tributions expected to be as large or larger.

IV. MIXING OF CONTINUUM ORBITALS BY THE

MOLECULAR FIELD

tonian (Jgo). While we consider this a valid. ap-
proximation in the present case, these continu-
um orbitals may be improved by using perturba-
tion theory to account for the effect of the
neglected part of the Hamiltonian. Taking gg' as
the perturbation, the first-order correction to
the matrix element in Eq. (5) is proportional to

I- p

dk' (g (k, l)i

x(0, (&', &')~ g v„~y,.&, (7)
P&f

where g&(k, 1) is a final state with an outgoing
electron of energy —,'0' described by a spherical
wave with l quantum number f, and g, (k', 1') is
an intermediate state with the same electron con-
figuration, but continuum electron described by
0" and )'. h,' is the perturbation operator for the

qth electron. Ne have omitted contributions from
bound excited states in Eq. (7), because the in-
teractions are small, aiM the energy denomina-
tors quite large. The matrix element between
the final and intermediate states reduces to

The spherical waves used for describing the
continuum electron in these calculations are not .
eigenfunctions of the one-electron Hamiltonian
carrying the symmetry properties of the mole-
cule Pg in Eq. (2)], but of an approximate Hamil-

[5„is the Kronecker delta which comes from ex-
cluding the case )= )' in the second sum of Eq.
(2).] To first order the interaction will therefore
only connect continuum functions with lg)' in Eq.

TABLE V. Partial and total transition rates for Auger transitions to Z+ states in HF with
limited CI.

Final state
Main configuration

Partial transition rates (10 a.u.) Total transition rates (10"3 a.u.)
ks kp A'd CI Hartree-Foe/

1x ( Z+)
s~'Pz')
2o L3ol (i g+)
2vo( z+)

0.203
0.083
0.014
0.740

0.000
0.033
0.506
0.031

0.511
0.288
0.002
0.000

0.714
0.404
0.522
0.771

0.594
0.564
0.642
0.983
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(7). The integral over k' has a singularity at
k' = (2Z„)'~', and principal-value integration yields
a real and an imaginary contribution. This imagi-
nary part will not contribute to the transition rate
in first order of the k' perturbation (lowest-order
contribution is real). Calculated values for these
imaginary contributions were small, and have
therefore been neglected. This leaves a principal-
value integration and a sum over I' in Eq. (7).

Our calculations show that the interaction be-
tween two continuum orbitals, given by the
matrix element in Eq. (6), is small (of order
0.01 a.u. ) exceptfor the range k —3 &k'(k+ 3 with
0 = 6.8 where it may be of the magnitude of 0.5

a.u. This supports the use of h, as a first ap-
proximation. Corrections to the lowest-order
matrix element [Eq. (5)] will only be significant
when the-correction added by perturbation theory
comes from. a continuum orbital which itself has
an appreciable contribution to the transition rate.
We have carried out this perturbation treatment
for the following two HF Auger transitions.

This transition was chosen because it is a
dominant feature of the HF Auger spectrum, and
because correction to the rate would have to in-
volve the neglected continuum oribtals of f,

greater than 2. The lowest-order transition rate
is due entirely to transitions to the Qd continuum
orbital, and changes in the total transition rate
would have to come from perturbations adding
kd contributions to the kf function. The calcula-
tions show a, first-order correction from Eq. (7)
of 0.19x 10 ' a.u. to the unperturbed kf lowest-
order matrix element of 0.03 x10 ' a.u. The rate
for the perturbed kf channel then becomes 0.006
x 10 3 a.u. as compared to 1x 10 ' before including
the kf perturbations. Corresponding mixing of
the kf orbital into the unperturbed kd channel
leads to a decrease of 0.001x10 ' a.u. The total
rate for the Im'('g) transition is then 1.991
x10 ' a.u. , a negligible change from the spheri-
cal-wave result of 1.986x10 ' a.u.

This transition was chosen because the rate has
appreciable contributions from several channels
(see 'fable III). [Other possible candidates are
Ip'('g') and 2g'3g'('g'), neither of which is clear-
ly resolved in the experimental spectrum. ] The
calculated molecular corrections to the lowest-
order matrix element shows how the perturbation '

affects the transition rate in each partial channel
differently (Table VI). For the ks orbital per-
turbations from the kp and kd channels add 25%
to the unperturbed ks Coulomb term resulting in
a rate increase of approximately 50%. For the

kp orbitals, the corrections come in with op-
posite sign to the unperturbed matrix element,
reducing the rate for this channel by approxi-
mately 75%. For the kd orbital, the perturbation
corrections are small and of opposite signs. Al-
most total cancellation therefore leads to only a
1% change in the rate for this partial channel.
The net result for the total transition rate to
3o'('Z') is essentially unchanged.

These two calculations indicate that the use of
spherical-wave continuum orbitals as described
in Sec. II is a reasonable approximation for Auger
transition rates at the Hartree-Fock level in
molecules such as HF. The corrections that a-
rise from accounting for a correct molecular po-
tential will be small for transitions that are
dominated by one partial channel. For transitions
where several partial channels have appreciable
rates, there may be significant changes to the
rates for individual channels as well as some
change to the total rate. Whether there will be
cancellation among the correction terms for the
separate channels, leaving the total rate largely
unaffected as was the case for 3o'('Z'), is not
clear. The effect on the total rate may be no
greater than the error incurred by neglecting
electron correlation.

V. CONCLUSIONS

These calculations show that continuum orbitals

TABLE VI. Lowest-order interaction term [Eq. (5)], first-order molecular corrections, and tr'ansition rates for
30. (~Z+) state from perturbation theory.

Main component
of perturbed

continuum function
Interaction term and first order corrections (a.u.)

ks kp kd
Transition rate (10 3 a.u.)

Perturbed Unperturbed

0.1071x10 ~

—0.1036x10 2

0.3252 x 10"3

0.6160x10 '
0.8301x 10 2

—0.9298x10 3

0.2012 x 10-2
—0.3134x10 2

—0.2797 x 10

0.104
0.009
0.461

0.067
0.040
0.457
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of the spherical-wave type are adequate for
describing Auger transition rates at a Hartree-
Fock level of accuracy for HF. The same scheme
should prove useful in the treatment of other
diatomic molecules like OH, HCl, and CH.

For more accurate calculations, better continu-
um orbitals may be obtained by the use of per-
turbation theory as discussed in Sec. IV, provided
the distortion by the molecular field is not too
great for the use of perturbation theory. For
calculations accounting also for correlation ef-
fects, these improved continuum orbitals should
be used. Whether perturbation theory also can
provide adequate continuum orbitals for N, and

CO, depends on the rate of convergence of the
pertrubation expansion in Eq. (7), If the sum
must be extended to large values of ), this ap-
proach may become impractical. It is likely that
the approach of this paper will experience con-
siderable difficulties for highly nonspherical
systems such as N, and CO due to poor conver-
gence properties of the expansion of 1g STQ. An
alternative approach to molecular continuum
orbitals has recently been developed by FliQet
and McKoy."

The present calculations emphasize the similar-
ity between Auger processes in HF and the iso-
electronic atom Ne at the Hartree-Fock level. At
that level, the transition rates are quite closely

related. However, a simple CI calculation in-
dicates that correlation effects, although of the
same magnitude for the two systems, may be
qualitatively different for some transitions. This
is due to the greater freedom of interaction af-
forded by the lower symmetry of the HF mole-
cule.

We have carried out all calculations at a fixed
internuclear distance, neglecting bond distortion
and vibrational effects. These effects will be in-
creasingly difficult to account for quantitatively as
the complexity of the molecules considered in-
creases. Also the single-center approach to
continuum orbitals will be difficult to implement
in an economical scheme for polyatomic mole-
cules. Still, the techniques used in these calcula-
tions should prove useful in the theoretical treat-
ment of Auger transition rates for many diatomic
molecule s.
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