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Unitary solution for an evolution operator in quantum meehanies

A. Fortini
Laboratoire de Physique des Solides de I'Uniuersite de Caen, 14 032, Caen Cedex, France
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The Fredholm method for solving linear integral equations can yield a unitary solution for a SchrMinger
equation of an evolution operator. Explicit results are derived in the simple case of an atomic system
undergoing transitions towards a continuum of constant density of states after the application of a constant
perturbation.

I. INTRODUCTION

As is well known, the usual perturbation series
does not lead to a unitary. solution for a Schirodin-
ger equation of an evolution operator. Further-
more, the accuracy of the series depends on the
relevant interval of time, and its convergence is
limited by the magnitude of the applied perturba-
tion. For these reasons, various attempts have
been under taken, during recent years, to improve
the classical treatment. ' 3

In the present paper, an elementary formalism
based on the conjugate use of the Laplace transfor-
mation and the Fredholm method for solving multi-
dimensional integral equations is developed for the
integral Schrodinger equation of an evolution op-
erator (Sec. II). The application will be restricted
to a schematic atomic system undergoing transi-
tions from an initial state a towards a continuum
of states b, as a result of the application of a
Heaviside unit-step perturbation (Sec. III).

—= (e) '[H, +A(t)]U(t),

or, in the integral form,
t

U(t) =1+(ih) ~ [Ho+A(t'}]U(t')dt'.
0

It is convenient to introduce the Laplace trans-
form of U(t):

E(v} =f }}(t}e ' dt'
0

If the perturbation is assumed constant for t & 0,
E(v) is a solution of the equation

vE(v) =1+(I/ih)(HO+A)E(v).

Let EI, =Su~ be the eigenvalues of Ho. The matrix
elements I', of I, , in the basis of the eigenfunc-
tions of Ko, are solutions of the linear system

vy', =O,'+ —. e,J'.+ A', Z,'

II. FREDHOLM-LAPLACE FORMALISM

IN A SIMPLE MODEL

In 1900, Fredholm4 published a famous report
in which he developed a general method for solving
linear integral equations. The main feature of
the Fredholm analysis consisted in regarding the
integral equation as the limit of a finite linear sys-
tem. This is particularly well suited to the dis-
crete nature in quantum mechanics of the spec-
trum of natural systems. Strictly speaking, the
continuous spectrum of a bounded system appears,
indeed, as a limit of the highly dense, real dis-
crete spectrum.

Consider a physical system of unperturbed Ham-
iltonian Ko exposed, from t =0, to an external po-
tential A(t). The complete Hamiltonian is

H =Ho+A(t).

The Schrodinger equation of the evolution operator
U(t} is written

or

(v + iv, )E,= 5', + g . E, . — (4)

6, is the Kronecker delta. From now on, the sum-
mation on repeated state jndices k will be omitted
and we will put

v + z(oy —dt, ~

The diagonal matrix elements of A which are not
able to induce transitions between the states of Ho

may be equated to zero without loss -of generality.
It will be assumed, in addition, that transitions
can only occur from a definite state a towards a
continuum of states b, c, . . . , k, l, m, . . . . Thus we
have

Ai, —0, 340, A ~ =0 if kl4a.

Equation (4} can now be written in the simpler form

E.' = ~gd. + {Aged, ) E', . (6)

19 1979 The American Physical Society



1642 A. FORTINI

This linear system is the Schrodinger equation for
E(v). Note that in the general case, a distinct lin-
ear system is obtained fear each state a, which be-
haves like a label. Dropping for the time being the
subscript a, we will rewrite Eq. (6} in the compact
form

E + (K',/d~)F ' = 5 /dg,

where K',/d~ =-A%qm~ is the kernel in which, for
clarity in the following, the denominator db is sep-
ara. ted out. Upon solving (7) by Cramer's theorem,
we obtain

b ~ K, K+,
dbdiI dbdPdq

Hence we obtain for the diagonal and nondiagonal
matrix elements of E(v},

1

d,(1 —K,K/2d~d, + ~ ~ )
'

-K~+K K'/d + '
b g l a

dg, (1 —K+I/2d~d, + ~ ~ ~ )
'

We now return to the explicit form of the kernel
K, including the selection rules assumed in (5):

where D is the determinant of the system and N
the determinant obtained from D by replacing the
coefficients of E by 5/d~.

Consider first the expression for D:

K',/d, K',/d.

D = Keg 1 K,/d, ~ ~ ~

Kgd, Kp/d, 1

E', = (d. + IA."I'/a'd + ~ ~ ~ )
'

=[ +vier, + IA, I
/2h (2v+i&u~) + j ',

+--+ +''', d d + + '+

(v+tco~) V+AD~+-p . , +' '
N V +Z(dy)

(14)

In order to obtain an expansion in successive pow-
ers of the applied field A, this determinant is ex-
panded with respect to the principal diagonal. The
result is

K're ~ 2K«&a +. .D 1 — +

A similar expression can be derived for the deter-
minant N', by replacing the elements of the b col-
umn in D with 5'~:

~a----

Equation (14) is restricted to the linear response.
The expressions so obtained for the Laplace trans-
form of an evolution operator include in the de-
nominators the quantum broadening up to second
order in the applied field. Since the final states k
belong to a quasicontinuum, the complex width can
be calculated by means of an integration,

where v& and (d2 denote the bounds of the contin-
uous spectrum, and 8(m„) the spectral density of
states. As far as 8(&u~) is a continuous function in
the range (vt, (u2), the integral in (15) is an inte-
gral of Cauchy's type which defines an analytic
function of v, outside the cut (-i&f2, -i&o, ) on the
imaginary axis.

As a result, the calculation of the original of (13)
or (14) can be reduced to an integration along this
cut (Fig. 1). In addition, the main contribution
comes from the vicinity of the initial energy co,.
In this region (v=itt +a, with e-+0 and tt- —a),)
the value of I', is'

"2 Ia.'I'8(~, )d~,r.(i@+a)=- ip, +y. =-~
'g + Q7g,

FIG. 1. Contour used for calculating the original Lap-
lace transform of the evolution operator in the com-
plex p Q, g) plane.

where P, is the frequency shift and y, the transi-
tion width; the sign is "+"or "-"according to
whether the cut is approached from the right- or
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lef t- hand side.
An explicit calculation for a somewhat simplified

case is given in Sec. III.

III. COMPLEX TRANSITION WIDTH AND EVOLUTION
OPERATOR FOR CONSTANT MATRIX ELEMENTS

AND DENSITY OF STATES

Since transitions occur toward states b of the
continuum with energy vb- ~„ it is permissible to
assume constant matrix elements A, and constant
spectral density 8 in the range of interest. This
will soon become evident. With these assumptions

the complex transition width I', can be explicitly
calculated as follows:

A,
~

. A 8 v+i(o2
I'2(v+i&oa) 5' v+i~, '

i.e., on each side of the cut ( v=i }2+&),

(17}

I', (i11+e) =—ip, ay, =—i —ln — +y, , (18)
'g+ (02

~+&t

where y, =m~A ~'8/PE'.

Owing to expression (17}, one gets for the orig-
inal E„gi ven by Eq. (14),

U', (f) =—.' . e" dv (v+i(o, ) v+i(o, — ' ln
iy, v+ i&o2)

FZ 'tl' V+ Z(d~ i

e b e b . e dv v+uo, — ln-
A:+ g~ g g& ga dt pgp . ZP~ V +Z(d2 1

28 () 2wl g 'f P +z(d( j (19)

4 is any vertical axis on the right-hand side of the singularities of the integrand. Here, these singulari-
ties reduce to the logarithmic cut, so that the integral on the right-hand side in (19) can be written

V+Ada — ln . ~ . 8 2d'g 221+2(da — 111 +ya
V + 'L(dg 2''Z ~ 'f g + (dg

) j

e s d'g s'g + slog — - ln
]~g'. . . ZPg 'g + +2

f82 1T 'g+(01 )

The two integrals on the right-hand side cancel
at large distances. As expected, the calculation is
thus localized in the vicinity of the frequency v,
along the cut. It follows that the limits of integra-
tion can be taken as + without appreciable error,
and the natural logarithm can be regarded as con-
stant, with the value

i'ya 2}+~2 ' 2y, ' -&O, +&@2

7f 2}+(01 . 11
~

Q) +@PE

Hence, from (19) we obta, in

p['( „tf),)t-y, t

Similarly, for the diagonal element (13) we get

U', (f) = exp[ i((u, —P-,)t y,tJ. — (22)

Finally, the integration in Eq. (20) can be readily
performed, and yields

e" dv
~

v+i(o, -iy, ln-.a / . . V +i(O2
V +2(d1

e'"'ader

2mi i2}+i&a,—iP, +y,

f e'"'id2i
i }+2iar,—ip, —y, j

= exp[ i(&o, —p,}t—-y,&J.

e "—2e a' cas(&o~, + P,)t + 1

(~a. +P.) +y! (24}

respectively. After summing and using the above
simplifying assumptions, we obtain

Expressions (21) and (22) are classical results
which can be obtained by particular approximation
methods. The verification of the unitarity is
straightforward. The probability for the system to
be in state a or any state 5 at time t are given by

~
Ua(t)

~

2 s-2ra t (23)
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e "' —2e~' cos(&u~, + P,)t+ 1

(~..+ P.)'+ r'.

IV. CONCLUSION

The general method discovered by Fredholm for
solving a linear multidimensional integral equation

has been applied to the integral Schrodinger equa-
tion in quantum mechanics, and leads to correct
expressions for the diagonal and nondiagonal ma-
trix elements of an evolution operator.

The illustration of the method is restricted here
to the transition of an atomic system, exposed to
a constant perturbation, toward a continuum of
constant density of states.

Dropping the above simplifying assumptions, the
method can be pushed further in various physical
situations. However, a mathematical transforma-
tion is then required, in the general case, to elim-
inate spurious terms with no physical significance
that appear in expansions (10) and (11) of the deter-
minants. This will be studied in forthcoming pub-
lications in connection with more specific prob-
lems.

S. C. Mehrotra and D. E. Boggs, J.Chem. Phys. 64,
2796 (1976).

A. H. Ziv, J. Chem. Phys. 68, 152 (1978).
SJ. Zorbas, J. Math. Phys. (N. Y.) 19, 177 (1978).
f. Fredholm, Ofversigt Vetenkaps. Akad. Forh. , Stock-
holm (1900).

V. I. Smirnov, A Course of Highee Mathematics, trans-
lated by D. E. Brown (Pergamon, New York, 1964),
Vol. IH, p. 112.

C. Cohen-Tannoudji, B.Diu, and F. Laloe, Mecanique
QNantique (Hermann, Paris, 1973), Vol. II, p. 1332.


