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The wave function for an electron in combined Coulomb and uniform magnetic fields is expanded in oblate-
spheroidal angle functions. The resulting Schrodinger equation for the radial function is solved for the energy
levels by means of two different adiabatic approximations, which yield rigorous lower and upper bounds on
the lowest exact energy levels for each symmetry state of the system. Results are presented for the level and
binding energies of hydrogenic 1s, 2s, and 2p levels for magnetic fields in the range 10’ < B < 10'' G and
compared with results of other authors. These results indicate that the present adiabatic approximation
methods employing spherical symmetry may be expected to give reliable results for energies of low-lying
hydrogenic levels for magnetic fields in the range 0 < B  10° G.

I. INTRODUCTION

The theoretical description of a hydrogen atom
in a high magnetic field is made difficult by the
nonseparability of the Schrddinger equation for an
electron in combined Coulomb. and uniform mag-
netic fields. Three general theoretical approaches
have been followed: Variational methods have
been used by numerous authors!-!* to obtain
ground- and low-lying excited-state energies and
wave functions; eigenfunction-expansion meth-
0ds'®-?! have been used, again for the lowest lev-
els, either to diagonalize the Hamiltonian within
a finite basis set or to treat a part of the Hamil-
tonian perturbatively; and adiabatic-approxi-
mation methods*'5:22-25 have been used, especially
for the description of exciton spectra in solids,
to separate motion along the magnetic field from
that perpendicular to the field. All of these meth-
ods are restricted in their applicability: Vari-
ational methods, of course, are most useful for
calculating upper bounds on the energy of the low-
est state of a given symmetry®®;. eigenfunction-ex-
pansion methods often require the handling of very
large numbers of basis states; and the adiabatic
approaches used thus far all employ cylindrical
coordinates, thus applying only to very high field
strengths (e.g., for atoms, B = 10° G) and giving
a poor description of the wave function in the
neighborhood of the origin, where optical absorp-
tion takes place.

This paper presents calculations of then =1 and
n =2 energy levels and binding energies of atomic
hydrogen in a uniform magnetic field with strength

in the range 10" < B < 10" G using an adiabatic ap- .

proximation in'spherical coordinates suggested by
Fano.?” For the 1s and 2p energy levels our re-.

sults are rigorous lower bounds. We are also able
to compute rigorous upper bounds for these states,
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but have done so only for the 1s level, since there
are already numerous upper bounds for these
states calculated by variational methods. In ad-
dition, we have calculated energies for the 2s lev-
el of atomic hydrogen. All our calculated energy
levels are obtained by solving a one-dimensional
differential equation in the radial coordinate ».
For fields B <10° G our computed energies agree
with those of other calculations. A preliminary re-
port on the present results has been given else-
where 28

The main purpose of the energy-level calcula-
tions presented here is to test the suitability of
an adiabatic approach in spherical coordinates for
the description of an atom in a uniform magnetic
field. For a quantum-mechanical system, of
course, the energy-level spectrum is determined
by the asymptotic behavior of the system’s wave
function. For low-lying levels of hydrogen, our
calculations seem to indicate that, even for fields
B <10° G, a spherical-coordinate description is
appropriate. (This may be understood by noting
that at 10° G the magnetic energy e#B/mc is 0.43
a.u., which is almost equal to the binding energy
of the 1s level of hydrogen, indicating that below
10° G the Coulomb attraction of the nucleus is
dominant, at least for the 1s level.) Furthermore,
the use of spherical coordinates should ensure a
good description of the electron’s wave function
near the origin, where optical absorption takes
place. Thus we should expect that the adiabatic
wave functions presented here will allow accurate
computation of hydrogenic oscillator strengths be-
tween low-lying levels in the presence of a uni-
form magnetic field, which is a topic of some im-
portance in astrophysics.!® The key simplification
of the adiabatic approach presented here is that
the angular part of the electron’s wave function is
represented by a single oblate-spheroidal angle
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function.?®:3° This angle function depends para-
metrically on the radial coordinate 7 in such a
way that at large distances it represents implicitly
a linear combination of a large number of spher-
ical harmonics. Thus the oblate-spheroidal angle
function implicitly takes into account much of the
interaction between states of differing orbital ang-
ular momenta (i.e., ! mixing) that occurs owing

to the quadratic Zeeman part of the Hamiltonian.

Some further developments of the theoretical
approach presented in this paper are in progress
whose aim is to describe both the high Rydberg
and continuum spectra of hydrogenlike atoms in
uniform magnetic fields. The principal motivation
for these further developments is the possibility
for comparison with recent experimental data3!-35
that have been obtained in these energy regions
for magnetic fields of the order of 10° G. One
such development®® of the theory aims to describe
the spectral region of moderately high principal
quantum numbers (20 <7 < 30) by allowing for the
coupling of a number of adiabatic channels, there-
by requiring the solution of a number of coupled
differential equations. Another development®” of
the theory aims to describe the “quasi-Landau”
spectral region3!’3%3° in the vicinity of the zero-
field ionization threshold by superposing a very
large number of adiabatic states to form the har-
monic-oscillator-like state of the electron charac-
teristic of this spectral region.

In Sec. I we present an exact theoretical form-
ulation in spherical coordinates for a hydrogen
atom in a uniform magnetic field using oblate-
spheroidal angle functions and their eigenvalues.
Alternative adiabatic approximations are discussed
in Sec. II. Properties of the oblate-spheroidal
angle functions and eigenvalues necessary for our
calculations are reviewed in Sec. IV. Our results
for low-lying energy levels of atomic hydrogen and
their binding energies in uniform fields in the
range 0 <B < 10" G are presented in Sec. V and
compared with the results of others. An Appendix
proves upper- and lower-bound theorems for some
of the energies computed by the adiabatic ap-
proaches presented in Sec. III.

Owing to the existence of a number of reviews
of the properties of atoms and solids in magnetic
fields, this paper does not discuss alternative cal-
culational methods or practical applications of the
theory. The most comprehensive and recent re-
view is that by Garstang,*® who discusses appli-
cations to astrophysics extensively. Related work
on exciton spectra in solid-state physics has been
reviewed by Hasegawa.*’ A very succinct but
clear survey of alternative theoretical approaches
has been given by Edmonds.*® Lastly, the geo-
metry of the problem of an electron in combined

Coulomb and uniform magnetic fieids has been
illustrated graphically by Fano®” and by Gajewski.*

II. EXACT FORMULATION
A. Schrédinger equation

The spin-independent Schrodinger equation in
spherical coordinates for an electron in combined
Coulomb and uniform magnetic fields is*

(—ﬁ 2 2, _le] e?

2m, * 2m,c BL.+ 8m,c*

B?7 sin — ff-) (@)

=Ey(¥), (1)

where the magnetic field B has been oriented along
the z axis, L, is the z component of the orbital
angular momentum operator, and m, is the elec-
tron mass.* The operators in parentheses are
those for the kinetic energy, the linear Zeeman
shift, the quadratic Zeeman shift, and the Coulomb
energy. We shalluse atomic units henceforth (i.e., .
m,=e=f =1)and introduce the strength parameter a:

a=B/2c=(2.12715X10"° 2.u./G) B (G). (2)
Equation (1) in atomic units thus becomes
(-3 V2+ L+ 5 a®? sin0— 1/7))(F) =Ep(F) . (3)

Taking account of the azimuthal symmetry of the
problem, we substitute

(F) =[x,.(r,0)/r lexp(ime) /¥ 2r ] (4)

into Eq. (3) to get the following equation for
Xm(750):

i\_'"(a’;;z—’g)) xm(/y,g):()’ (5)

2
(57 + % +2E’ -
where the operator A, (a7?,6) is defined by

A (@2, 6= — -"f-(smei)

sinf a6 a6
+ " + a®r* sin%0
<z torisin (6)

and the energy E’ by
E'=sE-am. ' W)

B. Expansion in oblate-spheroidél angle functions

The operator defined in Eq. (8), considered to
depend parametrically on the quantity

c=ar?,

has the oblate-spheroidal angle functions
&m(c,0)as eigenstates:23°

A,(c,0)g,,(c,0) =[x, (c)+c?]g,,lc,0), (8)

where v denotes an index labeling the eigenstates
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Zm(C,0) and their associated eigenvalues 1, (c).
Note that in the limit that the parameter ¢ van-
ishes (i.e., due either to »—~ 0 or to B~0), the
oblate-spheroidal angle functions and eigenvalues
reduce to the familiar limits

gmwlc,0) — O, (cosh)

_ 1/2
=(~1)" (————(2";(%':”);” “) P(coss)
(9a)
AwlC) = v(v+1), (9b)

where P(cosd) is an associated Legendre poly-
nomial and ©,,(cos6) is related to the spherical
" harmonic Y,,,(6, ) as follows:

Y,,.(0,0)=0,,(cosd)exp(ime)]/V2T . (9¢)

Note that for finite values of ¢ the index v does

not specify a particular value for the electron’s
orbital angular momentum /; rather, each g, may
be written as a linear sum of ©,,, functions where
the summation is over 7.2%3° Note also that we
employ a notation for the oblate-spheroidal angle
functions that is different from the standard

one?*” % pecause we employ a different normal-
ization; i.e., we require

(&> &myr) Ef gmlC,0)g,,,(c,0)sin0do =5, .
o -
(10)

However, we do retain the standard notation ¢ for
the parameter on which the angle functions and
their eigenvalues depend; note that the speed of
light has been eliminated from Eq. (3) and suc-
ceeding equations by absorbing it into the strength
parameter a defined by Eq. (2). Lastly, we note
that v> |m|, and that under inversion the parity
of the oblate-spheroidal angle function g, is (-1).

The wave function x,(7,8) [cf. Egs. (4) and (5)]
may be expressed as an expansion in oblate-spher-
oidal angle functions:

Xnl1'0)= 3 Py (2 s, 0) (11)

where the prime on the summation symbol indi-
cates that the sum is over either even o7 odd v’
values (consistent with the condition v’> |m D,
since the electron has a well-defined parity in
this problem. The normalization of y(¥) in Eq.

(4) to unity and the normalization of the oblate-
spheroidal angle functions in Eq. (10) imply that
the functions %,,.(») satisfy the normalization con-
dition

wa ariz,,(r)=1. (12)

Substituting Eq. (11) into Eq. (5), multiplying
from the left by g,,,(c,8), and integrating over 6
gives the following set of coupled differential eq-
uations for the radial functions 4,,,(r):

(572 +2E % - W) h ()

<’/ 9g. .\ d
23 (o H20) )

+ Z'(gm,,,
C_

where we have used the following notation for the
coupling matrix elements:

(gmv, 3g’""'> f gmlc, 6) —~ S (c,0) sing dp ,
(14a)

92
(gmv’ ggyz ) ~A bmu(c 9) 31’2 gw.(c,a)sinede .

" (14b)

%gz:) B (1)=0, (13)

C. Properties of coupling matrix elements

Differentiation of the orthonormality equation

(10) with respect to » [N.B., in Eq. (10), c=ar?]

shows that the first derivative matrix elements
(14a) are antisymmetric:

dg, . g 9g
(gmu a;nv) == ( e ’gmv')_ (gmv" #) .

(15)

This implies that the diagonal matrix elements
vanish:

(g,,w, ag’"“) =0. (16)

o7

Similarly, differentiation of the first derivative
coupling matrix element [Eq. (14a)] with respect
to 7 results in the following expression for the
second derivative coupling matrix element [Eq.
(14b)]:

g azgmv’ = agmu agmu' + __2_ 3gmv’
mr o gy? v’ o7 ar \°™’ oy :
(17)

The diagonal matrix element is thus seen to be
negative definite:

920 9 9
(s ) - (%, %) <o, (18)
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owing to Eq. (16) and to the definition

T 2
(%ﬂ , a—f—;—) zfo (a;ng) singdo.  (19)

Lastly, note that since the oblate-spheroidal
angle functions have a well-defined parity®®:* eq-
ual to (=1)", the coupling matrix elements in Eq.
(14) vanish unless v and v’ correspond to the same
parity. Other properties of and expressions for
the matrix elements in Eq. (14) are known 3¢ but
are not needed in this paper.

III. ADIABATIC APPROXIMATIONS

Solution of the infinite set of coupled differential
equations (13) constitutes an exact solution to the
problem of an electron in combined Coulomb and
uniform magnetic fields. Practically, of course,
one obtains an approximate solution by truncating
the infinite set of coupled differential equations to
some finite set of equations. This approximation
amounts to ignoring certain coupling matrix ele-
ments of the type found in Eq. (14). In the extreme
case, considered here, one ignores all (or nearly
all) coupling matrix elements. Ordinarily such a
drastic approximation would require justification
in the form of a detailed consideration of the mag-
nitude of the coupling matrix elements. In the Ap-
pendix, however, we prove that the two adiabatic
approximations presented below give rigorous
lower and upper bounds to the system’s lowest en-
ergy level of each symmetry. (The symmetry
state of an electron in combined Coulomb and uni-
form magnetic fields is specified by the 2 compo-
nent of the orbital angular momentum, denoted by
the quantum number m, and by the parity.) Thus
the energy levels calculated by the adiabatic ap-
proximations below are significant first approxi-
mations, even without a detailed analysis of the
strength of the coupling matrixelements.

A. Lower-bound adiabatic approximation

If we neglect all coupling matrix elements in Eq.
(13), we obtain '

1 d?2 2, (c)+¢e 1) o,
(—-2" d_’V'2-+ ——2}2—-—; hmv(’V')—Ehmv(’V).

(20)

Solution of Eq. (20) for fixed m and v gives a spec- v

trum of eigenvalues E/ and eigenfunctions %, (7).
In the Appendix we prove that for a value of v ap-
propriate to the lowest energy level for given m
and parity (see Table I), the lowest energy E’ com-
puted from Eq. (20) is a lower bound on the lowest
exact energy for the same m parity. Calculation
‘of the exact energy for given m and parity, of

TABLE I. Lowest energy level for fixed m and parity.

m Parity va Designation®
0 even 0 1s my= 0
0 - odd 1 2p my= 0

+1 odd 1 2p my=+£1

+1 even 2 3d m;==1
+2 even 2 3d m;=+£2
+2 odd 3 4f my;=+2
+3 odd 3 4f m;==3
+3 even 4 5g m;=+3

2 For given m and parity, the value of v for the lowest
energy level is the smallest integer v=> | m | such that
(=1)¥ is equal to the parity of the state.

PThe designation is that of the hydrogenic energy level
appropriate in the limit of zero magnetic field.

course, requires the solution of the infinite set of
coupled differential equations (13). The calcu-
lation of the oblate-spheroidal eigenvalue X, (c)
appearing in Eq. (20) is discussed in Sec. IV. The
hydrogenic designations of the energy levels for
which rigorous lower bounds may be obtained are
listed in Table I.

B. Upper-bound adiabatic approximation

If we neglect all off-diagonal coupling matrix v
elements in Eq. (13), we obtain [cf. Eq. (16)]

1 d%2 2, (e)+2 1 1 8%g,,,
[" P A T-a At (gmw Wz—)] s (7)

=E'h,(r). (21)

Equation (21) differs from Eq. (20) by the inclu-
sion of the diagonal second derivative coupling ma-
trix element, which from Eq. (18) is seen to con-
tribute a positive-definite upward shift to the en-
ergy spectrum. Note that the energies E’ and rad-
ial functions %, () in Eq. (21) are different from
those in Eq. (20) owing to this additional term. In
the Appendix we prove that for a value of v ap-
propriate for the lowest energy level for a given

m and parity (see Table I), the lowest energy E’
computed from Eq. (21) is an upper bound on the
lowest exact energy for the same m and parity.
The calculation of the oblate-spheroidal eigenvalue
\,(c) and the diagonal coupling term ( g,,, 82gm/
97%) which appear in Eq. (21) is discussed in Sec.
IV. The hydrogenic designations of the energy
levels for which rigorous upper bounds may be ob-
tained are listed in Table I.

IV. CALCULATION OF OBLATE-SPHEROIDAL
EIGENVALUES AND EIGENFUNCTIONS

A primary method for calculating the oblate-
spheroidal eigenfunctions is to expand them in
terms of associated Legendre polynomials.2:3°
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We have expanded these eigenfunctions in terms of
the ©,,,(cosh) functions, which are related to the
associated Legendre polynomials according to Eq.
(9a). Thus we write"

ml0,0)= 25 D0, (c0s0),  (22)
1" =iml
where, again, c¢=a7?, and the prime on the sum
means that only those I’ values which have the
same parity as v are summed. In accordance with
Eq. (9a), we expect that in the limit of vanishing
¢, the coefficients become

D(c) — 3, (23)

c—>0

Since the ©,,(cosf) functions are orthonormal in

T
I, . Ef 9,,,(cosb)sin®6@,,,, (cos)sing do
0

I, the normalization for the oblate-spheroidal ang-
le functions g,,, in Eq. (10) gives the following nor-
malization requirement for the coefficients D7%(c):

> D™(c)D™ (c) =5, . (24)
1
Substituting Eq. (22) into Eq. (8), multiplying
from the left by ©,,(cos6), and integrating over 6,
we obtain the three-term recursion relation that
is the basis for computing the oblate-spheroidal
eigenfunctions and eigenvalues: .
M (€)+ (1 =1,,,) =1 +1)]D™™(c)
=c®,,,,D7%(c) = 21, ,, D725(c) =0, (25)

where we have defined the integral I, ,. as fol-
lows*®;

_ 2 3m2-1(l+1) 1 T+m+2)l+m+1)l-m+2)(I-m+1
O 3 (“ Ri+3)@I- 1)) ¥oe2 3703 ( @l+5)(2l+1) ) )
1 +m)l+m =) =m)(I -=m =1)\*2
“OriagrT ( @r+1)(21-3) ) ) (26)

Equation (25) is solved by iteration for the eigeh-
value 1,,,(c) and the coefficients D7(c) as described
below. :

A. Alternative expressions and special cases of Eq. (25)

While Eq. (24) determines the normalization of
the coefficients D7%(c), Eq. (25) determines their
relative magnitudes according to the two altern-
ative expressions

_Dg"rg%‘cz 15,10 P (€) +€2(1 =1, ) =10+ 1)]

_6211,14-2 1:2(0 /Dmv(c } (27)

D7*(c)
Dl+z(c)

=2, o A (€)+ (1 =1, )= 1(1+1)]
-, 1-2D’tnf-2(c)/D;nv(C)}-1 s (28)

Each of Egs. (27) and (28) may be iterated by sub-
stituting for the coefficient ratios in the denomin-
ators on the right expressions given by Eqs. (27)
and (28), respectively. One thus obtains a con-
tinued-fraction solution for each coefficient ratio.
In Eq. (27) one iterates “upward” far enough so
that eventually one may set D}7,,,(c)/D},(c)=0

for some integer » without affecting the calculated
value of D7™(c)/D7%(c). Generally the integer n in-
creases rapidly with increasing c, but the iteration

¢ .
is simple to carry out on a computer. The iter-
ation of Eq. (28) proceeds similarly except that it
is “downward” and eventually one arrives at the
lower limit of /, denoted by /,, which is deter-
mined by the relations

I,>|m| and (~1)o=(-1). (29)

The coefficient D}y ,(c) vanishes, of course, and
Eq. (25) thus gives the ratio of the remaining coef-
ficients as

D7, (c)/D7(c)
=Dle)+ (-1, ) = LU+ DI/ AT, .p - (30)

Thus, given some value for X,,(c), the coefficient
ratios in Egs. (27) and (28) may be obtained by
iteration of the continued fraction on the right-
hand side.

Consideration of the limiting value of the eigen-
value 1,,,(c) for small ¢, given by Eq. (9b), sug-
gests that an appropriate expression to determine
A, (¢) is Eq. (25) with [ set equal to v:

Aw(C)=v(r+1)
+c2[I, - 1+1,,,Dr%(c)/D(c)

+IU'U+ZD;":'2(C)/D;”V(C)], (31)

B. Calculational procedures

One must first choose an approximate initial
value for 1, (c). Flammer gives both a pertur-
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bation expansion®® for ,,(c), valid for ¢ <2, and
an asymptotic expansion®” for x,, (c), valid for ¢
2 10. For intermediate values of ¢ we determined
which expansion converged best and used that ex-
pansion’s estimate as our initial value for A, (c).
The initial value for 1, (c) is used to determine
the two coefficient ratios on the right in Eq. (31)
according to the continued-fraction procedure
outlined for Eqgs. (27) and (28). Substitution of the
calculated coefficient ratios on the right in Eq.
(31) determines a new value for x,,(c), which is
then used to redetermine the coefficient ratios.
This procedure is carried out iteratively until
self-consistency of Eq. (31) is obtained.

Once the exact value for x, (c) is obtained, one
may obtain the ratio of the first two coefficients
according to Eq. (30). The rest of the coefficient
ratios are determined from Eq. (28). The normaliza-
tion equation (24) determines the coefficients ab-
solutely. Finally, the diagonal second derivative
coupling matrix elements are calculated according
to [cf. Eqgs. (18), (19), and (22)]

32 ” 2
(gm,,, —8%&) =f (%—’;—) singde

0

- :.‘2:’ (i’i’gr@) ° (32)

V. RESULTS AND DISCUSSION

We have solved Eq. (20) to obtain rigorous lower
bounds on the energies for the hydrogenic levels
1s my;=0, 2p m,;=0, and 2p m,=+1 for magnetic
fields in the range 107< B <10'* G. We have also
solved Eq. (20) to obtain energies for the hydro-
genic 2s m, =0 level for fields in the range 10"< B
< 10" G. These latter energies are not rigorous
lower bounds, of course, since the 2s level is not
the lowest level having m,=0 and even parity. For
the hydrogenic 1s m,=0 level we have solved Eq.
(21) to obtain rigorous upper bounds on the energy
for fields in the range 10"<B <10° G. Finally, we
have used our calculated energies to present re-
sults for the binding energy of each hydrogenic
level. Of course, our rigorous lower (upper)
bounds on the level energies imply rigorous upper
(lower) bounds on the binding energies. For all
of these states, we compared our calculated bind-
ing energies with the best variational calculations
and with calculations by other methods.

A. Numerical details

We have calculated the oblate-spheroidal eigen-
values according to the procedure outlined in Sec.
IV. Our calculated eigenvalues agree to 8 digits
with the 18-digit eigenvalues tabulated by the Naval

Research Laboratory.*® Since Eqs. (20) and (21)
do not contain first derivatives, we used the Nu-
merov method* to solve these differential equa-
tions for the eigenvalues E’. For zero magnetic
field our computed energy eigenvalues agree with
the analytically known hydrogen energies to six
digits. Our computed binding energies are pre-
sented. in the tables below to no more than four
digits, all of which are expected to be significant
in the light of the numerical checks mentioned
above. [More specifically, all our level energies
are assumed to be accurate to at least four digits;
however, the binding energies obtained from Eq.
(35) are given in the tables to fewer than four
digits, for high magnetic fields, owing to the sub-
traction of comparably sized numbers on the right
in Eq. (35).]

B. Binding energies

The binding energy of an electron in a Coulomb
potential is altered in the presence of a uniform
magnetic field. In our treatment the binding en-
ergy is obtained by using the asymptotic expan-
sion*” for the oblate-spheroidal eigenvalue A, (c):

Ap(€) — =Cc®+2¢(2p+m +1)+terms of order ¢°,

e w
(33)
where

L= 3(v=m) for v-m even
3(v=m=1) for v—m odd.

Substituting Eqs. (33) and (7) into Eq. (20) and let-
ting » - (recalling once again that c = a7?), we
obtain the asymptotic limit of Eq. (20):

1 dz2
(- 5 sa@m2p D), () =Eh,, 0. (34)
The binding energy of the nth eigenstate is thus
given by

I=a(@m+2p+1)-E,. (35)

For the s and p levels considered in this paper,
the values of the threshold shift a(2m +2u+1) are
presented in Table II. Subtracting our calculated
lower (upper) bounds for the energiés E, from the
threshold shift, we obtain rigorous upper (lower)
bounds on the binding energies I,. Note that the

TABLE II. Threshold energy shifts.

Hydrogenic level v m I am +2u+1)
ns my= 0 0 0 0 o
np my= 0 1 0 0 o
np my=+1 1 +1 0 3a
np my=-1 1 -1 +1 a
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TABLE IV. Binding energy of the hydrogenic 2p m;=0 state in a uniform magnetic field.

Present

Variational Eigenfunction expansion
a? B adiabatic results results® and perturbation results®
(a.u.) 10° G) (upper bound) L dsB P GP
0.00213 0.01 0.1271 s
0.006 38 0.03 0.1312 e
0.05 0.235 0.1629 0.162 38 0.1549 0.16241 0.16223
0.1 0.470 0.1874 so e Lo 0.182 586
0.15 0,705 0.2061 oo s v 0.194066
0.2 0.940 0.2215 e oo e 0.201 042
0.3 1.41 0.2465 ce . 0.208833
0.4 1.88 0.2669 0.21299
0.5 2.35 0.2843 0.259 6 0.2594 0.260 00 0.21556
1 4,70 0.3485 s 0.296 0.29770 0.22081
1.5 7.05 0.395 v 0.308 0.3200 0.2226
2.5 11.8 0.463 e 0.224
12.5 58.8 0.80 te o 0.226
50 235 1.37 e e v 0.226

ag=(2.12715 %1010 a,u./G) B (G).

b 1etter key to results of other authors: L, Larsen, Ref. 2; dSB, dos Santos and Brandi, Ref. 12; P, Praddaude,

Ref. 17; GP, Galindo and Pascual, Ref. 21,

binding energies of the 2p m,=+1 levels are de-
generate, since the difference in the threshold
shift of 2o exactly cancels the difference of the
same amount in the energy levels.*®

Qur lower and upper bounds for the hydrogenic
1s binding energy are presented in Table II. Our
lower-bound results agree to at least two digits
with the results of the best variational calcula-
tions?:3:2 up to fields of 10° G. For fields of order
108 G or lower, our lower-bound results are es-
sentially identical to our upper-bound results.
For fields of order 107 G, our upper-bound results
agree very closely with the highly accurate Stur-
mian-function expansion results of Edmonds.!®
" For fields up to 10° G our upper-bound results

agree to at least two digits with the results of
other calculations.

Comparison of our adiabatic upper-bound results
(based on spherical coordinates) with the adiabatic
upper-bound results of Balderschi and Bassani*
(based on cylindrical coordinates) proves instruc-
tive. As shown in Table III, for a=0.5 (B=2.35
% 10° G) our upper bound is lower than that of Ref.
4. For a=1(B=4.70x10° G), however, the situ-
ation is reversed and the upper bound of Ref. 4 is
lower than our upper bound. These facts suggest
that ¢ ~1 is the dividing line—at least as far as
the 1s energy level is concerned—between lower
fields (i.e., B <10° G) for which a spheroidal-co-
ordinate description is suitable and higher fields

TABLE V. Binding energy of the hydrogenic 2p m;=+1 state in a uniform magnetic field.

: Present Eigenfunction expansion
a? B adiabatic results Variational results® and perturbation results ®
(au.) 0% G) (upper bound) L dsB BNW P GP
0.00213 0.01 0.1292 e
0.006 38 0.03 0,1372
0.05 0.235 0.2013 0.20081 0.1862 ve 0.200 84 0.200 194
0.1 0.470 0.2530 e 0.242 423
0.15 0.705 0.2947 v . . e 0.266 52
0.2 0.940 0.3308 o . . 0.281 26
0.3 141 0.3929 oo . . v 0.297 80
0.4 1.88 0.4468 Lo 0.306 65
0.5 2.35 0.4954 0.456 0.4540 0.453 96 0.456 59 0.3121
1 4,70 0.6967 s 0.5977 0.5947 0.599 58 0.3233
1.5 7.05 0.8629 cee 0.702 e 0.703 52 0.3271
2.5 11.8 1.148 0.86 0.92 e s 0.3301
12.5 58.8 3.20 1.60 1,51 T e 0.334
50 235 9.1 2.60 -0.1 2.56 tee 0.33

2a=(2.12715 x 1010 a,.u./G) B (G).
b1 etter key to results of other authors: L, Larsen, Ref

. 2; dSB, dos Santos and Brandi, Ref. 12; BNW, Bhaduri,

Nogami, and Warke, Ref. 13; P, Praddaude, Ref. 17; GP, Galindo and Pascual, Ref. 21.
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BINDING ENERGY (a.u)

LOG|O B (GOUSS)

FIG. 1. Upper and lower bounds for the hydrogenic
1s and 2p binding energies in a uniform magnetic field.
Solid lines, present adiabatic results giving upper
bounds on the binding energies; dashed lines, best
variational results giving lower bounds on the binding
energies (cf. Tables III-V).

(i.e., B=10° G) for which a cylindrical-coordin-
ate description is suitable.

Our adiabatic upper-bound results for the hydro- '

genic 2p binding energies for m,=0 and +1 are
presented in Tables IV and V. The number of
other calculations for these binding energies is
considerably fewer than for the 1s level. For «
=0.05 (B =2.35%10® G) our results agree with
those of other calculations. For a=0.5 (B=2.35
% 10° G) our upper-bound results are significantly
higher than the variational lower-bound results.
For values of o between 0.05 and 0.5, our results
do not agree very closely with the results of Ref.
21,

Figure 1 presents a summary of the binding-en-
ergy calculations discussed thus far. The solid
lines give our upper-bound results for the 1s and
2p binding energies. The dashed lines present the
highest variational lower-bound result at each
field strength, as given in Tables III-V. Clearly
the standard for any future calculations is that the
results fall between the limits shown graphically
in Fig. 1 and presented numerically in the tables.

It is of interest to compare our adiabatic results
[obtained using energies calculated from Eq. (20)]
for the hydrogenic 2s binding energy with calcu-
lations of other authors. We emphasize that neith-
er our results nor the adiabatic results of Ref. 4
are rigorous upper bounds for the 2s binding en-
ergy. However, Table VI shows that for magnetic
fields of order 107 G, our results agree very
closely with the very accurate results of Ed-
monds.'® Even for fields of order 10'° G our re-
sults agree to two digits with those of some of the
other calculations.

C. Level energies

In our calculations we obtain the reduced ener-
gies E’ directly. These are related to the level
energies by Eq. (7). We have chosen to present
our results, however, in the form of binding en-
ergies, which are more sensitive tests of altern-
ative calculational procedures for high magnetic
fields. The reader may, for course, obtain our
results for the level energies through the use of
Eq. (35), the value of the threshold shift in Table
II, and our values of I, presented in Tables II-VI.
Figure 2 summarizes most of our energy-level
results. Our rigorous lower bounds on the hydro-
gen 1s and 2p energy levels are shown as the solid
lines in Fig. 2. The best variational upper bounds
on the energy levels from Tables III-V are shown
as the dashed lines in Fig. 2. As with the binding
energies, the standard for future energy-level
calculations for the 1s and 2p energy levels of hy-
drogen is that they lie between the lower and up-
per bounds shown in Fig. 2.

D. Conclusions

We have presented results of adiabatic calcu-
lations in spherical coordinates which provide up-
per bounds on the binding energies of the lowest
hydrogenic energy levels in a uniform magnetic
field. Results of an adiabatic lower-bound calcu-
lation for the ground-state binding energy have
also been presented. Our results agree with other
variational, adiabatic, and eigenfunction-expan-
sion calculations for magnetic fields up to 10° G.
For higher fields, our results differ from those
of other calculations, thus indicating that the coup-
ling matrix elements between different adiabatic
states can no longer be neglected. Though this
paper has concentrated on field strengths in the
range 107 < B <10, the close agreement between
our calculated energy levels and the very accurate
results of Edmonds!® for B~ 107 G indicates that
for fields B <107 G, one may obtain reliable energy
levels simply by solving the differential equation
(20). We expect also that the use of a spherical-
coordinate approach provides accurate wave func-
tions in the vicinity of the origin, where optical
absorption takes place.
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the state characterized by the exact wave function
X.(7,8). The symmetry of the state is determined
by the z component of the orbital angular momen-
tum, denoted by m, and by the parity, which is not
explicitly indicated. One may always rewrite the
wave function as

Xm(y’ e) EI?m(’}/')Gm(}V! 9) b (A2)
where the normalization is chosen such that
T
f |G, (r,60)|?sinedo =1, (A3)
0
S IE o rar =1, (a4)
[o]

Substitution of Eq. (A2) into Eq. (A1) gives

exact f d’}’ F} (7’)

X( ;d7— +U,(»)+V,, (’V))F (),

(A5)

where we have defined
1 T
Unl")= 5 f sing do GX(r,0)A (a7?,0)G,(7,0) ,
0

(A8)

T 2
L f sin6 4o Gx(r, 8) 2Gul?.0)

2/, R0 =g (A7)

V()= -
Note that in deriving Eq. (A5) we have used the re-
sult

9G,(7,0)
——’V— =0, (AB)

f sind do GX(r, 6)
4]

which follows directly upon differentiation of the

normalization equation (A3) with respect to 7.

A. Proof of upper-bound theorem

Equation (A5) gives the exact system energy
E/ ... in terms of the expectation value of the Ham-
iltonian obtained with the exact wave function
Xn(7,0), which we have chosen to write as in Eq.
(A2). If, however, we had chosen an approximate
Xn(7,0), then according to the Rayleigh-Ritz prin-
ciple the right-hand side of Eq. (A5) would be an
upper bound on the lowest energy of the system for
each symmetry state. In particular, if we had
chosen G, (7,0) to be the oblate-spheroidal angle
function g,,,(c,8), where v denotes the smallest
eigenvalue of A, (c,0) and c = a7?, then Eq. (A6)
becomes [cf. Egs. (8) and (A3)] :

U, (¥) =[x (c)+c2]/272. (A9)
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When Eq. (A9) is then substituted into Eq. (A5),
we obtain

dz 1 )\mu(c)_(_cz

- %(gmv, a—:g#") ]F,m,('r) .

(A10)

F,,(r) is now chosen to be the eigenfunction cor-
responding to the lowest eigenvalue of the operator
in brackets in Eq. (A10), then we obtain the up-
per-bound adiabatic approximation of Sec. III [cf.
Eq. (21)].

B. Proof of lower-bound theorem

Returning to the exact result in Eq. (A5), we
note that the potential V() [cf. Eq. (AT7)] is pos-
itive definite, since

—f singdf G¥(r,6) a——G—P(V—B—)

=+f’ sinedelg%"ss';")l?’zo . (A11)

[]

Equation (A11) follows directly upon differentiation
of Eq. (A8) with respect to ». Thus if we drop
V ,(r) from Eq. (A5), we obtain

B> | W F0(= 5 53 = 5 + U)o
(a12)

Consider now the potential U, (») defined by the
expectation value in Eq. (A6). This expectation
value is always greater than the smallest eigen-
value of A, (a7?,0), denoted by the index v:

U, (7)= [\, (c)+c2]/292 . (A13)
Substituting this inequality into Eq. (A12) gives

d? 1 )\mv(c) +c?
Bl [ arF0(-g g = 2

XF,.(r). (A14)
Finally, the expectation value on the right in Eq.
(A14) is always greater than the least eigenvalue
of the operator in parentheses. But the least eig-
envalue of this operator is obtained by solving Eq.

.(20); i.e., it is obtained by the lower-bound adia-

batic approximation of Sec. III.
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