
PHYSICAL REVIEW A VOLUME 19, NUMBER 4 APRIL 1979

Radiation-induced modification of the atomic momentum distribution,
in a traveling-wave resonant light field

J. L. Picque
Laboratoire Aime Cotton, Centre National de la Recherche Scientifique, Batiment 50S, 91405 Orsay, France

(Received 5 October 1978)

A quantum-mechanical transport equation of the Boltzmann type is proposed for the momentum-

distribution function of atoms in the field of a quasiresonant traveling light wave. The physical meaning of
the solution is discussed in terms of the linear momentum transferred from the photons to the atoms through

a succession of photon-scattering processes, the number of which follows a Poisson law. A congection is

established with the random-flight problem. The analytical expression of the radiation-modified atomic-

momentum-distribution function is derived explicitly. The first and second moments of the distribution

correspond to a drift (associated with an average force) and a smearing out (associated with an anisotropic

diffusion tensor), respectively. The latter effect is shown to arise from the dispersion in both the number and

the direction of the scattered photons.

I. INTRODUCTION

In most previous studies (see, e.g. , Refs. 1 3),
the description of the mechanical effect exerted on
atoms (or molecules) by a traveling-wave, homo-
geneous, resonant light field has been limited to
an effective force accounting for the average
linear momentum transferred from the photons
to the atoms. In this paper, we are interested in
the spread of the atomic momenta around this
average value. Up to now, this problem has been
treated as a diffusion phenomenon leading to a
Gaussian approximation (defined by two moments)
of the atomic-momentum-distr ibution function. 4'
In the present work, I derive an analytical expres-
sion which describes completely the shape (i.e. ,
which yields all the moments) of the momentum-
distribution function of the atoms in the presence
of a radiation field. This is obtained as the solu-
tion of a transport equation valid both for low-
and high-intensity light fields. The transport
equation is established on the basis of a fully
quantum-mechanical treatment, including the
translational motion of the atom's center of mass,
of the atom-radiation interaction.

II. TRANSPORT EQUATION IN MOMENTUM SPACE

A. Theoretical framework

We consider the interaction of a moving atom
(or molecule) with quasimonochromatic traveling
radiation in the vicinity of optical resonance. The
Hamiltonian of the total system "atom plus field"
is written as the sum

8=P, +Py+ V,

where

(1a)

is the free-atom Hamiltonian (which involves the
Hamiltonian of the electron and the Hamiltonian
of the center-of-mass motion),

(ib)

is the free-field Hamiltonian, and

V= D E(r) (lc)

is the atom-field interaction Hamiltonian (in the
electric-dipole approximation). The atom is des-
cribed as a two-level system with an excited leve].
g p.nd a ground level 5, both nondegengrate,
separated by the energy difference 5+0. Since
we are especially interested in the recoil effects
in the interaction with radiation, we have to quan-
tify the external degrees of freedom of the atom.
We denote by r and p the eigenvalues (in the Schro-
dinger and momentum representation, respective-
ly). of the operators associated with the position
and linear momentum of the atom's center of mass.
The laser radiation is assumed to excite only the
mode of momentum R~ and energy h~ of the quan-
tized electromagnetic field. For high laser inten-
sities, the relative dispersion of the number of
photons n~ in this mode is weak. The strength of
the atom-laser field coupling is characterized by
the Habi frequency Q~. We assume that the atom-
vacuum field interaction can create at most one
photon in the other modes, labeled k, of the elec-
tromagnetic field. Owing to this interaction, the
atoms decay by spontaneous emission from l.evel
a to level b with a rate y=z ', where 7. is the
radiative lifetime of the excited state.

We now introduce a representative ensemble of
such atoms, described at the time t =0 at which
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+ ' f(p', ) ('-~) 'p',

with the initial condition f(p, t =0) =f,(p). Here,
the kernel W(p- p'} represents the probability den-
sity per unit time to have a change of the atomic
momentum from p to p' caused by interaction with
radiation. The kernel may be put in the form

~(p-p') =yx(p} (p'-p} ~

where the dimensionless resonance factor

(2a)

x(p) =0~2/[(sr~ -(u, -%~ ~ p/m)'+-, 'y'+M~] (2b)

yields its average magnitude and the function

iii(p'-p) = f (Ir(i)))((i'-Yi-Ii(i +Ii)i)m'd')i (2c)

contains its angular properties. The latter is ob-

the interaction takes place by the momentum-
space distribution function fo(p). Within the above
theoretical framework, I show in another paper'
that the momentum-space distribution function

f(p, t) of this ensemble at time t is a solution of
the Bdltzmann-type transport equation

„f@,i) —f(),=i)-Jii'() )')&')-'

tained by a translation S%~ of the normalized iso-
tropic density function defined by u(SR) = 1/4m@k~)'
over the sphere of radius k$~ =8k~, and u(Iffy) =0
elsewhere. The integral over the final momenta

gives the probability per unit time that an atom of
momentum p undergoes a momentum change.

B. Brief derivation of transport equation

Although Eq. (2) is quite intuitive, it is of inter-
est to outline briefly how it can be established in
order to gain some physical insight into the prob-
lem and to display the underlying assumptions.
We first consider the low-field limit Q~ «y. A
complete basis of the physical space is generated
by the tensorial product of the eigenvectors of the
uncoupled Hamiltonians H, and Hz, which we label
~npnzkzm%), with o. =a, t) and m =0, 1. Hy using
general scattering theory (see, e.g. , Ref. 7) and
limiting ourselves to the lowest-order resonant
photon scattering amplitude, we obtain the proba-
bility per unit time (for times such that yt»1) for
the transition from the state ~b pnz, k~0) to the
state ~bp'(nz, —1)kl, k):

p
' p' g &&p &x —1)@&Il'lop"(n~ —1)&i0)&ap"(ni -1+i0ll'l&psi&x0& '

2m ' 2m ~ . p"/2m +a(u, —p'/2m ri(u~ +i ,'y—-
(4)

In order to derive the atom-reduced transition
probability W(p-p'), one has to sum this expres-
sion over the field variables n~ and k. The two ma-
trix elements contained in (4) involve the Dirac
functions 5(p' -p'+8k} and 5(p" —p —Kk~), respec-
tively, which together lead to the momentum-
conservation condition appearing in (2c). The
form of the density function u(KR) of (2c) results
from the energy-conservation condition 5(p"/2m
+hck-p'/2m -hck~), which reduces to k=k~ if
we neglect the term (R~ -%) ~ p/mc of order v/c.
When the summation is completed, the two matrix
elements of (4) give rise to terms proportional to
y and 92~, respectively. If we neglect the recoil
energy of the center of mass, (k%~)'/2m, in the
energy denominator of (4}, we recover the expres-
sion (2b) (the saturation term 202~ excepted).

Note that the momentum- and energy-conserva-
tion conditions apply to the entire photon scatter-
ing process. The same results can be obtained by

extending the Wigner-Weisskopf theory of reson-
ance fluorescence (see, e.g. , Ref. 8) to the case
where the atomic motion is quantized. ' As em-
phasized by Heitler, ' in the ease of incoming mono-
chromatic radiation one cannot separate the pho-
ton scattering process into absorption and spon-
taneous emission processes. During, the scatter-
ing process, one therefore cannot determine
whether the atom is in the ground state with mo-
mentum p or in the excited state with momentum

p +5%I .
I show in the forthcoming paper' that the set of

results (2) is also valid in the high-field limit
g»y [the saturation term of (2b) is now obtained,
but not the natural-width term]. Here, it is con-'
venient to use the "dressed-atom" approach" and
extend it by treating the atomic motion quantum
mechanically. Equation (2} follows from the fact
that, under the secular approximation, the popu-
lations of the eigenlevbls of the dressed atom
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(system "atom plus laser field" ) are coupled by
rate equations describing the transfers due to
interaction with the vacuum field. The eigen-
states of the Hamiltonian of the dressed atom are
linear superpositions of the eigenstates ~a(p+~~)
x (nz —1)) and ~bpn~) of the uncoupled Hamiltonians.
Since the momentum operator 6' does not commute
with the atom-laser field interaction Hamiltonian,
the momentum is not a "good quantum number" in
this representation. Thus, we again have an inde-
termination of order h%~ in the atomic momentum

p. However, owing to the uncertainty relation be-
tween p and r, this is not very restrictive: in
practice, already before the interaction with the
field, one cannot specify completely the momentum
of an individual atom.

III. ATOMIC-MOMENTUM-DISTRIBUTION FUNCTION

A. Solution of transport equation

T(p) = &(p.) . (7)

The approximation (7) amounts to neglecting the
progressive Doppler detuning of the laser radiation
induced by successive atomic recoils. " This is
possible if the total momentum P acquired by an
atom while interacting with the light satisfies
m '%~ P«y or m %~.P}«Q~. With this assump-
tion, Eq. (2) transforms into the new one

+;-; f5', t) 5-p')d't ',

the Fourier transform of which is easily taken:

(8)

—f([T., t) =- f(oT, t)+ f(a, t)M)(n). (9)
8 - 1 - 1

Here, we have used notations of the type

I give in the following a simple solution, which
requires only limited approximations, of the
quantum-mechanical transport equation (2). At
the start of the interaction, the wave function as-
sociated with the motion of the free atoms can be
written in the Schrbdinger representation as the
superposition of plane waves:

'k(r, t= )=0(2vlf) '~'f C(p, t=D)exp() )d'P. (5)

%e suppose that the corresponding momentum-dis-
tribution function of the atoms fo(p) = ~4(p, t = 0) ~' is
a wave packet of small extension (of the order of
5'kz) centered on the momentum p, :

fo(p) =go(p - po) ~

For these atoms we then set

p(n)f:=p(l)e' p"a (10)

The solution of Eq. (9) is readily obtained:

f(n, t) =f(a, 0)e xp — [1—S([).)]
T(po)

where

jB,D)=j f(P, O)e'". 'P&')' )'(B)=, (12)

is the Fourier transform of the initial momentum-
distribution function f,(p). Expression (11) may be
rewritten in the form

OO

f([T. , t) =+ 8 ["~)'&" ' ',' "' [e(a)]"f,([),).
n =0 8 0

(13)

Finally, the inverse Fourier transform yields the
radiation-modified wave packet at time t as a func-
tion of the initial wave packet:

f(p, t) = g (p —p„ t) = P fl„(p„ t)
n=0

where

X gp -PP n
—P d P

(14)

[&/r(po)) [t/T(pp)]
Hnippp tj 8

Pl 0

(14a)

is the Poisson distribution with parameter t/T(p, ),
and w„(p-p') is the n-fold convolution with itself
of the function

(14b)

for pg ~ 1 [gu is the function defined by (2c)], and
reduces to

~.(p-p') =|)(p-p') (14c)

for n =0 (5 is to be understood as the Dirac func-
tion).

In most practical cases, one shall have to allow
for a distribution function b(p, ) of the centers of
the wave packets associated with each atom at
t =0 [for example, for a gas at thermal equilibrium,
h(p, ) will be the Maxwell distribution function].
In such problems, the overall 'momentum-distri-
bution function F(p, t) at time t will be obtained by
averaging expression (14) with respect to p, :

j

)}5,&)=f ~5-[., A~I.)d'P.

(the dependence of T on 'P, should of course be
accounted for in the integration).

If we consider now the limiting case where

r.(p p.) =b(p - p-.),
expression (14) reduces to
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f(p, t) =gN -p„ t) = g D„(p„ t)w„(p -p, ) . (17)

This describes the radiation-induced distribution
of the momenta or iginating from a well-deter mined
initial momentum p„ i.e. , the atomic wave packet
arising from the scattering of an atomic plane
wave by the laser radiation.

The solution (17) is valid independently of the
angular symmetry of the distribution w(P), i.e. ,
of the distribution u(P). I now give its explicit
form in the case of an isotropic distribution u(P)."
In the Appendix, I study the problem of the dis-
tribution of the length of the random vector P and
relate it to the classical problem of random
flights. However, the distribution of the vector
P is completely determined by the one-dimensional
distribution of its projection P„on an arbitrary
axis x:

f(P„, t) = p D„(p„t}w„(P„),
n=0

(18)

B. Physical discussion

The physical meaning of the solution (17) is quite
clear. On the one hand, if we denote by N(t) the
number of photon scattering processes which occur
for an atom interacting with radiation from time
0 to time t, the Poisson distribution II„(t) gives the
probability for observing N(t) =n. This result was
also obtained in other ways by Pusep4 and by
Cohen- Tannoudji and Reynaud. ' For a phenomen-
on governed by a probability per unit time 7' ', the
Poisson law with parameter t/7' could be inferred
a Priori under the hypothesis of stochastic indepen-
dence of nonoverlapping time intervals [in the
present problem, this is true for time intervals
large with respect to the correlation time (7,
-~, '« I") of the vacuum fluctuations]'. We recall
that, for the Poisson distribution (14a}, the mean
n and variance 0' take the same value t/T.

On the other hand, the function w„(P) represents
the probability density for the atom undergoing a
momentum variation P =p- p, after g photon scat-
tering processes. The fact that w„(P) is the n-fold
convolution of w(p) [Eq. (14b)] results from .he
independence of the successive events. In the case
z =0, which has the probability e ", no momentum
change can happen, in accordance with (14c).

In the language of mathematical probability
theory (see, e.g. , Ref. 12), the density function
(17) is that of a random variable which is the sum
of g mutually independent, continuous random
variables having a common distribution, where g
is in turn a discrete random variable having a
Poisson distribution.

C. Explicit form of momentum distribution

where w„(P„) is 5(P„) for n =0, and is the n-fold
convolution of the function w(P„) =u(P„-tiki„) for
n ~ 1. Since

W„(P„)=u„(P, -nM„), (19)

-n

x -1 "C", P„+ n —2v Ski, '. (2o)

Here, g„ is the binomial coefficient, and I have
introduced the notation defined by (X),= 0 for X& 0
and (X),=X for X ) 0 [expression (20) remains
valid for n = 1, with the. convention that (X}',=0
for X & 0 and (X)o = 1 for X) 0]. Note that the rec-
tangular function u(P, ) may also be written as the
well-known discontinuity integral of Dirichlet

( )
1 smcgkki
g 2~I/ (21)

An alternative form to (20) (which may be useful
for some calculations) is therefore the Fourier
transform

(P )
1 "

sinQKki) (~p
2nifk,

(22)

Some graphs of the distribution u„(P„) are shown

in Fig. 1. The distribution is different from zero
only in the interval [-nba, nkki]. Like u(P„), it is
symmetrical with respect to its zero mean value.
Its variance m(}i')' is n times the variance of
u(P„).

To get the expression of w(P„), we merely have

to replace P„by P„—nhki„ in expression (20} or
(22). The translated distribution w„(P„) has the
mean

(P„)„=nhkI.„,
and it keeps the variance

(P„')„-(P„)'„=-'n(kk )' .

(23)

(24)

Qn the basis of the central-limit theorem, " it is
equivalent as n- ~ to the Gaussian (normal) dis-
tribution having the -same mean and the same vari-
ance:

we discuss first the properties of the distribution
u„(P„).

The distribution of the projection P„of a vector
of fixed length Ski and isotr opically distributed
random direction in three-dimensional space is
the rectangular density such that u(P„}=(2kkz) '
over the interval [-ki, +ki] and u(P, }=0 elsewhere.
The distribution u, (P,) is a triangular density.
One can show by recurrence" ' that the yg-fold

convolution of u(P„) may be written in the form

1

(2nk, )"(n - I)!
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The variance of the distribution is given by

W'„) —(P„)'=-,'n(kkz)'+o'(kk, „)'

=n[-', (nk, )'+(kk, „)'] (30)

I i i i i I

-5 O 5 1O

FIG. 1. Computer plots, for different n values, of
the n-fold convolution of the centered uniform density
over the interval [-h kI. , h k&]. The horizontal and ver-
tical axes are graduated in units of 5 k~ and (2Skz)
respectively. If one denotes by P the momentum ac-
quired by an atom through the scattering of n photons
with momentum 8 kz, the diagrams of the distribution
so„(P„)of the projection of P are deduced from the
above by a translation nba» parallel to the horizontal
axis, while those of the distribution w„(P) of the length
of P are obtained by a translation n Skz.

2D„„f. =(P„')—(P„)'. (31)

This diffusion coefficient also has a resonant be-
havior:

The first and second terms on the right-hand part of
Eq. (30}represent the contributions to the variance
of the random character of the direction of the mo-
mentum of the scattered photons, and of the uncer-
tainty in the number of the scattered photons, respec-
tively. While the first effect introduces an iso-
tropic dispersion (with a spherical symmetry) of
the atomic momenta, the second introduces an
anisotropic dispersion (with a cylindrical symme-
try around the direction of the propagation vector
Rz of the laser radiation). One can associate
with the variance (30) an effective diffusion co-
efficient (in fact the component of an anisotropic
diffusion tensor having a principal axis along'}
defined by

(P, —nba„)'
(-'~n)"'nk, 'n(ak )'-

Unlike zv„(P,), the resultant distribution f(P„,t)
[Eq. (18)]is in general not symmetrical, '4 since it
consists of a superposition, with weights governed
by the Poisson law, of successive distributions zo„(P„)
having increasingly larger widths and centers dis-
placed from each other (except for kz„=0). Its
moments are easily deduced from those of the
former distributions by the relation

D„„=, [-', (kk, )'+(Ik,„)']
2T(,po

=-.'y [-.'(kk, )'+(kk„)']

Q~

(~z —(u, —kl. p, /m)'+-, 'y'+2n~2 (32)

Henyi's generalization" of the central-limit
theorem to sums of a random number of random
variables can be used to prove that the distribution
(18) is equivalent as n =t/T- ~ to the Gaussian
distribution:

(P, )=Q II(po t)(P ) ~

n=0
(26) f(P„, t) -(4'„„t) '" exp[-(P„—E„t)'/4D„„t]. (33)

D. Average force and diffusion tensor

Let us investigate in particular the first two
moments m=1, 2 of the distribution f(P„). The
mean is simply

(P„)=nkkz„.

Through the relation

(27)

F„=(P„)/t, (28)

the effective resonant force originally introduced
by Ashkin' is r egained:

This is the approximation which has been made im-
plicitly by Pusep. ' It is also equivalent to the ap-
proximation of Baklanov and Dubetskii, ' which
amounts in fact to the use of the Fokker-Planck
equation derived from the above Boltzmann equation
by expanding it to second order in kkz (however,
these authors did not obtain the effect of the dis-
persion over n). Finally, I emphasize the fact that,
for large values of n, the asymmetrical distr'-ibu-
tion f(P„, t) does not converge as rapidly to its
Gaussian limit as w (P„) does for large values of
g. Qf course, the Gaussian approximation does
not hold at all for small values of n [for instance,
it cannot yield the obvious singularity 5(P„) of the
distribution].
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IV. CONCLUSION

The present study of the transport phenomena
in momentum space accompanying the resonant
interaction with radiation cari be applied directly
to the calculation of the photodef lection of an
atomic beam, ' for arbitrary relative directions of
the laser beam and atomic beam, ' or to the caalcula-
tion of the photocooling of an atomic vapor. " It
can be extended to the study of the associated
effects in the conjugated position space (e.g. , for
the calculation of isotope separation of gases. by
radiation pressure"). Both spaces can be treated
simultaneously by generalization of the transport
equation (2) to the quantum phase-space distribu-
tion function f(r, p, f).' This work can also serve as
the basis for studying the problem of a standing-
wave light field, " at least in the cases of low inten-
sity or large detuning where the interaction may be
treated as the sum of the interactions with two
independent counter-propagating traveling waves.
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APPENDIX: CONNECTION WITH RANDOM-FLIGHT

PROBLEM

If we were simply dealing with spontaneous
emission processes, our problem would be exactly
the well-known problem of random flights involving

n successive steps of equal length fk~ in three-
dimensional space. Following Feller, " ' the dis-
tribution of the length P of the vector P after n

steps (yg&2) would then be

(Mk~)" (n —2)!

x -1 'C", I'+ g -2v hk~ ", ' (34)

[(34) is minus the derivative of (20)]. This prob-
lem was originally investigated by Rayleigh. The
standard reference given by physicists is to
Chandrasekhar, "who, however, only derived the
Fourier transform of the distribution (34).

However, in the present problem, we are dealing
with photon scattering processes, and the distri-
bution (34) has no physical reality. The momentum

imparted to the atom at each process is the sum
of a well-determined vector 8%~ arid an isotropical-
ly distributed random vector of length SA~. In
this case, one can show that the length of the resul-
tant vector is uniformly distributed over the inter-
val [0, 2kk~]. The distribution of the length P of
the total momentum P acquired by the atom after
n scattering processes is therefore

te„(P) =
2 „,g (-1)'C,"[P—2vkk~]", ' (35)

[except for a translation nhk~, the graphs of
zu„(P) are also given by Fig. 1].

In order to make the difference between the
above two problems clear, the following geome-
trical representation may be of some use. In the
first problem, the vector associated with one step
joins the center of a sphere of radius Ik~ to a
random point on the surface of the sphere. In the
second problem, the vector associated with one
step joins a fixed point on the surface of a sphere
of radius kk~ to a random point on the same sur-
face.
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