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In the past, variational calculations of the scattering length for scattering by a target system whose ground-
state wave function is imprecisely known have suffered from numerical instabilities which severely limit their
utility. The problem has recently been analyzed and the difficulty removed by the introduction of a
minimum principle, not for the true scattering length, but for that of a closely connected problem. Here we
report on numerical tests of this new calculational procedure. We have studied the scattering of positrons and
electrons by atomic hydrogen with a trial hydrogenic ground-state wave function which is allowed to differ
from the correct function. As predicted, no instability difficulties whatsoever are encountered as the trial
scattering wave function and the trial target wave function are improved; apart from at most one jump for
each composite bound state, the estimate of the scattering length converges monotonically.

I. INTRODUCTION

A very significant problem in theoretical physics
is the accurate estimation of cross sections for a
specified incident energy, and a very significant
incident energy value is the value zero. The cross
section can then often be characterized by a scat-
tering length A. The variational principle is one
natural tool one might attempt to use to estimate
A. We will be concerned with the use of variational
principles to estimate A for scattering by targets
for which the ground-state wave function ¢, and
ground-state energy E, are only imprecisely
known. In atomic and molecular physics that
covers almost all targets with spatial internal de-
grees of freedom but the hydrogen atom and hydro-
genlike ions. To go from precisely to imprecisely
known target wave functions ‘and energies is to in-
troduce entirely new difficulties. We begin with
some general remarks on variational principles.

There are of course vast areas in which variation-
al principles have been very successful, but there
are also areas in which these principles may ap-
pear to be of very limited usefulness. In fact, for
at least two important situations, discussed below,
the limitations are not limitations of variational
principles as such. Rather, difficulties appear in
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the course of applications because the so-called
variational principles are only formally variation-
al; they give an error of second order in the error
of the input trial functions, but if, as in the nor-
mal procedure, the trial functions contain varia-
tional parameters, and if these parameters are
varied to find the stationary value of the so-called
variational principle for the entity to be estimated,
the error in the trial function and therefore the
error in the estimate can be arbitrarily large even
for—and sometimes especially for—a trial func-
tion of reasonable form. (We will be more con-
crete shortly.) Such “variational principles” are
of course useful if there is available from else-
where some reasonable trial function; one then
simply inserts the trial function into the variation-
al principle. One cannot always use the variational
principle itself to estimate the trial function, and
one thereby loses one of the most desirable proper-
ties of true variational principles.

The conceptual difficulties might be eased
somewhat if more care were taken in the termin-
ology used—we cast no stones, having been as im-
precise in language as others—and, more pre-
cisely, if the term stationary principle were used
for an estimate good to second order in the error
in the trial function, and the term variational
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principle were reserved for a stationary principle
which can be used to good effect to determine the
variational parameters contained in the trial func-
tion. In this language, singular situations arise
for stationary principles which can give very poor
results for trial wave functions of a reasonable
form. Such stationary principles can be variation-
al for all but small ranges of the nonlinear varia-
tional parameters and we will use the term “singu-
lar variational principles” to describe them.

To be concrete in our discussion of singular
variational principles, we begin by discussing
briefly the analysis of a bound-state matrix ele-

- ment of an arbitrary operator. A number of
authors® gave expressions which are normally
referred to as variational expressions for these
matrix elements but which are, in reality, singu-
lar variational expressions. (Notwithstanding,
these principles can be and have been of consider-
able use,? though the accuracy attainable is
limited. The bound-state trial functions used must
be very restricted in form—Hartree products, for
example.) The variational principle for the bound-
state matrix element requires not only an estimate
¢ ¢ of ¢r but an estimate L, of a function L, an
associated undetermined Lagrange multiplier,

and the error in L, for almost all ¢, will be -
versely proportional to the error in ¢,,, whereas
the variational property presumes that the error
in L, is small. (We use the subscript T in the
present discussion, even though we need not here
be discussing a scattering problem, simply because
the bound state under consideration will be the
bound state of the target in later considerations.)

It was recently shown® that one could do much
better for this important class of matrix elements
than work with a singular variational principle;
one could construct and use a true variational
principle. The singular variational principle for
(P p Wor,), where W is an arbitrary operator and
¢, and ¢, are bound-state eigenfunctions of a
target Hamiltonian H , with associated eigenvalues
Ep, and E ., involves matrix elements of H p— E 5,
and H,~E,,,, where E,,, and E,,, are estimates
of E,, and E ,,, respectively; the evaluation of
variational parameters in the trial functions ¢ ,,,
and ¢,,, involves the inversion of the operators
H-Ey, and H - E ,,,, operations which become
more nearly singular as the number of basis func-
tions used in the expansions of ¢ 5,; and ¢,
is increased. To obtain a true variational prin-
ciple, one recasts the singular variational
principle into a form which involves H .04 4 = E i¢
for i=m and n, where H ., ; is a modification of
H such that Hp .5, = E 14 1S a positive definite
operator with, therefore, a nonsingular inverse.
The variational principle obtained has the very

nice property that the hard part of the calculation,
the determination of the parameters contained in
the trial undetermined multiplier functionLt, pro-
ceeds by finding the stationary value of a function-
al which has an extremum property; all possible
near singularities, with their associated numeri-
cal instabilities, are thereby avoided. The esti-
mate of the matrix element of interest does not,
unfortunately, converge monotonically, but there
are no limitations on the accuracy obtainable and
the extremum property of the functional has im-
portant computational and conceptual advantages.
The variational principle was applied to both dia-
gonal* and off-diagonal® matrix element cases.

A second example of a singular variational prin-
ciple, the subject of this paper, arises in the esti-
mation of the scattering length A for the target
ground-state wave function ¢, and target ground-
state energy E, only imprecisely known. (For ¢,
and E , known exactly, the Kohn variational princi-
ple® provides a variational principle for A; there
is then available the even stronger variational
bound’*® on A.) The Kohn principle involves a
matrix element of H, where H is the Hamiltonian
for the entire system, target and incident particle.
The singular variational principle for A, for ¢,
and E, imprecisely known, is obtained® from the
Kohn principle by simply replacing ¢, by ¢, and
E; by

Er=(pre; Hrdre) -

(That the result generated by this simple replace-
ment is indeed stationary is by no means obvious.
That it is a singular variational principle, and
that it could be converted to a true variational
principle, was the content of Ref. 10.) If one in-
cludes variational parameters ¢, in the trial scat-
tering wave function ¥,, and attempts to determine
the ¢, by using the stationarity of the singular
variational principle for A, one must invert H — E ,.
Now whereas E ; is at the bottom edge of the con-
tinuous spectrum of H, E,, is greater than E , and
is embedded therefore in the continuous spectrum
of H. The inversion of H - E,, is consequently a
singular operation, and, for a given ¢,,, the error
in ¥, can become arbitrarily large, whereas for a
true variational principle one requires the error
in ¥, to be small. It should therefore not have
been surprising that attempts to use the singular
variational principle as a variational principle
would lead to severe numerical instabilities.

In order to study the effectivness of the singular
variational principle for A in a relatively simple
context, a number of authors analyzed the scatter-
ing of electrons and positrons by a model hydrogen
atom, with ¢, and E, for the hydrogen atom as-
sumed to be only imprecisely known.**"*® The
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results, as expected on the basis of the above
remarks, contained singularities, and while the
presence of singularities does not exclude the pos-
sibility of extracting useful results, it is a com-
plicating feature, and none of the authors made any
great claims for the results obtained. (Indeed,
though the authors did not use that language, they
were clearly well aware that at least some of the
published figures, representing the estimate of A
as a function of the error introduced in ¢ and of
the number of variational parameters, can begin
to remind one of figures which arise in discussions
of the ergodic theorem.) In fact, a variational
principle for A—more precisely, for an approxi-
mation A to A—is now available.’® The starting
point in its development is the replacement of E
not by the upper variational bound E ,, but by E, a
lower variational bound on E,. Since E is not em-
bedded in the continuous spectrum, H — E can be
inverted without difficulty. An apparent difficulty
arises in that the integrals are divergent, but if
one notes that the appropriate boundary condition
for a wave function associated with an energy be-
low E, involves an exponentially decaying function,
one need merely introduce a convergence factor to
avoid the presence of divergent integrals; the com-
plexity of the calculation is thereby only minimally
increased. One obtains an extremum principle

not for the estimation of A itself but for the esti-
mation of A, where A is defined by replacing ¢pin
an identity for A by ¢,,, and A approaches A
smoothly as ¢, approaches ¢, Since good esti-
mates of ¢, are normally available, A can usually
be quite close to A. The fact that the variational
estimation of A proceeds by the use of an extrem-
um principle (a variational upper bound) guarantees
that no singularities will arise in the course of the
analysis.

The variational principle for A, for ¢, and E
only imprecisely known, has not previously been
tested. In the same spirit as in the investigations
of the singular variational principle, we analyze
the variational principle in the relatively simple
context of scattering by our model hydrogen atom,
that is, with ¢, and E, assumed to be only im-
precisely known. We consider three cases, the
scattering of positrons, the scattering of electrons
in the triplet state, and the scattering of electrons
in the singlet state. Each case has a distinctive
characteristic. In the positron case, the Pauli
principle is of course of no relevance, and it is
known'* that no composite bound state exists. In
the electron case, there is one and only one com-
posite (H™) bound state'® that can couple to the
scattering states of interest, and that is a singlet
state. (The other composite bound states'® have
quantum numbers which differ from those of the

scattering states.) Thus, for the electron in the
triplet state, one must account for the indis-
tinguishability of the electrons, while for the sin-
glet state one must account for both the indistin- -
guishability and for the composite bound state.

II. POSITRON-HYDROGEN SCATTERING
A. Preliminaries

Having assumed that the hydrogenic ground-
state wave function ¢ r and ground-state energy E,
are only imprecisely known, we choose as the
normalized trial function

¢¢(ry) =(Z8/1a3)"? exp(~ 27,/ a,) (2.1)

where wedrop the subscript T, and where g, is
the Bohr radius and Z is an arbitrary parameter;
¢, clearly reduces to ¢, for Z=1. We define
E,—again dropping the subscript T'—by

E,=(¢¢ Hrpoy),

where, with T, the kinetic-energy operator of the
electron,

Hp=Ty,— /7, (2.2)
is the target Hamiltonian, and find
E,=(72-22)é*/2q,. (2.3)

Our lower variational bound E on E; is obtained
from

E=E,-[(#%) - EY)/(E, - E))], (2.4)
where
Hp = by, Hyy) = Z2(52% = 127 +8)(€*/24,)* .

In a realistic problem the energy E, of the first
excited state would have to be replaced by an upper
variational bound, but the estimate of E is rela-
tively insensitive to the estimate of E, since E, - E,
is relatively large, and the insights.to be gained
from the analysis will be no less if we choose E,

to be its true value, namely, E, =-¢?/8a,. We then
have

E  207*-487°+33722-2Z7
22 = . (2.5)

472 -87 +1
[The form for ¢, given in Eq. (2.1) and the esti-
mates of E,, Eq. (2.3), and of E, Eq. (2.5), will be
used for both e* and e~ scattering. ]

(While the variational principle for A of Ref. 10
is in principle applicable to any atom, the primary
domain of applicability, at least for the near fu-
ture, will clearly be light atoms. For the helium
atom, for example, one would determine E, as
above, but one would use experimental data to
obtain a bound on E, and one could then determine
E as above. For slightly heavier atoms, such as
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carbon, nitrogen, or oxygen, E, would be evalua-
ted as above, but one would not want to evaluate E
‘as above since one would not want to evaluate ma-
trix elements of H%; one would obtain E from ex-
perimental data, using the lower limit of the range
of values of the ground-state energy allowed by

the data. For still heavier atoms, the calculations
become more and more difficult. It may even be-
come difficult to choose a ¢, good enough to give
E, below E,, since heavy atoms can have very low-
lying excited states. k, defined by Eq. (2.13) be-
low, might notbe sufficiently small to give areason-
able ¥,. Questions of heavy atoms are perhapsbest
left alone until after the method has been applied
to helium and some slightly heavier atoms.)

It will be useful while establishing a notation to
give a brief summary of the method to be used.
The proofs have been given'® and will be omitted.
For positron scattering, we have the identity

21(?/m)A=(p, Vo) +(o, VG(E )V ), (2.6)
where
V=6/r,~ /vy (2.7)

is the interaction of the positron with the hydrogen
atom, and where G(E)=(E-H)™. G(E,) is per-
fectly well defined once one imposes appropriate
boundary conditions but cannot of course be ob-
tained explicitly. The replacement of ¢ by ¢, in
Eq. (2.6) defines A=A(E,); we have

2012 /m)A=(¢,, Vo,) +(d;, VGE VP, . (2.8)

A clearly reduces to A for ¢:=¢ and is a good
approximation to A if ¢, is a good approximation
“to ¢. We now introduce A(E), defined by Eq. (2.8)

with E , replaced by £. [Though we will not use
the fact here, it follows from the monotonicity of
G(E) with E for E negative, since E< E,, that
G(E )< G(E), and therefore that A < A(E).] The
extremum principle, which is for A(E) rather than
for A, is given by

A~A=AE,) <AE) <A, (2.9)

where

217(7[2/’"1)/15,:) =(¢u V¢t) +2(¢t7 VFt)

+(F, H-E)F)). (2.10)

The subscript “no” denotes the absence of com-
posite bound states, while F, is the trial scattered
component, an approximation to F, defined by

v=¢p+F,
where ¥ is the full wave function describing the

sca_ttering process. We emphasize the appearance
of E, rather than of E, or E,, in Eq. (2.10). F,

and F satisfy slightly different boundary conditions.

Formally, we have F,=G,(E)V¢,, where G(E) is
an approximation to G(E)=(E -H)™.

In practice, we will assume a specific form for
F, and determine the linear parameters contained
in the chosen form by minimizing A{". For the
moment, we proceed formally and observe that
if, in Eq. (2.10), we vary F, as an entity, the best
possible choice for F, is defined by

Vo, +H - E)F =0,
that is, the best choice is
F =G(E)V¢,.

The extremum (minimum) value of A{? for this
choice is readily found to be A(E).

Looking back at Eq. (2.9), we can now say in
summary that AEA(E p) differs from A because
of the replacement of ¢, by ¢,, while A(E) differs
from A(E ;) because of the replacement of E , by
E. The expression for A(E) involves neither ¢,
nor E; the only unknown in the expression is the
scattering component F** =G(E)V¢,. The deter-
mination of A(E) is therefore a problem which is
rather similar to a scattering problem for which
the properties of the target are precisely known,
and we can therefore obtain a variational upper
bound on A(E). K there are no bound states, as in

. the present case, the upper variational bound is

AlP | a functional of F,. Since we have an upper
variational bound, the numerical upper bound on
A(E)—and on A'(ET)——will converge monotonically
toward A(E) as the number of basis functions in

F, is increased; there will be no singular behavior
and no numerical instability.

B. Calculation

Turning now to the actual calculation, we choose
F, to be of the form

Ft('rl’ V3, 712) = -Atfo(’rl) '}’2)

+Z clmnflmn(rU'rz:’rlz)y (2-11)
Imn
where A, is the trial scattering length and
fo=0elrs)e (L= e™?1) /7, . (2.12)

The factor in parentheses is a standard one; it is
introduced since f, must be finite at the origin.

The factor exp(—k7,) is unusual; it is required to
give convergence at infinity. The nonlinear param-
eters & and «k can be adjusted or chosen arbitrarily.
In line with the discussion in Ref. 10, we choose

K to be defined by
n*?/(2m)=E,~E. (2.13)

7, and 7, are the coordinates of the incident posi-
tron and the atomic electron, respectively, rela-
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tive to the (infinitely massive) proton, and »,,
=[f,-T%,|. The ¢,;,, are linear variational param-
eters and the f,,, are short-range correlation
terms of the form

Jim =r{72”'7"1'2 exp(—ar, - pr;), (2.14)

where [, m, and n are non-negative integers which
satisfy /+m +n <v. The maximum value of v which
we will consider is v =5. The number N of correla-
tion terms associated with v =0 through 5 is N

=1, 4, 10, 20, 35, and 56, respectively.!” The
asymptotic form of the trial scattering wave func-
tion,

Y, =¢;+F;, (2.15)
is given by
T~ ), = Ae™ 1) /7. (2.16)

The positron-atom interaction potential is given
by Eq. (2.7), and the full Hamiltonian is

H=Hp+T,+V. (2.17)

As Z approaches 1, k approaches zero and our
variational principle reduces, analytically, to the
usual Kohn variational principle. Numerically,
however, because of the presence of k in the de-
nominator, we cannot insert the value Z=1, but
there are no instabilities even for Z =0.999 999,
for example. Any values we quote for Z=1 are
taken from Kohn-type calculations.

In order to compare our results with the results
of previous calculations!!'*® we use

@ =0.28a;", B=0.8a;, 6=0.3g5".

With only a trivial increase in the complexity of
the calculation, that due to the presence of the
decay factor exp(—«r,), we avoid the numerical

TABLE I. Upper variational bound A on the model
problem positron-hydrogen scattering length 4, as a
function of Z, for 20 correlation terms. The nonlinear
parameters were fixed at @=0.28a51, $=0.847?, and 6

=0.3a5!. The “exact” value of 4 is A/ay=—2.10.

z A(+)/ao
0.80 -1.93
0.85 -1.87
0.90 -1.81
0.95 -1.76
0.9999 -1.78
1.002 -1.78
1.05 =1.40
1.10 -1.12
1.15 -0.87
1.20 -0.64

? See Ref. 18.
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TABLE II. Upper variational bound A® on the model
problem positron-hydrogen scattering length A as a func-
tion of N, the number of correlation terms, for Z
=0.9999. The nonlinear parameters were fixed at the
values given in Table I. Note the monotonic decrease
with N. The “exact” value of A is A/ay=-2.10.

N A(+)/a0
0 0.70
1 0.62
4 -1.04

10 -1.42

20 ) -1.78

35 ' -1.89

56 -1.97

singularities which have been so troublesome in
the past. This can be seen from the results of
Tables I and II. In the tables, we drop the sub-
script no on A‘* since we will use the same func-
tional whether or not composite bound states exist;
the effect of the bound states will be taken into
account by the form of the trial function chosen, as
discussed later. Table I gives the upper variation-
al bound on A*)/q, as a function of Z, for N =20,
while Table II gives the upper variational bound on
A /a, as a function of N, for Z=0.9999. The
upper variational bound exhibits a smooth behavior
as a function of Z for fixed N and as a function

of N for fixed Z. The values given in Table II,

for N=4, 10, 20, and 35 agree with the values ob-
tained in Ref. 18. The results show the predicted
monotonic decrease of Zl(*)/ao as the number of
correlation terms is increased. A very accurate
estimate® of A is A/a,=-2.10.

III. ELECTRON-HYDROGEN SCATTERING

We turn now to a study of the scattering length
for electrons incident on hydrogen atoms. The
identity for A differs from that given in Eq. (2.6)
only by the insertion of the space symmetrization
or space antisymmetrization operator at appropri-
ate points. As opposed to the analysis of the scat-
tering of electrons by helium, the example con-
sidered (formally) in Ref. 10, we need not intro-
duce spin functions, but need merely consider
spatially antisymmetric and symmetric functions
for the triplet and singlet cases, respectively.

(If spin functions are introduced, their inner pro-
duct is unity for both cases.) The expression for
A analogous to that which appears two equations
above Eq. (2.11a) of Ref. 10 in the study of e”— He
scattering is

2072 /m)A=@Vd,Cd) +(@ Ve, GENIVH),
(3.1)



where, for Q(F,,T,) an arbitrary function,
GQ(F,,T,) = Z-I/Z[Q(—fufz) + Q(—fz:f'x)] 3

the + and - signs are to be used for the singlet and
triplet cases, respectively. V differs from the
expression given in Eq. (2.7) by an overall sign.
Replacing ¢ by ¢, in Eq. (3.1) gives an approxima-
tion A= A(E,) to A. The approximation of G(Ep)

by G(E) in Eq. (3.1) gives an upper bound A(E) on
A. We now consider triplet and singlet scattering
separately.

A. Triplet scattering

There is no composite bound state of H™ in the
triplet state, and we therefore have, for the upper
variational bound A{ on A(E), as in Eq. (2.11) of
Ref. 10, and similar to Eq. (2.10),

2772 /m)ALY =@V ,, R,) +2(@V,, F,)
+(F,, H-E)F)), (3.2)
where, formally,
F,=G/E)aVo,. (3.3)

In practice, the trial function F, will be taken to
be the antisymmetrized version of the form given
in Eq. (2.11). In terms of the number of different
forms, this is equivalent to imposing the condition
!>m, and the number N of (different) correlation
terms associated with v =1 through 6 is now N

=1, 3, 7, 13, 22, and 34, respectively.’” Table
III shows the smooth variation of A‘¥/q, as a func-
tion of Z and the smooth monotonic variation as

a function of N. The values of A(¥/q, for Z
=0.999999 and o =B=56=0.44;* agree, for any
value of N, with those given by Schwartz.!® Table
IV shows, for Z=0.999999, the smooth monotonic
convergence of A(‘”)/a0 as a function of N for dif-

TABLE III. Upper variational\bound A on the model
problem triplet electron-hydrogen scattering length A in

the Born approximation [F;=0 in Eq. (3.2)] and as a func-

tion of N for different values of Z for a=8=06=0.4a;1.
Note the monotonic decrease with N for any given value
of Z. The “exact” value of A is A/ay=1.7.

A(+)/d0

N Z=0.9 Z=0.95 Z=0.999999 Z=1.05 Z=1.1
Born 6.17 5.54 5.00 4.54 4.13
0 3.51 2.92 2.38 2.81 2.96
1 3.47 2.88 2.38 2.79 2.94
3 2.97 2.45 2.10 2.44 2.58
7 2.91 2.42 2.04 2.37 2.51
13 2.80 2.31 1.96 2.28°  2.42
22 2.74 2.29 1.93 2.25 2.39
34 2.71 ©1.90
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TABLE IV. Upper variational bound A® on the model
problem triplet electron-hydrogen scattering length A as
a function of N for different values of the parameter p
= aag=Pag=0a). Z is fixedat Z=0.999999. Note the
monotonic decrease with N for any given value of p. The
“exact” value of A is A/ay=1.77.

A‘*’/ao
N p=0.3 p=04 p=0.5 p=0.6
0 2.43 2.38 2.36 2.35
1 2.43 2.38 2.35 2.35
3 2.22 2.10 2.10 2.20
7 2.13 2.04 2.04 2.07
13 2.01 1.96 1.98 2.02
22 1.95 1.93 1.95 1.98

ferent values of the nonlinear parameters. The
variation of A for different values of these non-
linear parameters is not very great—as usual,

the linear variational parameters “adjust” to the
choice of the nonlinear parameters. More signifi-
cant is the absence of any numerical instability.

A very accurate estimate®® of A is A/a,=1.77.

B. Singlet scattering

For singlet scattering, we choose F; to be the
symmetrized version of the form given in Eq.
(2.11). In terms of the number of different forms,
this is equivalent to imposing the condition [ >m,
and the number N of different correlation terms,
for v =0 through 5, is now N =1, 3, 7, 13, 22, and
34, respectively.’

A significant difference between singlet e™ - H
scattering and both e*- H and triplet e” — H scat-
tering is the existence of a singlet bound state.

Its calculated energy is

8,(H™) ==0.527139¢*/aq.

One must extract the effects of the composite
bound state if one is to obtain a variational upper
bound, denoted by A}, on A(E). One finds [see
Eq. (3.5b) of Ref. 10]

(@, H - E)Ft +@Vo,) P

2n(n%/m) (A%, - A =110 E=DE ,
= Oat .

(3.4)

where &,, is a normalized trial composite bound-
state wave function good enough to give an assoica-
ted trial bound-state energy,

81:=(2,4,H®,,),

which satisfies

81t< E ’
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and A§} is given by Eq. (3.2). Equation (3.4) is a
perfectly good starting point for the calculation,
but a slightly simpler procedure is suggested by
the following discussion; we will, at the same
time, gain some further insight into the signifi-
cance of A% . Thus, we go back to Eq. (3.2) for
A% but use a modified form for F ¢- (This pro-
cedure was not discussed in Ref. 10, but is quite
similar to procedures discussed in the case for
which ¢, and E, were known and there was one
composite bound state.!) We choose F, in Eq. (3.2)
to be of the form

F,=F,+c,®,,. (3.5)

Setting the variation of ;1;*0) with respect.to ¢, equal
to zero, one finds

o (B, H=-E)F,+@V¢,)
1~ .

1t

With this value of c,, the expression for Af,}‘,’ that
contains F, reduces to the expression for Af;,?, that
contains F,. In summary, rather than explicitly
extracting the effects of the bound-state wave-func-
tion component of our trial scattering wave func-
tion, as in the original derivation® of A%), we have
allowed the variational principle to do the work for
us.

Having seen that a connection exists between the
formal and variational derivation of Ag‘,?,, we con-
sider (formally) one other form for F,. Choosing
K basis functions, we construct a K X K matrix of
H, which we diagonalize. We thereby obtain the
functions &,,, =1 to K, which satisfy

(cbnt’ th) = 6mn >
(q)nt’ Hémt) = gnténm‘

We assume that E is close enough to E ; and that
our choice of basis functions is good enough to
generate one eigenvalue below £; we label this
eigenvalue §,,. Clearly, since H™ has only one
(singlet) composite bound state, there cannot be
more than one eigenvalue which lies below E, If
E is so poorly chosen that E lies below &,, it will
not be possible with any basis functions to obtain
any eigenvalue below &. (We will discuss this
case below.) We now write

Fy==Afo+ D Ca®ps (3.6)
where f, is defined by Eq. (2.12), and insert this

expression into Eq. (3.2) for AY). Varying with
respect to g, and equating the result to zero gives

(2,0, (H = E)(=A,f,) +Q Vo))

n
nt

and we then have

20(2%/m)AS) =@V, Ry = 2A,@ Vs, /)
+A2,(fo, (H - E)f,)

" ‘K: (0,07 0; EHg;E)(—Atfo))F .

(3.7)

The interesting aspect of this last expression is
the demonstration that as one improves F, by in-
cluding additional terms, as in Eq. (3.6), one con-
tribution, that associated with ®,,, is positive,
while all others cause the estimate to decrease
monotonically. The discussion above suggests, but
does not prove, that if one improves F, not by
adding terms as in Eq. (3.6) but, for example, as
in Eq. (2.11), there will be at most one upward
jump. (A formal proof can be constructed along
the lines of the proof given for the case for which
¢ and E , are known.??)

We now return to the actual calculation. We
use A$) as given by Eq. (3.2), rather than A%,
and expect at most one upward jump if we fix Z
and increase N. With the choice Z=0.999 999 our
singlet-results agree with those of Schwartz.®
We now consider different choices of Z. From
Eq. (2.5) we have

E(Z=1.15)=-0.570554¢%/a,< &, ,
but the value of E(Z=1.10) lies (just) below &,
E(Z=1.10)=-0.527702 ¢*/a,>§, .

The values of E for Z=0.90, 0.999999, and 1.05
also lie above &,. It follows that A® for z=1.15
will converge monotonically to the value A(E),
obtained from Eq. (3.1) by replacing E, with E.
[If E(Z) lies immediately below §, we can expect
a very large negative estimate. In Eq. (3.1), we
approximate ¢ by ¢, and E , by E and obtain A(E).
For E sufficiently close to &, and therefore for a
good &,, to §,,, we can drop the Born term and
approximate G(E) by

= . |®1¢>(4>1¢|
5
to obtain
27 (7% /m)A(E) == [(@V,, 8, P/ (&, - E).]

There will be no upward jumps since there are no
composite bound states which lie below E(Z =1.15).
These expectations are borne out by the numerical
results given in Table V. For Z=0.9 A will
undergo at most one upward jump as N is in-
creased. In fact, as seen in Table V, there is one
upward jump, indicating that neither of the trial’
functions for N =0 and N =1 contain components
which represent the composite bound state with
sufficient accuracy for this value of Z, and that
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TABLE V. Upper variational bound A® on the model
problem singlet electron-hydrogen scattering length Ain
the Born approximation [F,=0 in Eq. (3.2)] and as a func~
tion of N for different values of Z for a=8=6 =0.5a5%.
Note that for the four values of Z from 0.9to 1,10, each
of which generates an E which lies above §;, there is one
and only one jump; for Z=1.15, for whiché lies (just)
below &, there is no jump, and the estimate becomes
very large and negative. The “exact” value of 4 is A/a
=5.95. Z=2* represents Z=0.999 999.

A~(+)/ao

N 2Z=0.9 ZzZ=2* Z=1.05 Z=1.10 Z=1.15
Born —8.64 -7.00 -6.35 -6 -5.3

0 —40.58  8.30 35.74 -19 -9.1

1 -56.83  8.19 34.87 —20 -9.5

3 213.38  6.91 16.78 - 57 ~14.1

7 68.19  6.35 13.69 - 209 ~16.1
13 58.07  6.22 13.06 - 1789 -17.1
22 55.66  6.15 12.85 —-3708 ~17.4
34 55.09  6.12 12.75 ~36512 -17.5
40 +25 844

the trial function for N =3 has such a component.
A very accurate estimate' of A is A/aq,=5.95.
The single upward jump for Z =0.999 999 and
1.05 occurs in passing from the Born approxi-
mation (F,=0) to the trial function corres-
ponding to N=0."" This latter function is now
sufficiently accurate for these values of Z
while it was not for Z=0.9. That is, since E lies
closer to E, in these cases the condition on the
trial composite bound-state function is less strin-
gent and is satisfied even in the absence of corre-
lation terms. For Z =1.10, for which E lies just
above 8,, the single jump does not occur until

N=40! It might at first be somewhat disap-
pointing that the estimate for Z=0.9 is so bad
even for N =34, but ¢, for Z=0.9 is in some ways
a rather bad trial function; although the overlap-
of ¢, (2=0.9) with ¢, is close to unity, E(Z=0.9)
lies closer to §, than to E,. The hydrogen atom
may be extremely simple compared to other atoms,
but the existence of a very weakly bound composite
state with an electron is a complicating feature for
the study of singlet scattering.

Though the variational principle of Demkov® is
singular, it is stationary with respect to errors
in the trial ground-state wave function ¢,, that is,
if one has a good trial scattering function ¥,, the
error in the estimate of A is of second order in
all errors in ¥,, including errors in ¢,. On the
other hand, while the variational principle of Ref.
10, on which the present paper is based, is non-
singular, it is stationary with respect to all errors
in ¥, other than errors in ¢,; it is a nonsingular
variational principle for an approximation A to A.
Both procedures therefore have a weakness. How-
ever, it is possible to avoid both difficulties. A
nonsingular variational principle for the true scat-
tering length has very recently been obtained??; it
has difficulties of its own, which we hope can be
eliminated.
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