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The second and third terms of the generalized Born series are analyzed in an attempt to gain a series

approximation to the differential cross section, valid through O(1/k), which treats all Born terms

analogously. The resulting expressions for the second and third Born terms, derived from assumptions similar

to those of Glauber theory, . are compared with other analyses for the case of small-angle elastic scattering of
electrons by hydrogen atoms. A most notable result is that, in addition to the Glauber-like term, there is a
second term of O(1/k') which contributes to the real part of the third Born term. In addition, the angular

range of maximum validity of the Glauber assumptions is established for inelastic collisions.

I. INTRODUCTION

In recent years numerous calculations, corres-
ponding to nearly as many theoretical descriptions,
have been made of amplitudes of high-energy col-
lisions of charged particles with atomic targets.
Because of the enormous complexity in describing
and predicting the results of associated experi-
ments, most of the cited works have had as their
objective the determination of accurate and com-
putationally feasible theoretical procedures. In-
cluded among the more successful methods are
variations of traditional impact-parameter stud-
ies, ' the simplified second Born approximation, '
Glaubers and modified Glauber approaches,
Coulomb-projected Born calculations, . and the
eikonal-Born series approach. e'7

Two factors provide the motivation for the pres-
ent study —aimed at suggesting yet another descrip-
tion of high-energy collisions. The first is
prompted by the work —and success —of Byron and
Joachain in their eikonal-Born series approach
to medium- to high-energy electron-atom colli-
sions, and constitutes an extension of earlier
work of the present author. Without in any way
implying criticism of the eikonal-Born series
work, t;he primary purpose of the current analysis
is to develop an alternative high-energy expansion
of the differential scattering cross section in
terms of reciprocal powers of k, (where Kr, is the
momentum oi the incident particle), through 0(k ),
which is computationally tractable, yet derived
from analogously treated second and third Born
terms. A second consideration has been the sug-
gestion of anomalous behavior of the small-angle
high-energy differential cross secion in electron-
atom collisions.

In Sec. II the well-known generalized Born series
description of the collision process is introduced
and then transformed into a more convenient form.
Section DI concerns the development of approximate

formulas through a "partial" expansion of the free-
particle Green's function. Section IV applies the
results of Sec. III to an analysis of the second and
third Born terms. Section V contains a brief dis-
cussion of limiting forms of present estimates of
the second and third Born terms as applied to the
elastic scattering of electrons by hydrogen atoms.

II. EXACT FORMULAS

where

fi-if =-2 droelt'Ovfi(ro)
2Tr

(2.2a)

In this and the remaining sections, attention is
confined to the specific case of an electron collid-
ing with a neutral N-electron atom. The results
nonetheless are easily generalizable to other col-
lision types. Additionally, though the analysis
proceeds similarly for the exchange amplitude,
only the direct amplitude is considered below.

Atomic units are used throughout and, corres-
pondingly, k&, kj, and q=k& -$ will denote, re-
spectively, the initial and final momenta of the
scattering electron, and the momentum transferred
to the target as a result of the collision. Consider-
ing the position of the atomic nucleus as the coor-
dinate origin, the space (r) and spin (o') coordin-
ates of the incident and bound electrons will be
written as r =-(r, v), though spin integrations are
generally suppressed.

The generalized Born series for the scattering
amplitude, which describes the collision of an
electron with an N-electron atom with initial and
final atomic states and energies given by (g„E,)
and (i'&,E&), respectively, is written"
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fl 2

ff y= ~ drp8 ~ pVy (1'p) dl'pG (1'p —ro)V (ro) d'ro G (1'p lp )m$ n-1

xV (r" ') 'of'o
m (2.2b)

In the preceding,

V„(rp) =((I)„(Tf) ) Tpf) (V(lp lf r((() [(t) (Tf . , Tf(}}

and

1 dk'e~"
Gm(rp - ro) =(2 }p &i ~ & ) a 0 ~

Also, V is the interaction between the incident electron and the atom, and is given by

N
N ~ 1

V(ro, ... , r„)=-—+~

(2 3)

(2.4)

(2.5)

A more convenient form for f,' &
is obtained by transforming from the integration variables (ro, r'o} to the

set (rp, p), p=ro —ro', the result is

ff ~
———Q dr()e

'
PVf„(rp)

77 g

dro ~n ro Vmg ro —ro (2.6)

where p has been relabelled ro. In similar fashion,

~Q

f,' &
—--P droe"'PV&„(ro) drpe ' 'PG„(r())V„„,(ro —rI)) drp"e ' &''oG„.(rp')V„.f(rp —ro -ro'). (2."I)

Equations (2.6) and (2.7) represent the desired re-
sults and form the basis of the analysis of the suc-
ceeding sections.

I = dl'p e ' 1"oV„,(rp 1'p)G (1'p)

dr', e " f "n'"PV„,(rp - ro)
221)

III. HIGH-ENERGY APPROXIMATION

As noted in the introductory paragraphs, the
aim of the present work is to obtain a consistent
approximation to the differential cross section,
valid through order k&, i.e., for high-energy col-
lisions. The procedure adopted here develops
partial expansions of the second and third Born
terms in reciprocal powers of k&, parallels the
method of Glauber, ' and is most akin to the high-
energy small-angle potential scattering analysis
of Schiff. ~

The basic approximations are introduced by con-
sidering the integral

ds8
X s +2s ~ k -i~

where the variable transformation s =k' —k„has
been made. If it is assumed that V„, is slowly
varying over the distance of a wavelength of the
scattering electron, i.e., k~ &1, where u is the
range of V„&, and that k„does not differ greatly
from k& in either magnitude or direction, then the
principal contribution to the ro integral occurs for
small s. This then suggests that the integrated
expansion of (s + 2s ~ k„-ie } 1 in powers of s
should be rapidly convergent. One obtains

V'-
~Q-j(o -k„) ~ o' ds ~5 ... is r'I„= p drpe « '

oV„&(rp rp) . . 1+ - - . + ~ ~ ~

27r 2s'k~-K 2s k„-i~

g

2k„
roz o .' 'or„n(ro ro)(O(no'n))((zo)+2„'r'())(Ooo)zo(((zn)1+0(k.

))2k„ o
(3.2)
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where H(z) is the Heaviside function, and the s in-
tegration has been performed in cylindrical polar
coordinates by choosing k„as the polar axis and
writing rp ——bp+ zpk„. Integrating the second term
in Eq. (3.2) by parts twice permits writing I„as

tl 2k
-l(R&-k„) k+z(ff(&i )Zp8 p

1 + — 0& „V„&(ro—ro) + O(k„)
p"

IV. ANALYSIS OP THE SECOND AND THIRD BORN TERMS

In view of the approximations of Sec. III, the
evaluation of the scattering amplitude appears best

with
A

O&„——V&. -2i(k& —k„) ~ V-. —[k& -I „~

Further simplification of I„, consistent with the
original assumptions, is possible on noting that

(k& -k„) ~ k„=k&cos8« —k„

=k) -k„+O(k)8(„)=k) -k„.,
which also leads to k„=k„and k„' = k& + O(kP).
I„may now be written as

CO

I„—
2

— dip 8 4n 0

~so

~ &t
x 1+- Vr' ~ng rp rp

2k) 'p " 8. p

where P&,——k& -k„= 4E&jk&, on using the energy-
conservation condition. Equation (3.4} embodies
the central approximations.

Before closing this section, comment regarding
the expansion which led to Eq. (3.4) seems worth-.

while. Because of the appearance of P,„, Eq. (3.4}
represents only a, partial expansion of I„ in recip-
rocal powers of k&. If, instead of using the sub-
stitution s =k' -k„, s had been set equal to k" -k&
in Eq. (3.1), the result would have been a true ex-
pansion in inverse powers of k&. Such an expansion
yields the leading term of the real part of the
second Born term as proportional to 1/k„suggest-
ing that recovery of the known energy dependence
is regained only through analysis (and possibly
resummation) of higher-order terms of the expan-
sion. The results of the succeeding sections seem
ample justification of Eq. (3.4) as the more appro-
priate choice.

Finally, it is a simple task to show that if p,„is
set equal to zero and only the first term in Eq.
(3.4) is retained, substitution into Eq. (2.1) via
Eq. (2.2b) gives precisely the Glauber eikonal
series.

A

sin~ =q k, =0 and cosa=1. (4.2)

For elastic scattering these conditions are sat-
isfied for 8=0, but can never be quite satisfied
for inelastic collisions, where, for 6.approaching
zero, cosa-0. However, it is readily seen that
for 8=8o—= cos (k&/k&), cos& is a maximum, in-
dicating that for scattering angles 8= 8o (and
q=8o—= 24Z«), the Glauber conditions of Eq. (4.2)
are most valid. This result provides an additional
criterion for assessing the results of Glauber cal-
culations and does not appear to have been noted
previously.

In simplifying the present approximations to the
second and third Born terms, it will prove useful
to express the interaction potential of Eq. (2.5) in
Fourier form as

V(ro, .. . , r„)= d pe
"' 0

dP, e ' ~'OV(p+Pj~, r„.. . , r„),
(4.3)

performed in cylindrical polar coordinates. The
orientation of the coordinate system is chosen
such that the z-axis is always perpendicular to
the vector q. Thus q is two dimensional, and the
position coordinates of the N+ 1 electrons will be
written as r, =b, + z, g', i =0, ... ,N, where f is a
unit vector in the z direction. It is noted that this
choice of coordinate system leaves the first Born
term f&' z invariant for all scattering angles, i.e.,
no approximations are introduced for this term.

Equation (3.4) of Sec. III has a special dependence
on the direction k& through the argument of V„& and
its derivatives. In subsequent development of this
Section, k& is replaced by t' As. will be now shown,
this replacement is wholly consistent with the
earlier small-angle assumptions and is equivalent
to the Glauber sma. ll-angle approximation. "

Suppose f is chosen so that, on requiring f, k&,

k&, and q to be coplanar, f points along k& when

q becomes perpendicular to k&.
'3 It is then found

that
A A

& k, /k, -cos8
k, =(sinn)q+ (cosu)0, n =tan ~

(4.1)

where 8 is the scattering angle and o. = cos '(k, ~ F).
For elastic scattering this gives

k, = sin(~8) q+ cos(~8) f,
which is the well-known result that the best choice
of the polar axis is along k&+4&.

Glauber's small-angle approximation [and also
the implications of k&

—-f in Eq. (3.4)J is obtained
from
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where
A

V(P+J)g~) rz p ~ ~ ~ )rsr}

=
2 z(p1+pz) (e ~e ' »' I}~

g j (4.4)

A. Second Born term

Substitution of Eq. (8.4} into Eq. (2.6), and calling
the result f„'E„, gives the following high-energy
approximation to the second Born term:

00

f«« =) ) Q Jdrpe ' )rr (ip) d«pe (P)p)«V 'p(rp «(pi) r )~» PP« V ( perp«)
TF

g I S 00=

(4.6)

The infinite summation over atomic states can be treated, with varying degrees of accuracy, by any one
of several approximate methods, For the purpose of the present paper —which is to demonstrate a theo-
retical procedure —' the simple method of defining an average excitation energy'4 and then employing
closure is adopted. Specifically, it is assumed that P,„=P, =d))Z/k», where 6Z is the average energy
transferred to intermediate atomic states during the course of the collision. We may now write fHIE'z in
the somewhat simpler form,

f"' =) dr, e"'p(dr()(r„. .. , r )Jl d«p)(«p)e' 'p()'(rp «(p» rp, , r )2gk)

+ Vp V«( or- ro r»p. p. . ) r)(p) ~(J) } . f
)

Now, on using Eq. (4.3}and carrying out the V operation, the preceding result can be rewritten

eo oo

f„'E'„——
2 k- »fp dp dp' »fp,'g))~ V(p+p, t', ... , r)»V»(p'+p, 'f, ... , r)»~»4}»

CO

00 i ~ )»0'

&(~~~~ 0 ~~~ d -&+ &'~
0 $ +~ +~

2k» sP,.

4 . - 1 8

O0

P +P B
dp dP. I+ ' ~~»'(q- P-P.& p+&.f}

1r
(4.7)

where 6 means the principal value and

Uj (P+P ~ P+P t) Mfg(P+P ~ ry''' r )V(P +P 'E ry'' ~ r»»)lt

In arriving at the final form of Eq. (4.7), it has
been necessary to use the usual integral repre-
sentations of the one- and two-dimensional 5 func-
tions, and the additional result~5

Recall that a high-energy approximation to the
differential cross section, valid through O(k, ), is
sought. Since the first Born term is real and of

zeroth order in I/O„ the imaginary part of the
scattering amplitude is required only through O(kt»},
whereas the real part is needed through O(k» }.
Further, it should be apparent from Eq. (3.4) and
the definition of P, that the leading k, dependence
of the various terms of Eq. (4.7) will be of order
no lower than that explicitly given. Also, except
for a possible complex phase factor common to all
terms of the Born series, Uf', is effectively real.
Consistent with these comments, the real and
imaginary parts of fE~E~„are

d4 2 EO

(2 ) dP '(2) & w A

He&fEEd). ——— (P dP UI» (q —p pdf, P+p f)-- p~ p»-
~P)(P +Pd)dp —

Lfy» (q-p-P. & p+P.&), (4.6a)
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and

(2) 4m
3

Im fHE A dp ~y'(' (q - P p-(& ~ P + p(t') ~

(4.8b)

part of f„'« identically becomes Glauber's estimate
of the second Born term. These equations are
discussed further in Sec. V in the context of elas-
tic scattering of electrons by hydrogen atoms.

Equations (4.8) constitute the present approximation
to the second Born term. If P, is set equal to zero
in Eqs. (4.8}, the first term of Eq. (4.8a) vanishes,
and the leading term of the real part of f)IEA' is then
proportional to 1/k(. Similarly, the imaginary

B. Third Born term

The treatment of the third Born term parallels
that of Sec. IV A, except that only the first term
of Eq. (3.4) is required. Substitution of the first
term of Eq. (3.4) into Eq. (2.7) yields the result

(3) 1
fHEA

f n, n
r() e"'()V~„(r()) de'(p '3(+()H(E'())V„„gr3 —zg)

dE()'e "(~"oa(E,")V„.„(r,—Et)t' -Eg), (4.9)

where as before, P(„=bE,„/k, and P;„i =bE(„i/k(. If, as in the treatment of the second Born term, an

average excitation energy AF, in introduced such that hE,„=LE,.„,=AS, the sum may be carried out by in-
voking closure. If, in addition, Eq. (4.3) is used, one gets

fEE„——2 k3 dp dP, dp'
7F

dPg d p" dP.
"

U~ (p+P. &, P +P.'~, p" +P."&}

x 0e f(P O' +0")
0

de' e "'( "'""()a(E'}

dE"e ~(3( C)~o gE")0 0

f (3 ) +f ( 3 ) ~f ( 3 ) +f ( 3 ) (4.10)

where

f (3 ) 41('4

2 d p d p'
U&&

'
p —;g,p', q —p —p' +

(3) 4m, "
dP

g2 = — -2 (P aP -- -- aP
-~ ps p(

co

~~("(p P.& q —P —P'-+P.& -Pg, P'+P~L),-P'-«
47t'if(3)—
k.

00

dp dp', '
U,",)(P- p;&, (I- P- P'+p;& P,'&, P'+P.'&),-

00 g

and

3 ~ ea I
f4"———

3 + dp dp', ' UI'(''(p+P, 't', O' P(t' P',-f, q —p-—p'+P(f),
k( P,'+ p(

~A"(p+P.~, p +P.'&, p" +P,"~)=(I,I V(p+Pg, r), "., ")V(p'+P.'~, r(, "., ")V(p"+P."~, r&, "., ")~(C(&.

The last form of Eq. (4.10) is obtained by straight-
forward use of the integral representation of the
one- and two-dimensional 5 functions and the Four-
ier transform of the Heaviside function.

For the present purposes, only the real part of
f„'» is needed, which is given as

ItefEEA=f( +f3(3) (3) (3) (4.11)

Now if P, is set equal to zero, it is found that
f„'3«(P, =O}=f,'3 (P, =O}, which, as expected, is
precisely Glauber's approximation to the third
Born term. Thus the most notable result of this
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subsection is that, apart from the Glauber-like
term f~'3', there is a second term of O(kp) which
contributes to the real part of the third Born term.
In Sec. V, E(I. (4.11) is briefly considered for elas-
tic scattering of electrons by hydrogen atoms in
the forward directi. on.

V. LIMITING FORMS OF fHEA AND fHEA

In this section, the results of the previous sec-
tions are applied to the elastic scattering of elec-
trons by hydrogen atoms for the purpose of de-

1 8 8 ~(~2 2) 1/2

('f4=„( qg) ((p~~~)it~ (5.1)

where in the following, it is understood that ~ is
set equal to two at the end of the calculation.

Using E(Is. (4.8) (A4), the real and imaginary
parts of fHs'„can be written

termining the behavior of f„"E„' and f„'«as q goes
to zero for large k&. Here, it is convenient to
write the product of the initial and final wave func-
tions in the form

and

+2k 8
. 2 2 I3(P&, 0) +~I3(P&, & ) -I2(P&, X )

2k( (} ) X +q

2

(mf x=
&

~ ((&(()t z)- a al&l((, , 0))
(2) -4 8 1 2 2 q

n'k] ~X X x+q

(5.2)

(5.2)

where the I&'s are given in the Appendix.
Using Eq. (Al) of the Appendix, and assuming that both q and p, are small, i.e., q-0 and k, is large,

(2) 32 ~+ 2 q +~ q+ (q'+ '4')'"
ImfsE„——„&(2,), (q +2K ) ln -( 2 z)«, ln

2 +2(q -X ) (5.4)

&» 16m q +2X q
).,i'(x'+q')' (q'+4()', )'")

12 4y -484@ 16
k~r)(' k2p 4(p2 + q&) k2(y2 + q2)2

22K'-128~E
O(I/k3)k2(y2+ q )~

(5.5)

where the definition P&
—b,Z/k, has been used.

Again, the terms in Eq. (5.5) proportional to I/O&

are in exact agreement with the corresponding re-

Equation (5.4) is seen to be in exact agreement
with the large-k& limit of the imaginary part of
the simplified second Born approximation as given
by Byron and Joachain, ~ and behaves as (Ink, )/k&
for q approaching zero. If p, is set e(lual to zero in

Eq. (5.4), the corresponding term in the Glauber
eikonal series is obtained, and diverges as lnq as
q goes to zero.

Using Eq. (A2) for Z &q', and E(I. (AS), the real
part of f„z„can be written as

t

suits of Byron and Joachain. Differences between
the simplified second Born approximation and the
present approach begin to manifest themselves in
their predictions of terms proportional to 1/k .
Clearly, a detailed analysis of 1/k' terms should
include a discussion of the pertinent third Born
terms; nonetheless, it is expected that for de-
creasing q, similarities between the two descrip-
tions should be enhanced. For q=0, E(I. (5.5) re-
duces to

(2 ) p 3 5&8
Rey'„,„=—+,-, (X=2, q=0),

k, 2k',. 4k',.
(5.6)

which agrees with the corresponding result of Ref.
7. From the preceding argument in light of the
successes of the comparative methods, we conclude
that the present approximation should provide an
accurate description of the second Born term,
particularly so for small q. Turning briefly to
the third Born term, it is found that on substituting
E(I. (A5) into the expression for f,'~', one gets

V'+P')P"(((I-P-P'~'+&'6 ~'(q'+~') P'+&'+~' ~P+P'('+P'+&'
1 1

("+x' (j-j7('+z') ' (5.7)
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From the definition of f~'3 . it should be obvious
that an analogous expression, with identical sym-
metry properties, canbe written; hence, f2 can
be treated similarly. If q is set equal to zero in
Eq. (5.7), f,'3' vanishes. Thus, one gets the result

RefnE~= fi +f2 = 0 g = 0(3) (5.8)

VI. SUMMARY

As stated in the introductory paragraphs, this
work has been concerned with the elucidation of
the character of the second and third Born terms
for short-wavelength collisions and for small
momentum transfers. Specifically, the general
integral I„, defined by Eq. (3.1), has been partially
expanded in reciprocal powers of k, in an effort to
ensure treatment of all portions of these Born
terms which contribute to the differential cross
section through order 1/k&. The partial expansion
was necessitated by a desire to include a plausible
and reasonably accurate description of virtual ex-
citations, i.e., target polarization; hence, the in-
termediate energy loss ~&„ explicitly appears.
The usual high-energy assumptions were made,
along with the small-angle approximation of
Glauber.

which is valid for all P, . This result is not par-
ticularly surprising if one notes that if P, =0 in
Eq. (5.7), then f&' '(P, =0)=f», i.e., the third
term in the Glauber eikonal 'series, which has
been evaluated'in closed form.

The intent of this section has been to illustrate,
by simple example, the potential usefulness and
computational feasibility of the present approach,
and to speak briefly of its relationship to estab-
lished procedures. In closing this section, one
final observation is worth noting. In recent months
there has been considerable interest in the theoret-
ical description of high-energy small-angle scat-
tering of electrons by atomic targets. Notably,
the work of Konaka and Kohl, ~ Bonham and Konaka, ~

and Byron and Joachain, ~e has focused on the char-
acteristics of channel coupling in the second Born
approximation and its impact on the-small-angle
cross section. Though all speak of non-negligible
contributions of polarization effects, particularly
for dipole-allowed transitions, none has predicted
the precipitous increase found by Mohr. ~ It had
been thought that Mohr's predicted behavior of the
cross section could be explained through investiga-
tion of higher Born terms. Though it is conceded
that in-depth analysis of the third Born term is
needed, Eq. (5.8) hardly supports the notion of
spectacularly anomalous behavior in the forward
direction.

To avoid approximating the first Born term and
possibly to extend the validity of the results to
larger values of the momentum transfer, the z
axis is chosen perpendicular to q for all values of
q. Discussion of the coordinate system leads to
the result that &o=cos '(kz/k, ) is the scattering
angle for which the Glauber-angle approximations
are most valid. For elastic scattering 8~=0;
note, however, that for excitation of the n=2
states of hydrogen, 8G =2.5S for 5-keV and OG

=26.8' for 50-eV incident electrons.
The central results are given by Eqs. (4.8) (4.11).

An unfortunate feature of these results, generally
common to all approximate second Born theories
(for arbitrary q), is the implicit k, dependence
through the appearance of P, . This point has been
discussed in some detail by Byron and Joachain. '
One is, nonetheless, assured of the inclusion of
all terms which contribute to the differential cross
section through order 1/k, . This leads to the def-
inition of the high-energy higher-order Born direct
amplitude as

fHH fl f ~fHEA Ref HEA+ ~ ™fHEAu (1) (2) ( 3) ~ (2) (6.1)
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which represents a wholly consistent approxima-
tion, treating all terms equivalently. In the next
paper of the series, Eq. (6.1) will form the basis'
of an analysis of elastic and inelastic scattering
of electrons by hydrogen atoms.

One of the most attractive aspects of the pro-
posed high-energy higher-order Born theory is its
computational simplicity. As demonstrated in Sec. V,
f«„can be evaluated with relative ease for ground-(2)

state hydrogen; few additional complications arise
for atomic wave functions written as antisymme-
trized products of one-electron orbitals. Both of
the third Born terms, though straightforward to
analyze, are algebraically tedious. Using the in-
tegration procedures introduced in Ref. 8, f~'3

can, in essence, be reduced to closed form for
elastic (e, H) collisions. After evaluating the
double principal-value integral appearing in the
expression for f2'3 ', it appears that this term is
reducible to a single numerical integration. These
results will be explicitly demonstrated in a later
paper.
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APPENDIX

In this brief appendix, severaj. results pertinent to Sec. V are tabulated. All integrals are easily
evaluated by standard integration techniques.

~ (jq-pj'+P', )V'+f»', +~')

(P»+~')(( -q'-~')
where $' =(z'+ q')'+ 4q'P'».

(A1)

-- (P. -P»)( jq-p j'+P'.)(P'+P'. + ~')

1 - sgn(X2 -q2) ———sin» 1 —,' z, I (A2)

where the contour for the principal-value integral has been chosen as a semicircle in the upper-half
complex plane.

3(P» ~ ) =»» dp, . „.2+&2+ ~, ——-~ (A3)

UI» (q-p-Xl, p+Xf)=&lSjV(q p X~ r)V(p+XP ) j1S)

'(Ii-iI'+x'Xp'+x'& sx z'(q'+z') Ii-»I'+x'+z' p'+x'+z')'
(A4)

U~» (p —P»t:, p', q —p —p' +P,F) =(1S
j V(p —P,f, r) V(p', r)V(q —p —p' + P»f, r)

j
1S)

1 - 8

2»»'(f'+ P'»)P"( jq —p - p' j'+ ff»

X (q +X') P +P, +X P' +x jq-p-p' j +P, +X

I»+p' I'+ &l+~' I~-p' I'+&' I~-p I'+&l+&')

Equation (5.1) has been used in obtaining the results of Eqs. (A4) and (A5).

(A5)
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