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Electron bremsstrahlung energy spectra above 2 Mev
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With a partial-wave interpolation method we calculate the electron bremsstrahlung energy spectra from
neutral atoms with atomic number Z = 13 and 92 for incident electrons of kinetic energy T, = 5 and 10
MeV. This is an attempt to bridge the gap between the results we have previously obtained for T, ( 2 MeV
and the results which can be predicted in the high-energy limit. We conclude that for light elements Born
approximation modified by the Elwert factor and a form factor remains accurate, while for heavier elements
the Davies, Bethe, Maximon, Olson approach is of comparable 5%-10%% accuracy at these energies and
continues to improve with increasing energy.

%'e wish to present data on the electron brems-
strahlung spectrum from incident electrons of kinet-
ic energy 5 and 10 MeV, obtained with an exten-
sion of our previous numerical partial-wave cal-
culation techniques which utilizes interpolation in
partial-wave cross sections. " Our purpose is to
obtain some guidance as to when (for how low in-

cident energies) high-energy limit forms for the
electron bremsstrahlung .spectrum may be used.

Under the circumstances that the kinetic ener-
gies of the incident and recoil electron T» 1m c2,
Davies, Bethe, Maximon, and Olsen (DBMO)' ob-
tained an analytic expression for the bremsstrah-
lung spectrum,
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where E, and E, are the total energy (including
rest mass energy) of the incident and recoil elec-
tron, k the radiated photon energy, P, the incident
electron velocity, Z the atomic number, and F(q)
is the atomic form factor. Also

f, =u/(2E, E,),
1

f(Z) =(Z&) g [ 2 (Z )2]
.

It is believed that this calculation is valid for T,
&15-50 MeV. The purpose of this work is an at-
tempt to bridge the gap between the results we
have previously obtained for T, = 1 keV to 2 MeV
and these predictions for higher energies.

Recently w'e presented a tabulation' of the elec-
tron bremsstrahlung energy spectra from neutral
atoms with atomic number Z=2-92 for incident
electron kinetic energies T, in the range from 1 keV
to 2 MeV. This tabulation was based on a calcula-

tion with partial-wave methods' in which the pro-
cess is described as a single-electron transition
in a relativistic self-consistent screened potential.
Electron w'ave functions were obtained in partial-
wave series by numerically solving the radial
Dirac equation. Photon w'ave functions were also
expanded in partial-wave series; the angular inte-
grals of the bremsstrahlung matrix elements w'ere

performed analytically, while the radial integrals
w'ere calculated numerically and then summed nu-
merically over the partial series. The unpolarized
bremsstrahlung cross section, differential in pho-
ton energy k, has the form

where ), and )2 are the orbital argular momentum
quantum numbers of the incident and final elec-
trons, respectively.
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Fla. 1. Variation of the partial-wave cross section
0&&(k) as a function of l~ for the cases with &= 92,
Ti=5 MeV, and k/Tg= 0.6, 0.8, 0.95.

The straightforward application of this partial-
wave method is feasible for obtaining fairly accur-
ate theoretical predictions for the electron brems-
strahlung spectrum when T, S2 MeV, except near
the soft-photon limit of the spectrum, where the
partial-wave series does not converge fast enough
to make the partial-wave method feasible. In the
soft-photon region of the spectrum the low-energy
theorem' can be used to obtain bremsstrahlung
predictions from elastic scattering cross sec-
tions.

We wish to see whether it is possible to obtain
accurate bremsstrahlung cross sections for T.,&2

MeV with the partial-wave method, even though it.
becomes prohibitive to calculate all partial-wave
cross sections. %'e find that the partial cross
section o, is a smoothly varying function of $. To
illustrate this point, we show in Fig. I the varia-
tion of cr, as a function of &, for the cases g =92,
T, = 5 MeV, and k/T, =0.6, 0.8, 0.95. We see that
after ), = Io 0„ is a smoothly decaying function of

0.4 0.8 0.95

TABLE I. Comparisons of bremsstrahlung cross sections 0 (0) in mb for Z=13 and 92,
T& -—1, 2, 5, and 10 MeV between results obtained from simpler theories, such as Born ap-
proximation (BH), Born approximation Inodified with form-factor screening and Elwert fac-
tor (KBF), and high-energy theory (DBMG).

Tf Z 0/T, 0.0 0.2 0.6

BH
ES
ZBF/ZS
OBMO/ES
ES
EBF/Es
DBMO/ES

12.60
0.99
0.95

11.62
0.89
0.78

7.84
7.54
0.99
0.98
8.30
0.83
0.71

4.84
4.93
0.98
1.05
6.16
0.77
0.67

3.01
3.22
0.96
1.19
4.74
0.68
0.63

1.65
1.91
0.95
1 ~ 53
3.67
0.58
0.59

0.67
1.00
0.94
2.42
2.95
0.50
0.57

EBF/ES
DI3MOlES
zs
ZBF/ZS
OBMO/ZS

13.21
0.98
0.98

11.45
0.95
0.86

8.73
8.24
0.99
1.01
8.10
0.92
0.82

5.52
5.49
0.98
1.06
5.92
0.87
0.79

3.55
3.67
0.97
1.16
4.45
0.80
0.75

2.03
2.21
0.96
1.43
3.34
0.69
0.70

0.84
1.08
0.95
2.32
2.43
0.60
0.71

5

10

13

13

BH
ES
ZBF/ZS
OSMO/ES
zs
EBF/ES
OBMO/ZS

Es
ZBF/ZS
OBMG/ES
ES
EBF/ES
OBMO/ZS

13.74
0.97
0.97

11.14
1.01
0.92

13.81
0.98
0.98

10.81
1.05
0.95

10.47
9.53
0.97
0.98
8..21
1.00
0.90

12.00
10.24
0.97
0.98
8.39
1.04
0.93

6.95
6.80
0.97
1.01
6,13
1.00
0.90

8.26
7.75
0.97
0.99
6.59
1.04
0.92

4.80
4.85
0.97
1.06
4.62
0.98
0.88

6.00
5.91
0.97
1.01
5.21
1.03
0.92

3.05
3.16
0.97
1.20
3.42
0.90
0.85

4.13
4.20
0.97
1.08
3.87
1.03
0.92

1.33
1.47
0.99
1.86
2.33
0.74
0.81

1.96
2.04
1.00
1.51
2.53
0.87
0.87
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FIG. 2. Comparisons of
bremsstrahlung cross sec-
tion 0 (0) for Z = 13, T

&
= 1 ke V

to 1000 MeV between re-
sults obtained from par-
tial-wave method (solid
lines), results obtained
from Born approximation
modified with form-factor
screening and the Elwert
factor (EBF, dotted broken
lines), and results obtained
from high-energy theory
(DBMO, crossed broken
lines).
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), as ), increases. Thus not all partial-wave cross
sections a, have to be computed directly; a modi-
fied partial-wave method is possible in which one

, calculates a finite set of a, -values on a grid in )„
of increasing spacing, and then interpolates the
intermediate terms.

With this partial-wave interpolation method we
have calculated the bremsstrahlung energy spec-
tra for Z=13 and 92, T, =5 and 10 MeV, k/T, =0.6,
0.8 and 0.95. For k/T, =0 results were again ob-
tained from elastic scattering data using the low-en-
ergy theorem. Our exact screened (ES) results are
shown in Table I, together with results obtained from
simpler theories, such as the Born approximation

[Bethe and Heitler (BH)],' the Born approximation
modified with the form factor and with the Elwert
factor (FBF),' and the high-energy approximation
(DBMO).' The ES results for k/T, = 0.2 and 0.4 were
obtained by smooth interpolation to the ratios o Esz/v Ea
ofthecaseswithk/T, =0.0, 0.6, 0.8, and0. 95. To
understand how these simpler theories are con-
verging we also show similar comparisons for T,
=1 and 2 MeV. We can then estimate the Es re-
sults for T, »0 Mev by smooth interpolation be-
tween the ES results for 7, ~1.0 MeV and the pre-
dictions of the high-energy theory at 7, =1000
Mev. In Figs. 2 and 3 we present estimates of
thebremsstrahlung cross sections o'(k) for Z =13 and
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FIG. 3. Same as Fig. 2
except that Z=92.
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S2, 1', =1keVto1000MeV, obtained in this way, It
appears that for Z = &3 EBF is good within about 5%
for T, ~ 2 MeV and 12~/~ below 2 MeV, while results of
high-energy theory are good within about 5% for
T,z5 MeV and k/T, s0.6, for T, a &5 MeV up to
k/T, =0.8, and for T,o 70 MeV up to k/T, =0.95.
For Z=92, EBF is good within 12%%uo for T,~5 MeV
and k/T, ~0.8, while for T, s2 MeV the difference
between EBF and ES data becomes large. For g
=92, results of high-energy theory are good w'ith-
in about F/0 for T, ~25 MeV and k/T, s0.6, for T,
~ 40 MeV up to k/T, =0.8, and for T, ~ 70 MeV up
to k/T, =0.95. These estimates can be further
confirmed if our interpolation in partial waves

can be pushed to higher energies. We believe this
may prove feasible once further. economies are in-
troduced in our numerical codes.
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