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General form of the quantum-defect theory
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The quantum-defect-theory (QDT) treatment of an electron in the Coulomb field surrounding an ionic core
is recast in a form largely independent of field characteristics and thus applicable, e.g., to square wells or to
the Morse fields of diatomic molecules. The reformulation parallels Seaton's classification of alternative
Coulomb-field wave functions, and makes it applicable to other fields. Wronskians of alternative pairs of
base functions have an important role in the theory. For electron energies e & 0 in a Coulomb field these
Wronskians reduce to trigonometric functions of v = ( —2e) '", familiar in the QDT; other fields lead to
trigonometric functions of different arguments. Quantum defects are generalized to eigenvalues of a reaction
matrix, as in Seaton's work, but this matrix can now be calculated even below threshold energies with the
introduction of a "smooth" Green's function appropriate to QDT applications.

r. rzmODUCTION

The quantum-defect theory (QDT) originates
from the interpretation of Rydberg's formula for
the levels of a regular series, E„=-R/(n —p);
the quantum defect (or "Rydberg correction") p,

embodies the influence of a nonhydrogenic ionic
core upon the levels of an excited electron. ' The
possibility of parametrizing the effect of a com-
plicated electron-core interaction compactly con-
stitutes the main attraction of the QDT in its
various forms. It rests on the fact that an ex-
cited electron moves in a simple field, typically
Coulomb, when outside the core.

The main analytical development, by Seaton,
introduces alternative channels of electron excita-
tion, distinguished by different core levels, dif-
ferent orbital momenta, etc. , and is thus called
multichannel QDT. This treatment starts from
a close-coupling formulation of electron-ion scat-
tering theory and extrapolates it to the discrete
spectrum of Rydberg levels, thus interpreting
perturbed series of levels in terms of scattering
parameters. The interplay of Rydberg spectra
and electron-core scattering has permitted ex-
tensive use of the MQDT formalism for semi-
empirical analysis of diverse phenomena,
whereas Seaton had emphasized ab initio calcula-
tions. Still more recently, the MQDT has been
connected to the theoretical methods of configura-
tion mixing through alternative forms of the
Green's function for the motion of an electron in
the optical potential field generated by the core. 4

(In our application the "optical" potential is real,
local, isotropic, and designed to represent the
average interaction of one particle with the rest
of the system in a zeroth approximation. )

The developments of Refs. 3 and 4 rest mainly
on the separate treatment of long- and short-
range interactions and are thus independent of the

Coulomb character of the long-range field that
may bind an electron or merely deflect it near a
core. Specifically, Ref. 3 mentions also applica-
tions to negative ions, 5 where the long-range Cou-
lomb field is absent and the core-polarization
field looms more important ~ However, such ap-
plications have proceeded thus far by analogy
rather than by an explicit generalization of the
formal MQDT. This paper aims at formulating.
the broader framework. %e may keep referring
to atomic electrons throughout the paper, for the
sake of definiteness and familiarity, but we intend
the entire treatment to apply in principle to the
motion of other particles too.

A preliminary but lengthy development seems
necessary to cast the properties of Coulomb field
wave functions in a form convenient for extension
to other fields (Sec. II). Analytical properties
will be discussed for three types of asymptotic
behavior of the potential: constant, —1/r, and
—1/r . The latter two are singled out by yielding
a nonzero density of continuum states in the
zero-energy limit and an infinite series of
bound levels converging to this same limit. Any
other attractive field departs from one of these
three laws by amounts that converge to zero
faster than 1/x'. The effect of these departures
will be represented, in Sec. IIE, by phase shifts
and by analogous parameters which modify the
analytical laws pertaining to a field —I/r with

P =0, 1, 2. These parameters are smooth func-
tions of energy across the ionization threshold
but their energy dependence is often nonanalytic,
i.e., it produces discontinuities in derivatives
higher than the first. The threshold behavior of
parameters representing departures from our
three basic fields is the subject of effective-range
theories. The nonanalyticity of these parameters
will be touched upon but lies otherwise outside
our scope.
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Section III will then extend the customary
treatments6 of the Green s function of a particle
in an optical potential so as to utilize the flexi-
bility of QDT procedures for dealing with the
nonlocal but short-range aspect of exchange
interactions. Full application to multichannel
problems follows finally in Sec. IV. Aspects of
the Green's-function analysis that had not been
identified in Ref. 4 will thus be brought out. To
remedy deficiencies of that earlier work, to the
point of superseding it, is in fact a second aim
of the present paper.

Some vagueness had also resulted in Ref. 4
from an attempt to maximize generality. Here
instead we shall restrict our scope to dealing
with long-range potentials that are local and cen-
trally symmetric. (Recall that nonlocal fields
are, in fact, confined to the interior of the core,
as long as one disregards the escape of two or
more electrons from the core. ) Noncentral,
local fields do occur at long ranges and are
currently treated laboriously by close- coupling
calculations. The need to remove the restric-
tions to the escape of a single electron and —in
the present paper —to central symmetry is cur-
rently acute but will not be addressed here. We
shall also restrict ourselves for simplicity to
many-electron wave funetipns constructed from
eigenfunctions of a single-electron radial Ham-
iltonian k(r) with a screening potential v'"(r)
common to all electrons, without exploring to
what extent h(r) might usefully differ for different
channels. No restriction will be placed, however,
on the number of configurations. included in the
complete wave function. We shall refer expli-
citly to single atoms, but molecular applications
are also in order; the main adaptation required
is mentioned at the end of Sec. I.

A. Analytical framework

Accordingly we consider, for an N-electron
atom or ion, wave functions constructed from
eigenfunctions of a single-particle Hamiltonian

h(r} =p'/2m —Ze'/r +v'"(x) .
The N-electron Hamiltonian then has the form

N N N

H'"' =gh(r ) + g e /r —gv"'(r ) . (1.2)
0.= j

Spin-orbit and spin-spin terms may be added to
(1.1) and (1.2). Core eigenstates 4& will be re-
garded as solutions of

constructed from an unrestricted number of
Slater determinants of eigenfunctions of h(r). The
occurrence of a continuous spectrum of E, is

disregarded in this paper, as noted above.
Close-coupling expansions of an eigen-

function of H'N' have the general form
Q,.M,-(rz)C&(r&, . . . , rN &). These expansions have to
be antisymmetrized with respect to the Nth electron,
i.e., the function M, has to be entered as the Nth rom
of each Slater determinant included in 4& and with a
different variable r in each column. Since'the index
i serves as a channel index and must identify not
only an eigenstate of H'" "but also its orbital
and spin coupling with the Nth electron, one
usually transfers the orbital and spin parts of
M, (r„) from M, into C, . We shall also transfer
to 4, the factor 1/r of M, whose removal elim-
inates the term (1/x)d/dr from the kinetic energy
operator ~ Accordingly we shall indicate the com-
plete eigenfunctions to be constructed by

M] x4] (u

where the braces stand for antisymmetrization and
& includes x and the spin variables of the Nth
electron. The goal of theory at this point is to
construct the radial functions M, (x); it will be
implemented in See. IV. The single-electron
term of H'"' operating on this function will be
indicated by k(l, , x), where f,. refers to the par-
ticular eigenvalue of the orbital angular momen-
tum l whose eigenfunction is now included in

4;(ar). The kinetic part of this operator reduces
now to —~d'/dy' in atomic units, with the under-
standing that it operates on M,.(r) only and not
on 4, .

On this basis we may formulate here the
starting points of the QDT more explicitly.
They are as follows:

(a) The finite spatial extent of the core implies
that 4, (a) can be regarded as vanishingly small
whenever any of the radial coordinates included
in w exceeds a "core radius" xo.

(b) All interactions of the excited electron at
z &xo are understood to be included in the central
potential terms of h(l, , x); that is, the residual
terms of H'"' are set to zero at y'&ro, however
important they may be within the core.

Accordingly (i) each radial function M,.(r)
obeys the equation

mhere E and E, are the relevant eigenvalues of
the full Hamiltonians H'"' and H'" ", respec-
tively, and where the zero value of q& coincides,
as usual, with the potential of h(r) at r =~.

(ii) For all "strongly closed" channels i whose
core energies E, are sufficiently larger than E,
the function M, (r) decays so rapidly with in-
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creasing r as to be itself vanishingly small at
r &r, . The Z; can thus be restricted at x &r,
to a finite subset of terms representing "open"
or "weakly closed" channels; the sum thus
restricted will be indicated by a prime, Z&.

The emphasis in this paper is on proceeding
without stating the analytical form of the poten-
tial term in h(r) explicitly. As noted above, our
treatment might be further extended to remove
some of its limitations, such as our excluding
noncentral terms in h(r) and channel-coupling
terms beyond xo. (The QDT loses most of its
import unless ro remains sufficiently small. )
The close-coupling form of the wave function
(1.4) is essential only for the treatment outside
the core, i.e., for its subset of terms included
in the g,'Therefore, the remainder of this
sum —which is required for representing short-
range correlations —may well be represented
more flexibly; this would be important, e.g., for
inclusion of short-range multicenter terms in
molecular cores.

II. RADIAL WAVE FUNCTIONS

The QDT gives a primary role to analytical
properties of independent solutions of the radial
equation, in atomic units,

[h( ~) —(c]f(e, l, r)=(- —„,+1 d' l(I+1)

+u(r) —c)f(e, (, r) =0,

v(r); —Ze'/r,

v(r), „= v~(x) ~ —I/x~ (p =0, 1, 2),

(2 1)

where any convergence at large r with p &2 is
rated as equivalent to zero field (i.e., to p=0).
The relevant properties have been developed in
detail by Seaton for the Coulomb field Hamil-
tonian but are actually largely independent of de-
tailed properties of this field. We shall deal
initially with solutions of the general Eq. (2.1),
then specialize the treatment to the cases where
v(x) coincides with v~(r) at all r, in Sec. IIB—IID.
Finally Sec. II E will apply the QDT to the poten-
tial v(r) specified in Eq. (2.1), which departs from
its large-z form by amounts that vanish faster
than 1/r'.

A first property of the solutions of (2.1) is,
of course, that each of them is a linear combina-
tion of any chosen base pair of independent solu-
tions. Alternative base pairs, identified by
boundary properties at @=0 or at r =~, are
suitable in different contexts. We shall study
the linear transformations between such base
pairs and particularly their dependence on the

energy & across the ionization threshold & =0
and in the bound-state range q &0.

More generally, the QDT involves the energy
dependence of certain key parameters across
the ionization threshold. This dependence may
display a nonanalytic behavior for two separate
reasons. First, the asymptotic behavior of
wave functions at large x depends on their wave
number k =(2a)'i', which has a branch point at
&=0. Second, attractive fields v~(r), with p=1
or 2, support infinities of bound states whose
spectra converge at q =0, thus generating an
essential singularity. Additional singularities
occur in the dependence of wave functions on the
orbital momentum l, just at the integral values
of interest. The description of these combined
effects "-ach of them familiar in mathematical
analysis —becomes rather laborious but appears
essential to the connection between the properties
of bound and free particle states.

A. Base functions and Wronskians

The differential equation (2.1) depends linearly
on the parameters & and l+1; accordingly there
exist solutions that are entire functions of these
parameters. We replace l by X when it need
not be an integer. The extension to noninteger
X is important not only for analytical purposes
but also because a potential term v, (x) =- ~a/r
combines with the centrifugal term of Eq. (2.1) to
yield —,'X(X+I)/r', with X(X+I}=l(I+1) —a', this
parameter X becomes complex in the interesting
cases where the constant a is sufficiently large
to bind a particle. The combination of a Coulomb
field with a —,a/r' ("d—ipole") field leads to a
Coulomb field equation with noninteger A. .'

In physical applications the potential function
v(x) includes no other singularity than a Coulomb
term at x=0, whereby the indicial equation for
this point has the roots A. +1 and —A. . We start
from a basic solution, regular at x=0 for X ~ 0
and analytic in &:,

f (E, X, r) =ao(X)r"'(1+c[r +. ~ ~ ) . (2.2)

The normalization coefficient ao(X) should be
independent of energy and should ensure that its
product by the series converges at all finite r for
all A, ; this convergence is nontrivial when the dif-
ference between the two roots, 2K+1, is an inte-
ger. In the case of a Coulomb field critical values
X =X, occur, such that the series in parentheses
diverges when —A.,—1 is a negative integer or
half integer, while for zero field the series con-
tains only even powers of x and diverges only
when —X, —1 is a negative half integer. The
solution (2.2) will then remain finite for all X
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p=0 or 1. (2 2)

[The identity I'(z)I'(1 —z) =p/sinter is utilized
here and frequently in the following. ]

Adjustments of Eq. (2.2) and of its discussion
are in order when v, (r) =- &a/z with a value of
a &l(l+1) +-,' and hence sufficient to bind a parti-
cle. For later convenience we denote this field
as the "dipole field. " In this event we have

X=- —,'~i [a- (l+-,')']'~'=- —,'~io. , (2.4)

and Eq. (2.2) represents two alternative, inde-
pendent, complex conjugate solutions if we set
ao

———i(2v/n)'~' This .pair corresponds to

(f~,f „&}since —X —1=%.* according to (2.4).
We shall, however, replace this pair of solutions
by their real and imaginary parts,

1/2

f "(g, n, x) = r' 'sin(o.'in')(1+cd'+ ~ ~ ~ ),

only if the energy-independent coefficient ao( —A.

—1) vanishes appropriately at X=X,. To satisfy
this criterion, we set ao(A) =2 "/I'(21+2) for a
Coulomb field and ao(X) =[2"'~'I'(X+a)] ' for zero
field. Thereby f (&, —A. —1, r) is also a nontrivial
solution of (2.2) irregular for X &0, and is inde-
pendent of f (E, X, x) at all XIX, for which the
Wronskian

W[f (X),f ( X —1-)] =- (2K+1)ao(X)ao(—X —1)

=—(2/m) sin[w(&+1)(X+-,')] t0,

(2.6). Note that f' and f a,re independent, ex-
cept at q =0, as seen by evaluating their Wron-
skian in the convenient limit r-~,

W,(f,f') =2ik . (2.7)

The connection between nonindependent solu-
tions of Eq. (2.1), such as (2.2) and (2.6), can
be represented in terms of their Wronskians,
utilizing the identities

W(a, b)c+W(b, c)a+W(c, a)k =0,

W(a, k) W(c, d) +W(b, c)W(a, d)

(2 6)

shows how the determinant of the transformation
matrix from a base pair {c,d} to a pair (a, k}
equals the ratio of the Wronskians of the final
and initial base pairs.

Application of Eqs. (2.8) and (2.7) to the solu-
tions (f,f',f '}yields

2ikf '(e, x, ~) =W, ),(f ,f ')f'(e, » &).

+W(c, g) W(b, d) =0, (2.9)

which hold for any differentiable functions

{a,b, c, d}. The first of these serves to repre-
sent any solution of (2.1) as a, superposition of
two base solutions. The second one, cast in the
form

W(a, d)/W(c, d) —W(a, c)/W(c, d)Wa, b

W(c, d ) W(b, tf )/ W(c, d) —W(b, c)/W(c, d )

(2.10)

2 1/2

f ~(q, n, ~) =— x't cos(n 1 xn)(1+c,r+."),
(fOR f01) (2.6)

Note that these functions oscillate wildly as r-0
since lnr is singular; however, this singularity
has no physical importance as a dipole potential
never actually extends to r-0 where it would hold
an infinite spectrum of deeply bound states.

In the opposite limit of large r we consider
solutions expanded into powers of 1/r; however,
the expansion is only asymptotic because r =~
is an irregular point of the equation. Here we
have generally a pair of independent solutions

f'(q, X, r) =e"~r+(1+4,/r+ ~ ~ ),
where k=(2e)'~' (with Imk &0 for e &0) and where

(2 6)

'L . d5
k ~ d(1/r)

are the roots of indicial-type equations; g
equals i/k when v(r) -—1/x as r -~ and it
vanishes when v(r) vanishes faster than 1/r. The
systematics of the radial functions emerges from
the connection between the solutions (2.2) and

—W,„(f',fo)f (q, X, r) . (2.11)

f'(e, X, ~) =e'"t "r~(1+4,/r+ ~ ~ ~ ), (2.12)

where v=i/k=(-2e) '~ . The Wronskians W', ~

will then be real, with different functional forms.
Solutions of Eqs. (2.1), in particular the radial

The Wronskians in this equation coincide with
the Jost functions J and J', to within the coeffi-
cient 2ikap(X) ~ These parameters are constant
in r but they link the small-r and large-r be-
havior of the wave functions and thus depend
on the values of the potential v(r) at all r The.
analytical structure of the Wronskians for the
three basic fields v~(r) (/ =0, 1, 2) is an essen-
tial part of our study and is described below.

Here we stress only a few general properties
of the pair of functions W', ~=W(f', f ) for posi-
tive and for negative values of the energy &. For
& &0, W' and W are complex conjugate, because
f' are complex conjugate while fo is real; this is
also seen from Eq. (2.9). For negative values
of the energy &, instead, the solutions (2.4) no
longer oscillate at large r but are real and take
the exponential behavior
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W(ft, M)) =0, (2.13)

for all closed channels with &, &0. For our sin-
gle-channel Eq. (2.1) with the potential v(r), the
discrete energy levels are identified by the
eigenvalue equation

functions M, (r) of Eq. (1.4), remain bounded at
large r only when the coefficient of the rising ex-
ponential f vanishes in their expansion (2.11).
That is, boundedness requires that

W,„W;„=(2/v)k ", W,„/W;„=e ", g &0, (2.18)

W,„W',„=(2/v) v "cosmic, W,„/W;„=cased., e &0 .

(2.19)

Substitution of Eqs. (2.16), (2.1V), and (2.6) into
(2.11) yields the large-r expressions

k " ' '(2/vk)' 'sin(kr —Xv/2),

W,„(f',f0) =0, for s &0 . (2.14)
v"' ' (v/2v) ' ' [e" "—cosvXe " "],

Recall finally how in scattering theory, with
X=I, discrete energy levels are identified as
poles of the scattering matrix S„. The S matrix
represents departures of the wave functions for
a given field from zero-field functions and is
represented in our notation by

S;,=(W„/W;, }/(W„/W'„)„(„)0, (2.15)

showing how its poles are indeed given by (2.14).
For & &0 we have quite generally the familiar
relation

S„=exp2i [r/(k, l) —r/(k, l)„0],
where q is the phase of the complex 'Qfronskian

W, , and q, 0
——-- lm/2.

B. Analytical expressions of the basic Wronskians

The Wronskians W;„which appear in Eq. (2.9)
play a role even more extensive than has been in-
dicated thus far, particularly in their combina-
tions W,„W;„and W,„/W;„. Their analytical
form is determined by comparing Eq. (2.11) with
the large-r expansion of the solutions f (&, X, r)
of Eq. (2.1) which are known analytically for the
basic potentials v~(r), P =0, 1, 2. The branch
point of the wave number k at g=0 cause's the
form of W+,„ to differ for g ~~0. Simple analytic
continuation does not suffice to round the branch
point for reasons that have not been widely appre-
ciated and are discussed in the Appendix. (That
is, the q &0 expressions do not derive from the
& &0 expressions simply by setting k =i/v. ) Here
we complement analytic continuation by stip-
ulating that the rising exponential solution f,
defined by Eq. (2.12), includes no additional
term proportional to the decaying f'. We give
here the expressions of 8",„for nonintegral
values of X, even though the integral values of
X =I are of greatest interest.

a. Zero field @=0). In this simplest case we
have

(2.16)W,'„=(2/v) '/'(a i/k)", c &0,

W;„=(2/v)' 2v", W,„=.(2/v)' 'v" cosmic, & &0,
(2.17)

(2.20}

for q&0

W;„=(2/v)(2/v) "v"sin7/(v —X)I'(v —X),

W,„=2(2/v)"v" cosv(v —X)/I'(X+1+v);

for q&0

(2.22)

W "Wt.=4' "k '"II'(~+I —'/k}
I

'=(2k/v)/II(' ~}

W,„/W', „=exp [2i(k ' ink —Xv/2+a~)]; (2,23}

for t. &0

W,„W;„=(2/vv) sin2v(v —X)/A(v, X},

W,„/W', „=D (v, X) cotanv(v —X);

where we have set, following Seaton,

a(», ~) =k'"'e /"
l

I'(a+ I - i/k)
l
'/2v

~( /k y)/[I e 2'I/k 2Fsx]

D(v, X) =w'/'(2/v)" [I'(v —X)I'(X+1+v)] ' '

o„=argl'(X+I —i/k),

A(v, X) =I'(X+1+v)/v'"'I'(v —X)

(2.24)

(2.25)

Note that B is real for noninteger X and q &0,
even though A(i/k, X) is complex. Below thres-
hold A(v, X) is real and reduces to the polynomial

The expression for z &0 differs by the factor
from the familiar energy-normalized form

of the radial functions. The square of this fac-
tor, k " '=(7//2k) W, „W',„, represents the reci-
procal density of states f,„for e &0, as will be
discussed further ~

b. Coulomb field, v, (r) =- 1/r. Here the ana-
lytical structure of the Wronskians derives
from the large-x expression of confluent hyper-
geometric functions in terms of I' functions and
of exponentials, using again the relation I'(e)I'(I
—e) =v/singe:

for &&0

W;„=2(2k)"/'exp(- w/2k) (a i/k) "/I'(X+ I +i/k);
(2.21}
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form when A. is an integer.
The large r-form of fo, analogous to Eq. (2.20),

&S

W, W; =(2/7/v) sin2(o. ln2v —y ),
W„/W', =cotan(o. ln2v —y, ) sinh7/o. .

(2.30)

[B(6,X)] ' '(2/7rk)' '

x sin(kr +k ' 1n2kr —Am/2+o'„), e &0

~'(.,..);( [~(., )] "'( /. )'"
x [sing(v —X)D 'e'/ "r "

—cosm(v —X)De '/"x"j, e &0.

(2.26)

For q )0 the coefficient B ', which corresponds
to k " ' of Eq. (2.20), reduces in fact to
k ' '(27/)' '/I'(X+1) in the limit of e»1, as it
should, while it reduces to unity —instead of
vanishing —3t the threshold q =0; the coefficient
(B')"/ /F(X+1) stems from the normalization
of f at r=0 Fo.r e &0 the coefficients of the
rising and falling exponentials oscillate sinu-
soidal. ly as functions of v, but the amplitude of
these oscillations is scaled by the coefficients
D and D which diverge and vanish, respectively,
as v increases toward the condensation point
& =0. The discrete energy levels, roots of
Eq. (2.14), occur here when v —A. is a Positive
integer, whereas the elementary QDT equation
sin zv =0 is satisfied by any integer v since it was
derived for the special case X=l and without re-
gard to the coefficient D Note tha. t Eq. (2.26)
should be restructured for v&X where & ' and
D may become imaginary.

e. DiPole field, v, (x) =—,'g/r Her—e the .basic
solution fo(e, X, r) is of the Bessel class, whose
large-r expansion involves primarily exponentials
and related functions. The centrifugal parameter
X is expressed in terms of n by Eq. (2.4); a I'
function appears in a parameter y =argl"(1 —in).
The Wronskian expressions are as follows:

for q)0
W% (4k/ )1 2 /kt er s/4

csin(n lnzk + zinp+X )/sinh / 7/o. ; (2.27)

These parameters differ characteristically from
those of the Coulomb field in that their oscilla-
tions depend on the logarithm of the energy. Thus
the discrete energy levels occur when n ln2v

is a multiple of p and converge to the thres-
hold exponentially, e„=2exp[- 2o. '(nm+y, )], in
contrast to Rydberg series. [A quantum defect
must be added to X in this formula in any appli-
cation because the attractive dipole potential
v, (r) never extends to x=0.]

The large-r forms of f, analogous to Eqs.
(2.20) and (2.26), are here

coshwo. —cos2[a ln —'k+y, ) )'
sinhgn

&& (2/wk)'/' sin[kr ——,'m + P (k, a)],
q)Q,

„„=(v/m)'/'[sin(o. ln2v —y )sinh ' '(mo.')e'/"

—cos(n ln2v- y, )

xsinh'/ (wn)e "/"], @&0,

cotanP(k, n) =—tanh(n o./2) cotan(o. ' 1n-,'k+y ). (2.31)

(Q is in the same quadrant as n 1n-,'k+y, .)
Throughout the range q)0 the amplitude of this
wave function is itself an oscillatory logarithmic
function of energy. Thus it does not coincide with
the amplitude for zero field in the high-energy
limit, but this result is an artifact of our model
potential which remains unrealistically ~—1/r
as r-0. The oscillations at low energies are
instead a realistic property of the long-range
dipole field, related to the exponential conver-
gence of the series of discrete levels at & &0.'
The oscillations extend across the condensation
point at q =0; note how the coefficient sinh'
plays here a role analogous to that of D in the
Coulomb case.

C. Alternative base pairs of solutions

for q&0

W;, =(4/gv)'/' sin(n ln2v —y )/sinh'/2wo. ,

W6~ (4/7)v) cos(Q ln2v g~) slnh

for q)0

W, ,W; =(2k/m) [cosh' o.'

—cos2(n 1n~k+y )]/sinhxa,

i sin(n ln-,'k+ic/7//2+y )
sin(o. ln-,'k —in'/2+X )

'

for &&0

(2.28)

(2.29)

The solutions f'(&, X, r) introduced in Eq. (2.6)
form a convenient base pair at large x because
they are complex conjugate for &)0 and falling
and rising at large r for q&0. The pair
consisting of f (e, X, x) =f„and of f ~ „regu
lar and irregular at r=0, is analytic in z
and in X but it does not form a convenient
base because these functions do riot remain
independent at A, =X,. Accordingly we consider,
besides f „„asecond irregular solution,
g(e, X, r) —=g„, designed to form a convenient
pair with f~, by specifying that for s &0, it
oscillates at large r 'out of'phase with respect to
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f 0 irrespective of the value of X.
We write g„as a superposition of (f,f'), as

f„is expressed in Eq. (2.11),

effectively renormalized, for q &0, by the coeffi-
cient 9"for the Coulomb field and by sinh" 2&+

for the dipole field. Thus we obtain

2ikg(e, X, r) =W,„(f,g)f'- W,„(f',g)f (2.32)

Our definition of g will be completed by specifying
that g Eggs in phase by 90' with respect to f' at
large r and by the convenient normalization con-
vention,

+(2ik/w)/W', „, e &0,
2/s(f 2 g )

(4/ )Dc2 Wc
(D-) w-, „) +g w',",) ~ '" (2.34)

W(f' g )=2/ (2.33)

The values of the Wronskians of Eq. (2.32) that
meet these requirements are then determined by
inspection of the large r Eqs. (2.20), (2.26), and
(2.31}. Note that these equations show f' to be

where D is given by Eq. (2.25} for the Coulomb
field, D=j for zero field, and D=sinh' 'go. for
the dipole field. The transforrriation matrix from
(D 'f, Df ' fto (f0, g] at e &0 is thus orthogonal
to within normalization. The large-~ forms of
g are as follows:

zero field,

—k"+'/ (2/wk)' 2cos(kr- Xw/2), e'&0

~" —v '(1+cos'wX) '(2/w)'/'[cos(wX)e' "+e ' '],g(e, X, r)

Coulomb field,

g(e, X, r) „„—[B(e,X)]'/ (2/wk)'/ cos(kr+k 'ln2kr- Xw/2+@„), e &0

~l- [/1(v, X)]'/ (v/w)'/ [cosw(v - A)D 'e"/ "r "+sinw(v —X}De "/ "r"], e &0;
)).

dipole field,

g(e, n, r), „
—([coshwo. —cos2(n lnak+X )]/sinhwn} '/'(2/wk)'/»cos[kr —w/4+/(k, n)], e &0

—(v/w)' [cos(o. ln2v —
X )sinh ' '(wo. )e" "+sin(o ln2v —

X ) sinh' (wn)e ' "], e & 0.

(2.35)

(2.36)

(2.37)

The function g(e, X, r) thus introduced is not
generally an analytic function of the energy z,
owing to nonanalyticities of the W'ronskian co-
efficients. :To make the nonanalyticity explicit
we express g in terms of the analytic pair
(f~sf )) (]2 using Eq. (2.8),

W(f „',f', ,)g(e, X, r) =(2/w)f'(e, —X —1,r)
+W(g„,f „,)f0(e, X, r) . (2.38)

Here only the W(g„,f0„,) may be nonanalytic; its
explicit forms, obtained by replacing g„and f „&
by their respective expressions in terms of
(f,f'), are as follows:
zero field,

—(2/w)k'"' cosw(X+-,'), e &0
W(g~ f-i-)) = (2.39)

(2/ )
2x ), cos w(X 2) 0 .

(1+cos'wX) '

Coulomb field,
~ (2/w) ReA.(i/k, X)

coss)22+1) +sis s(22 +)))
e ' '+cosw(2K+1)

(2.40)
~ (2/w)Z(v, X) cosw(2X+1), e &0

dipole field,
—(2/w) sin2(n ln-,'k+X )

W( f0/) [COShWn —COS2(n in»k +Xc))]
O,

0, &&0.
All these expressions are nonanalytic at z =0 for
general values of X or n.

Special consideration is required for the zero-
field case at X=X,=half integer and for the Cou-
lomb case at X=A.,=integer or half integer,
where f» and f0„, are no longer independent, and
W(f „,f „,) vanishes according to (2.3). Here the
expressions of W(g„,f»„.)) become analytic in e,
with values equal to —2/w times the ratio
f»/f»„„whereby the two terms on the right-
hand side of Eq. (2.38) cancel. The expression
of g„ in terms of f0 and f0„, results then by
applying de 1'Hospital's theorem to Eq. (2.38):
zero field,

W
1 [(—1)))c"1/2(ef 0 /SX) +k2))cs)(ef » /SX)„

+2k "c"lnkf„], e&0
(2 42)

-),
( 1)))c-)/2 [(Sf0 /SX) v-2xc-i(ef 0/SX)

C

—2v c lnvf)) ]2 e &0;
C
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Coulomb field

g„=(2v) '((- I)'""'(Bf'„,/BX)„

+A(v, X,)(Bf„/BA)„+2vg (v, y,)f0 ],
(2.43)

where @ =i/k at q &0 and we set, in accordance
with Seaton, 2

(2.44)g(v, A.,) =(2m) 'Re [BA(v, A)/BX]~

The nonanalyticities are confined to the factor
ink (or Inv) in Eq. (2.42) and to the factor g in
(2.43).

The definition of g~ by Eq. (2.42) for & &0, as
well as that of g„ for X c A., and zero field, coin-
cides with the usual definition of the Neumann
function to within a normalization factor. In the
Coulomb case, our functions f0 and f0„, coincide
with Seaton 8 $f and $ 2 gg coincide s with the
real part of Seaton s y3, except for XgX, and

& &0 where the term of (2.40) proportional to
sin2p(2K+I) is added here. [Because g„ is ex-
plicitly real no equivalent of Seaton's R(v, X)

occurs in our formulation. ] Following Seaton,
an irregular solution analytic in q can be formed
at A. =A., by subtracting from Eqs. (2.42) and (2.43)

the nonanalytic term proportional to fo . We
write in general

g (&, &„r)=g (e, &„r)—g (v, x,)f0(&, A.„r), (2.45)

where Q is given for the Coulomb field by Eq.
(2.44) and for zero field by

(2/v) k e' Ink, e &0
b(v, X,) =

(2/&)( I)he+1/Rp-2xg-1 In& e (0
(2.44')

The subtraction of a term proportional to f pre-
serves the Wronskian value, W(f ~o, go„) =2/n

0
C C

The g„ thus defined coincides for the Coulomb
C

field with Seaton's y4, Seaton also considers a
function y, (Whittaker function) which coincides
with our f' to within normalization.

Thus far we have shown first [in Eqs. (2.32)
and (2.34)] how to construct the "out-of-phase"
base pair If'„,g„] for any central potential in
terms of the Wronskians W,„(f',fo). Then we
have constructed the analytic solution g„ for
the special case X=X,. For XIX, we may now
extend Eq. (2.45) by redefining g(v, X) suitably
so that g„remains analytic in &. Our redefini-
tion, which reduces to Eqs ~ (2.44) RQd (2.44a) at
X =X„ is (for p =0 or 1 only)

W(g„,f'„,) —cos' [v(P +I)(Z - y,)]W(gg„f '=„, ,) (2.46)

where X, is that critical value A., which lies
closest to X. The definition of g by Eq. (2.46),
which is proposed here but is not unique rests
on the following considerations. The role of

g (v, X)f„ in Eq. (2.45) is to subtract from g the
nonanalytic portion of the last term in (2.38),
while still fulfilling the intent of superposing f„
with f „,for most values of X. Subtraction of
Bf„in (2.45), with 8 as defined by (2.46) removes
from g„ the nonanalytic term W(g„,f'„,)
x fz/W(f „,f „&) and replaces it with a term analy-
tic in q. The numerator of the analytic term
is designed to cancel W(g„,f'„,)f'„at X =X, leaving,
however, a finite contribution through de l'Hos-
pital's rule. The coefficient cos'[m(P+1)(X —X,)]
of the analytic term reduces to unity at A. =X„
with zero derivative (which is required for the
extended definition to reduce to the previous one
at A. =A.,). Further the cos'[ ~ ~ ~ ] coefficient van-
ishes at the value of A. =X~'~=A.,+I/2p where the
argument X, of W(g„,f "„,) jumps discontinuously
by 1/p. Note also that at A. =X 'd, g~o is propor-
tional to f'„&, where the proportionality constant

only fixes W(fo„, g~o) =2/v.
The expressions of g(v, X) are summarized in

Table I A. Note that for the dipole field (P =2)
the special case X=A., does not occur. The func-
tion f~~ assumes the joint roles of f0„, and of go„,

and for e(0f' also coincides with g . For g &0
however, f,~ must be superposed with fo to gen-
erate ag that is 90' out of phase with fo . This
superposition is still expressed by Eq. (2.45), with

g(v, o.) given in Table IA.

D. Normalization

The normalization method to be followed here is
much the same as was introduced in 1926' for
Coulomb functions and applied later by Seaton'
in the MQDT. Its remarkable flexibility will be
highlighted here by a physical consideration,
namely, by utilizing explicitly the continuity
equation

Bp/Bt +div j =0 (2.47)

for the probability density p and flux j pertaining
to our many-particle wave functions 4
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d74'@,4~=, dS j .n.
S

(2.49)

A main idea is to apply Eq. (2.49) to a volume
sufficiently large for the right-hand side to be
represented by a simple asymptotic expression.
The value of the normalization integral on the
left-hand side is thus obtained irrespective of
complications in the inner volume. In our MQDT
application to a single particle emerging outside
a core, the surface S in configuration space is
defined as the locus of all points (r&, . . . , r, . . .]
with the largest radial coordinate r equal to a
value R outside the core radius r0. Accordingly
we enter in Eq. (2.49) +s and +s, from Eq. (1.4)
setting r =R and dS =de. The expression of j n
consists then of the M, (R) factors of 4 and of
their radial derivatives, while the integration
over iz reduces to orthonormality of the 4,
yielding

f 1
d7 4'~~. 4s =~2(, )V

x W(M, (»', , R), M, (e„R)) . (2.50)

Each term on the right-hand side is to be eval-
uated having in mind an eventual double limiting
process, firstly &', —&, and then R-~.

Dealing with one channel at a time, we drop the
index i and expand each M(R) into the base pair
(f',f ), as in Eq. (2.11),

M(s, R) =(1/2ik)[W, (f, M)f'(e, R)

—W(f', M)f (s, R)]. (2.51)

Determination of the Wronskian coefficients
W, (f', M) will be a separate task. This expan-

=g, (M, (r) C, (&u)} in configuration space.
Each state we consider is stationary and of

standing-wave type; hence the Sp/Bt and j con-
structed with its real 4 vanish. Accordingly we
start from a pair of states with different ener-
gies E and E' and with time-dependent wave
functions 4~e ~~' and 4~, e~~ ', intending to take
tQe limit E' E later on. Both p and j are now
proportional to exp i(E' —E)t. We integrate Eq.
(2.47) over a volume V of configuration space,
with volume element d7, surface element dS, and
normal to the surface n, obtaining

(
jltE' —E)J di»ii'Vii+fdSj ii)e" ' "=0.

(2.48)

where j is constructed with the time-independent
factors C~, and 4~. The time dependence may
now be factored out and the equation divided by
i(E' —E) to yield

sion reduces the Wronskian of Eq. (2.50) to a
linear combination of the four Wronskians

I

W(f;„f;) =—i(k' —k) exp [i(k' +k)R]R~ '~ +O(1/R),

(2.52a)

W(f;, ,f,) =- i(k'+k) exp[i(k' —k}R]R~ ~+0(1/R),

(2.52b)

W(f,„f;)=i(k'+k) exp[i(- k'+k)R]R 't ~' +O(I/R),

(2.52c)

W(f,„f,) =i(k' —k) exp [-i(k'+k)R]R '~ ~'+O(1/R) .

(2.52d)
Using these expressions, we substitute Eq. (2.51)
into Eq. (2.50) and apply the double limiting pro-
cess. Standard arguments serve to evaluate the
limit, separately for the continuous'0 (s &0) and
for the discrete2 (g &0) spectrum and separately
for the four terms of the expansion. Only two

terms, from Eqs. (2.52b) and (2.52c), contribute
to the limit for s &0; only term (2.52c) contributes
for q &0. The results are

lim lim, ' W(M(s', R), M(e, R))s-~» ~ -» 2 & —s
r 7r—W(f, M) W»(f', M)5(&' —e), for & &0,

(2.53)

~» v W (f, M}—W(f ', M),

at W(f', M) =0, for q &0 .

The coefficient of 5(g' —e) in the formula for s
&0 represents the reciprocal of the spectral den-
sity of states M(e, r), and is reduced to unity by
normalizing I per unit energy.

In our approach to QDT the radial functions M
will be represented as superpositions of the base
pair (f0, g0] or of an analogous pair of wave func- .
tions for the asymptotic fields u~(r). The normal-
ization integrals will accordingly be expressed
in terms of the Wronskians for these fields given
above in Sec. IIB and II C. Observe then that the
combination of Wronskians with M =f,
(p/2k)W(f, f0) W(f', f0), indeed equals the recip-
rocal density of states 1/k'"" for zero field
according to Eq. (2.18). For a Coulomb field this
same combination is indicated by I/B(s, X} in
Eq. (2.23). It will be convenient to write in gen-
eral

(m/2k)W»i(f, f ) W(f', f») =I/B(e, X), (2.54)

extending our notation by setting

zero field,
B(s, X)=

sinhma/[coshvo. —cos2(n In-,'k —y )],
dipole field .
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With this notation each of the large-r forms of f 0

for & &0, Eqs. (2.20), (2.26), and (2.31), is seen to
include a coefficient B ' '(&, X). Similarly each
of the large-r forms of g for t &0, Eqs. (2.35)-
(2.37), includes a coefficient B' '(e, &(). This
remark suggests the introduction of yet another
base pair of radial functions, normalized now

per unit energy,

cosvX =cosp„/sinp„, —,'&( & p„& -,'v (2.58)

The pair of expressions of (f,g}, Eqs. (2.20) and
(2.35), can thus t&e cast ln the form, fol e &0,

f '(e
~ » r) =[&(v~ &)]

' "(v/v) "'
x[sinP„D 'f, —cosP„Df;],

g(e, X, r) =—[A(v, X)]' '(v/7()' '

g(e, » r) =B (e, &()g (&, X, r), & &0 . (2.55)

&& [cosP„D 'f, +sinP„Df;],

where we have set

(2.59)

These two functions oscillate at large z with
equal amplitude, 90' out of phase and have
W,„(f,g) =2/&(; however, their coefficients B
are generally nonanalytic functions of &.

For e &0, the normalization integral (2.53)
with M=f is not immediately relevant for
zero field, though it will apply to potential wells
converging to zero field. For the other fields,
the main factor to be evaluated is the derivative
dW;/de at a root of W; =0; the only nonzero
contribution arises from the derivative of the
sine factor in the expressions (2.22) and (2.28) of
8",. Thus we find for the Coulomb field

'vW~i(f f'-)dW. i(f' f )/«I. ~. 0

=A '(v, x)dv/de
i „„,&,

=A '(v, X)v i„„+„,(2.56)

and for the dipole field

,'vW, „(f,fo)dW, —„(f',f )/dk
~

=&( (d(o. ln2v —y )/de
i

QV
~ v=(&/2&ex'((nr+&(~&/a& ' ( 57)

These values are reciprocal to the interval of
successive energy eigenvalues, much as the ex-
pression (2.54) for & &0 is reciprocal to the den-
sity of states. The simple structure of Eqs.
(2.56) and (2.57) derives from the structure of
the large-r expressions of f for (. &0 in Eqs.
(2.26) and (2.31). Those expressions contain the
sine and cosine coefficients which are charac-
teristic of the QDT and contribute to the normal-
ization integral only the derivative of their argu-
ment; the other coefficients of f', namely, D"
or sinh" 'pn, also cancel.

The simple structure of these results —and the
major role that the large-r expressions of f
will play in the following sections —suggest that
we reduce these expressions to a common form
for all three basic fields, v~(r), analogous to the
common Eqs. (2.54) and (2.55) for e &0. To this
end we should symmetrize the zero-field expres-
sion of f in Eq. (2.20) for e &0 by introducing a
new parameter P„ through the relation

A(v, &() =v """'2sin'p„, D=1, (2.60)

for zero field. The form of the Coulomb field
Eqs. (2.26) and (2.36) also coincides with Eq.
(2.59) if we use A(v, X) and D from Eq. (2.25),
and set

p, (v) = &((v —X), (2.61)

for Coulomb field. Finally Eq. (2.59) represents
the dipole field expressions (2.31) and (2.37) as
well if we set

~(v, o) =1, p (v) =n ln2v —y

D =sinh' 7T Q, (2.62)

E. QDT for optical potential fields

The treatment in Sec. II 8-IID has provided
us with essential tools for QDT applications but
the basic potentials v~(r) are hardly ever realis-
tic over the entire range 0 +x ~~. The present
Sec. IIE will deal with an application of inter-
mediate complexity, namely, to an electron in
the single-channel, local, optical potential field
v(r) considered in Eq. (2.1). The more realistic
applications, to atomic systems with nonlocal
multichannel inner fields will be developed in
Sec. IV. The applications to be considered here
are the following:

(a) A formulation of Eq. (2.14) for the eigen-
values of the discrete spectrum, showing separ-
ate contributions of parameters related to the
asymptotic potential v~(r) and to the shorter-
range portion of v(r). The latter contribution
will take the form of a quantum defect p, „which

for dipole field. These notations reduce the ex-
pressions in Eqs. (2.56) and (2.57) to the common
form A '7( 'dP„/de

~
„. The amplitude factors &

drop out of all these expressions too if we re-
normalize the pair (fO, g} for e &0 as was done in

Eq. (2.55) for e &0 by setting

f (&, X, r) =A'/'(v, X)f'(e, X, r),
g(&, x, r) =A '/'(v, X)g(&, X, r), e &0 .

For reference the important equations of Sec. II
are summarized in Table I.
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in which the dependence on the principal quantum
number n (or n') is split off into a normalization
factor N independent of T and into a core factor
normalized per unit energy and "slowly" depen-
dent on & and &'. (Similar factorizations may be
used to sort out normalization effects for e& 0.)
These formulations attain the aim of restricting
the need of numerical calculations for any speci-
fic system to J[L„or other functions of & that
vary slowly and can accordingly be tabulated only
over a coarse mesh unrelated to the actual
energy of discrete levels; occasionally a single
energy will suffice. An energy range of 0.1 a.u.
has been indicated here as a standard for
"coarse" mesh, having in mind the usual appli-
cation to a valence electron of an atom (or mole-
cule) with which we deal explicitly. A different
standard should be used for other applications,
e.g. , to molecular vibrations. -

The considerations at the beginning of Sec. II
imply that any solution of Eq. (2.1) can be re-
presented at large r as a superposition of the
base pair of solutions If,g} defined by Eqs.
(2.55) and (2.63), for the appropriate value of p.
We implement this program for a solution re-
gular at the origin and normalized there with

ao(l) =2"'/(2l+1)! as appropriate to the Coulomb
field near a nucleus, in accordance with Sec.
II A. This solution will be called f '~' throughout
Sec. IIE only and it will be represented at large
x as

f"'(g, I, r), „= y„[cos5„f(e, X, r)
—sin5„g(q, X, r)] . (2.65)

The index X has been used in the base pair func-
tions to allow for the occurrence of a 1/r' term
at large x. The structure of the coefficients in
Eq. (2.65) is designed to combine with the large-r
forms of (f,g)ffor g &0, Eqs. (2.63) and (2.59),
to yield

varies "slowly, " i.e., on a scale of order 0.1 a.u. ,
near the threshold & =0 for atomic Rydberg elec-
trans.

(b) A corresponding formulation of the continuum
wave functions f (&, X, r) at large r showing how

the departure of v(r) from v&(r) is reflected only
in the introduction of a slowly varying phase
shift 5„=&p„and of a "slowly" varying ampli-
tude y„.

(c) A factorization of matrix elements of short
range operators T(e),

(nlm
f
T fn'I'm')=N„z(e)(elm

I
T

f

g'I'm')N„, z, (q'),

(2.64)

f"'(e, l, r), „= y„(v/v)'~' [sin(P~+5„)D 'f

P, (v) +5„=nv, (2.67)

a fundamental, if obvious, extension of results
of Sec. IIB. In applications with P =1 at large
negative q it should be recalled from Sec. IIB,
that the factorization of D utilized here must be
modified at v &A. . These remarks dispose of
task (a). The completion of task (b) amounts to
writing explicitly the large-r expression of f"
for & &0 in accordance with earlier remarks,

f"'(c, l, r) „„=y„(2/vk)'~ sin[kr —i&lnr

+q(k, A.) +5„],E &0.

(2.68)

Here g is the parameter of Eq. (2.6), which
equals i/k for a Coulomb field and vanishes
otherwise, and q(k, 1) is the phase of W,„for the
reference potential v~(r), namely,

—Xn/2, zero field,

q(k, A) =( —Av/2+k ' ln2k+a„, Coulomb field,

~ m/4+/(k, n), dipole field, (2.69)

with o„and P(k, n) from Eqs. (2.25) and (2.31).
With regard to (c), the factorization of matrix

elements indicated in Eq. (2.64), we recall that
the normalization integrals, Eqs. (2.56) and (2.57),
for the basic fields v~(r) were condensed in the
form A 'v 'dP„/de

~
„ following Eqs. (2.60)-(2.62).

The factor A. ' in this formula has now been re-
moved by the replacement of (fO, g] by If,g), but

—cos(P„+5„)Df'],q &0.

(2.66)

Here 5„, a slow function of &, combines additively
with p„which may vary extremely fast near a
condensation point. For the Coulomb field,
where P„ takes the form m(v —X), 5„ is generally
represented as z p,„, p, „being the quantum defect
which adds to v in the expression P„+5„=v(v
+p„—X). At & &0 one obtains an expression
where 5„adds to the phase of an oscillating
function of kr and thus represents a phase shift.
We proceed now to the QDT tasks, deferring that
of calculating the coefficients y„and 5„ for any
given potential v(r) as well as the task of re-
moving the effects of nonanalyticity of the pair
(f,gJ from this calculation.

The eigenvalue Eq. (2.14) requires, when ap-
plied to f"', that the coefficient of f vanishes
in Eq. (2.66). Since D ' never vanishes and van-
ishing of y„would cause f"' to vanish throughout,
the eigenvalue equation requires the sine factor
to vanish,
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a factor y„has been introduced in Eq. (2.65) ~

The phase P„ is now adjusted by the optical field
contribution 5„. The normalization coefficient
appearing in Eq. (2.64) is thus

~„,(~) =[y'„~-'d(P„+6„)/A]„.'„".
Now this equation also applies when the optical
potential converges to zero field at large r.
Whereas the eigenvalue Eq. (2.67) had no root
v&~ for p=0 and 5„=0, it indeed has roots, in
general, for v(r) &0; to such roots correspond
nonzero values of d(P„+6„)/dq ~„.=d6«/dg ~„.

Turning now to the determination of y„and
6„, one must generally calculate f'P'(z, f, r) by
integrating Eq. (2.1) numerically, with the given
v(r), from r=o to a value of r sufficiently large
for the representation (2.65) to be sufficiently
accurate. The integration may proceed by stan-
dard methods (e.g. , Numerov's) but a WKB or
a phase amplitude method" (PAM) may be ap-
propriate. A test of convergence to the form
(2.65) is to express 6„ in terms of Wronskians

(2.7o)

t~6.1 =~(f.~ foal'»~(g. ~ fi1') . (2.71)

This ratio should vary slowly with increasing r
at large r; accordingly it may be evaluated at
different r values until it has become constant
to the required accuracy. The PAM procedure,
whose applications to atomic radial functions have
been reviewed recently, "utilizes a pair of com-
parison functions which may coincide with the
pair (f,g) in our problem. In this event f"' is
represented by Eq. (2.65) for all r values but
y„and 5„become functions of r and constitute
a new pair of dependent variables that replacesf"'. The equations for y„and 5„are nonlinear
and of first order, and involve the potential dif-
ference v~(r) —e(r). In particular 6„ is obtained
by integrating the Volterra equation

As an example of an optical potential consider
a square well of depth V0 &0 and radius r0. For

6„(r)=w dr'[e~(r') —v(r')]
0

x[f,„(r') cos5(r') —g,„(r') sin6(r')]',

(2.72)

which is equivalent to Eq. (2.71) at all r and in-
dicates automatically the progress of 5„(r)
toward its eventual value. Once 6„(r) has been
evaluated, y„ is obtained by quadrature. Re-
ference 11 discusses aspects of the practical cal-
culation of 5„but additional ones have emerged
from recent extensive calculations and will be
reported elsewhe re.

F. Example and Addendum

simplicity we discuss only /=0. The solutionf"' is 'regular at the origin; in the absence of
any short-range Coulomb field we choose ap(0)
=[2'"1(p)] '. Within the inner well the radial wave
function is then

f"'(e, I=0, r) =(2/nK')'~'sinKr, r &r, ,

where K'=2(e —Vp). With integer I and zero field
in the outer region the appropriate base functions
are taken to be(f„g,), givenby

( I 0 )
(2/wk)' sinkr, «&0,
(2v/m)'~'sinh(r/v), g &0,

—(2/mk)'~2coskr, K &0,
—(2v/v)'~'cosh(r/v), g &0,

where k =- 1/v =2g. This problem is solved
once the coefficients 6„and y„of Eq. (2.65) are
determined. First we evaluate the %'ronskians
in Eq. (2.71) to obtain

(2.73)

(2.74)

tan6, p=~

x sinkr, cosrcr, —k coskr, sin~r0
K coskr0 cosII„r0 k sinkr0 sinKr0 '

q&0,

Kvsinh(r, /v) cosKrp cosh(rp/v) sinKrp
—Kv cosh(rp/v) cosKrp+sinh(rp/v) sinKrp'

q &O . (2.75)

6,p+m/4=nm, (2.77)

whose roots coincide with those of the more
familiar expression tanij„r0+zv =0. Finally the
normalization integral is given in Eq. (2.70) so
that the wave function in the outer field takes the
simple form

f"'(s„,1 =0, r)/N„=(- 1)"'[m 'd6, p/d&]6„

x(vga)' 'e""", r&r, . (2.78)

The outer wave function is thus completely speci-
fied by a single parameter 5,0. This formula will
also represent the wave functions in the exterior
field for an s-wave electron scattered by a neu-
tral core or for an atom-atom collision; the
values of 5,0 depend of course on the specific
field at shorter range.

There remain to be considered the effects of

Similarly continuity at r0 requires that

ik slnKrp

sin(kr, +6,p)'
0 ~)0

60 1 i/2
0

K v cos6,psinh(rp/v)+sin6, pcosh(rp/v) '

q &0. (2.76)

The eigenvalue equation (2.67) can be written for
this example as
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nonanalyticity of the base pair (f,g) at e =0.
In accordance with Sec. IIC these effects are
made explicit by expressing (f,g) in terms of
the analytic base pair (f,g ). The replacement
of (f,g) by (f,g } is performed conveniently in

Eq. (2.71), using Eqs. (2.55) and (2.45) which

yields

tan5„=A(v, X)/[cot5„+g(v, X)],

tan5„=W(f, „,f,'}/W(g, „,f;g'), q (0,
(2.79)

and the same formula with B in place of A for
& &0. The parameter 5'„, which depends on &

analytically, is the one to be calculated. The
corresponding modification of y„ is

y„=y„A'~ (v, X)(sin5~„/sin5„)

=y' A ' 'sin5' [A'+(cot5 +8)']' ' (2.80)

cot5&
g p =cot5& p g p +Cg(P)k

+C2(p)k2 ln(pk/4) + ~ ~, (2.81)

with C&(P) and Cp(P) independent of k. For this
potential the phase amplitude Eq. (2.72) shows
that the expression (2.79) approaches its large-r
limit as

tan5p„(r) „„„tan5'„(r= )+O(r ') . (2.82)

Optical potentials 1/r" with n &2 are thus seen to
introduce nonanalyticities which have not yet been
separated out systematically in the manner of
Sec. IIC. However these effects are weak and
should not present major numerical problems.

In the remainder of this paper no further re-
ference will be necessary to the solutions of
Eq. (2.1) for the basic fields vp(r). Henceforth
we shall then indicate f"by fP(e, l, r). The
corresponding solution g(g, l, r) is then identified
by its large-r form, obtained from Eqs. (2.66)
and (2.68) by introducing the phase lag through

The effects of nonanalyticity, expressed
through 8 and A, are rather mild for the case of
Coulomb fields (p=l) but are essential otherwise.
For zero field, A and B vanish at & =0, causing
5„ to vanish there and introducing the well-known
Wigner threshold effects. For the dipole field
B oscillates wildly and 5„diverges as k-0; on
the other hand g vanishes here and 5 coincides
with 50 for q & 0.

When vp(r) —v(r) converges at large r slower
than a decreasing exponential (e.g. , as r" with

n &2), the transformation to the analytic base
pair (fP, gP) does not ensure that 5P, is analytic
in q. The most important example arises for the
polarization field v(r) =- P' /r24at large radii.
The l =0 phase shifts contributed by this optical
potential may be expanded at &-0 as

subtraction of ~p from 5„and inverting the
amplitude y„ into 1/y„. The pair (f,g) is ob-
tained by removal of the amplitudes y",, . The
function gP(g, l, r) for the optical potential is
obtained in a similar fashion, by replacing, in
the asymptotic expression of fP(e, l, r), y„by
1/y„and 5'„by 5'„—z/2. Since y'„and 5„are
analytic in s, as are (fP, g )p for the reference
potential v~(r) used, the irregular gP so defined
is also analytic in &. We further define the quan-
tities A, B, and 8 for the optical potential by

f (s, l, r) /f '(e, l, r) =B' ~ '(Ip, l), p: &0

=A'i'(v, l), s &0

[g (~, l, r) - g'(~, 1, r) ]/f p(s, l, r) =8 (v, l)

(2.83)

When these definitions are adopted, the transfor-
mation given in Table IB applies to the optical
potential solutions as well as to the basic field
solutions (/=0, 1, 2). The transformation para-
meters are then defined by Eq. (2.83), and do not
reduce to a simple analytical form because v(r)
is left unspecified. Unless otherwise stated
A(v, X) is to be replaced by B(p:, X) at z &0 through-
out the remainder of this paper.

G. Connection with Seaton's notation

We have followed Seaton's notation in most
respects, but we have reduced slightly the num-
ber of distinct parameters. In particular we have

dropped Seaton's distinction between 5 and p p. for
& &0 and we have defined B for & &0 only. The
resulting differences are summarized for integer
A. =l, by the equations

1

Reference 2

—I O'Q
Present paper

tanO'„,

Y—= tanv7} = [cot5„+g(v, l)] '

(A/B)tan5„, e ~ 0, (2.84)a'"rx'" =-ta ~t
tan5«, g &0,

B —=B' FB' =—tan5 = tan5„=—tan7t p, ,» q» 0.
Reference 2 deals with a multichannel situation
throughout, whereby its expressions are re-
garded as matrices; the present Sec. II deals in-
stead with a single channel only. As noted above,
in Sec. IIC, g(v, X) in the present paper is the
real part of Seaton's 8; for q &0 and integer
X=l, 8 is real in ei.ther case and no distinction
is necessary. The parameter B was defined in
Ref. 2 to be identical to A for q &0.

III. SMOOTH GREEN'S FUNCTION

Green's functions serve to represent general
solutions of inhomogeneous linear equations, such
as
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(3.1)

in terms of the sol.ution for a standard unit in-
homogeneity,

G,(r, r') = vg, (r&)f,( r()

w, (g,f ')-v W'( f.) f.(r)f.(r'). (3 6)

[h(r) —&]G,(r, r') = -5(r —r') . (3.2)

A Green's function G, that satisfies (3.2) can be
represented in terms of any pair of independerit
solutions of the homogeneous equation [h(r)
—&]y(r) =0, but the choice of this pair depends on
the boundary conditions to be imposed on the so-
lution of (3.1). l)Ve shall point out here how this
choice is to be made in the QDT, for closed
channels in particular.

Scattering theory utilizes the Qreen's function
approach to recast homogeneous Schrodinger
equations into an integral form. For a single-
channel problem with a potential V(r), the Schro-
dinger equation [k(r) + V (r) —&]g,(r) = 0 is rewritten
in the form (3.1) with E,(r) = V(r)g, (r), and then
in integral form by means of the Qreen's function,

G, (r, r') = 2f;(r&)f,(r&)/W, (f,f '), (3.4)

where r&(r&) indicates the larger (smaller) of

(r, r') [see, e.g., Ref. 6(b), p. 82-83]. Note, how-
ever, that f,(r) and f;(r) are no longer linearly
independent when q coincides with an eigenvalue
e„of h(r). At these values, & = &„, the Wronskian
in (3.4) vanishes causing G, to be singular. This
singularity can be isolated by representing f' in
terms of the pair If, g] with Wronskian 2/7) by
means of Eq. (2.8),

where f, satisfies [h(r) —&]f,= 0 and is regular at
x= 0. Familiar treatments of scattering theory
include in h(r) only the kinetic energy operator;
here we include also a v(r) term such that V(r')
vanishes for x' &so. This departure from common
practice implies a second one, namely, the use
of Qreen's functions for & &0; the. study of al-
ternative boundary conditions at x= ~ for G, in
this range constitutes the main novelty of this
section. The multichannel aspects of Eq. (3.3) will
be dealt with in Sec. IV.

For negative values of & one would normally
require the Qreen's function to be bounded both
at r =0 and at r = ~. The solution of Eq. (3.2) in
the notation of Sec. II—but dropping the index A.

or / —is then

(3.6')

where only the Wronskians remain nonanalytic.
Following these considerations on the singular-

ity of the Qreen's function G„we turn now to the
problem of solving the integral equation (3.3) for
the wave function g,(r). This problem would be
complicated by the occurrence of the singularities
whenever the energy q of interest approaches one
of the discrete eigenvalues &„. However, the QDT
can eliminate the singularities because they re-
sult, as we have seen, from imposing the bound-
edness of G, at r= ~, whereas the QDT does not
impose this condition on its wave function at the
outset. Removal of this condition permits us to
use a different Qreen's function which is "smooth, "
i.e., free of poles. We define this function as con-
sisting of the first term only of Eq. (3.6), setting

(3.7)

Should it be desirable for the Qreen's function
to be not only free from poles at &„but also analy-
tic in q, one could restrict it instead to the first
term of Eq. (3.6'), setting

G,'"'(r r')=&g', (r )f', (r ). (3.7')

The first term of this expression is now free of
the singularity at z„and its two factors are al-
ways linearly independent. The second factor has
a pole at each e = (.„, where W, (f,f') vanishes in
accordance with Eq. (2.13); the characterization
of the singularity of G, in the form (3.6) will prove
important.

Equation (3.6) shows the Green's function G, to
depend nonanalytically on the energy & at the
threshold &= 0, as neither (f,gJ nor the Wron-
skians are analytic. The behavior of the Wron-
skians at q=0 has been discussed in Sec. II and
its implications for our purposes will. be con-
sidered below. The nonanalyticity of G, can be
made explicit by substituting in E q. (3.6) g(r)
=A ' '[g'+8 f'], in accordance with Eqs. (2.63)
and (2.83), where as usual A is replaced by B for
('. & 0. The pair Q', g'] is now analytic in q and the
nonanalyticity of B(v, l) has been discussed in Sec.
II. Thus, we write, using Eq. (2.83),

G.(r, r') =vg', (r&)f', (r()

f;(r) = ,'v( W, (g,f')f, (r)+ W, (f-,f '—)g, (r)}

The Green's function takes then the form

(3.6) We shall return to this option later, while concen-
trating here on G"'.

Substitution of the smooth Green's function in
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Eq. (3.3}gives now, for x&r„ same boundary conditions as the singular Qreen's
function G, (r, x') and is

(,(r)-f,(~)+(;,(r)~f '&~ f,Lr )V(~ )(,(~ )
0

=f.(&)+g.(~)v(f'.
I
V

I &.) (3.8)
G.(~, ~') =gf.(~), , f.(~'),

1
(3.10)

where the integral is now limited to r'&r by the
finite range of V(r') T.his equation thus expres-
ses the wave function g, (r) at x&x, in terms of an
integral over its values at r&ro, an essential
gain deriving from the factorized form of G,"'.
The problem of solving the Schrodinger equation
for g, resolves now into two separate ones: (a)
the calculation of the matrix element (f, I

V Ig,)
for arbitrary &, which implies determining the
solution within the core iegion only, r&r„and
(b) the application of the boundary condition at
r = ~ which determine the discrete eigenvalues of
a(r)+ V(~).

Note that the form (3.8} of the Schrodinger
equation has been considered routinely in scat-
tering theory, i.e., for &&0, without any need
for distinguishing the Qreen's functions G, and

G,"'.' In the continuum there is wide freedom of
choice for the boundary condition on G, at r= ~,
and it proves convenient to require G, (x, x') to
oscillate at large r with a lag of 90 with respect
to f,(x). One is thus led to define G, so as to coin-
cide with the function we have called G,"'. Note
also that the form of the solution (3.8) at e &0
identifies the quantity (f, IV I(,) as a reaction
rnaAix element; we shall extend this terminology
to the range & & 0 in accordance with Ref. 4.

Of the two problems indicated above, (a) and

(b), the first one will be dealt with in Sec. 1V by
expanding the wave function g, (r) into eigenfunc-
tions f, of h(x). This expansion will lead us to
use an expanded form of the Qreen's function G"',
which remains to be discussed here. It is instead
straightforward to formulate problem (b), i.e.,
the boundedness condition on g,(r) at r = ~, for
&&0, by entering the large-x form of g, (r), name-
ly, Eq. (3.8) in place of M, (x) in Eq. (2.13),

w(f", 0,) =w, (f',f)+ w, (f',g) (f.Iv Il.) =o. (3.9)

The Wronskians on the right-hand side are to be
obtained from Sec. II, whereby problem (b) re-
duces to (a), the calculation of the reaction ma-
trix.

A. Eigenfunction expansion of G," (r, r')

A familiar solution to the Qreen's function equa-
tion (3.2) is readily expressed in terms of the
complete set of eigenfunctions f„(x) of the operator
h(x). These eigenfunctions f„(r) are of course
regular at both r=0 and r= ~. Accordingly the
solution constructed in this manner satisfies the

(3.11)

We shall now verify that the singularities of the
two terms of this expansion at &= &„ cancel ex-
actly, a result that was utilized in Ref. 4 without
detailed analysis.

To this end we use Eq. (2.55) to replace
W, (g,f') in the last term of Eq. (3.11) by

II-'~'W, (f ', g); further W,(f', g) is written in
the form (2.34) and W,(f,f') is replaced by
-a'"W;„which gives

W(g f') 1 2D 'iW;, i'
W(f, f') a(&, I) ID 'W-„I'+ IDW;, i2

im, &&0,

-1T Cot(p)„+ 6~)), & &0 .

2ik
w

(3.12)

Here the parameters W'„and 5„pertain to the
function called f"' in Sec. IIE. The index X is
replaced by an integer / for all parameters that
reflect departures of the optical potential from
its asymptotic form v~(x); however, all para, —

meters pertaining to g~ itself remain labeled by X.
Equation (3.12) has been cast in a form that holds
for both q &0 and e & 0. Thus the

I
~ ~ ~

I
notation

is required because TV' is complex for &&0; on
the other hand D = 1 in this range. . Similarly i/k
appears in place of v. The final expressions in
Eq. (3.12) follow from the relations among f, g,
and f' implicit in Table IC. Note how the imag-
inary unit i, which occurs in the positive energy
expression, extrapolates for z &0 into an oscillat-
ing function having poles at the roots of Eq. (2.67).
The poles of the complete expression (3.12) thus
coincide with the zeros of 8"„at & = q„, as expect-
ed. To compare the first term of Eq. (3.11) with
the second one, we express its normalized wave

as can be verified by substitution in (3.2) [see,
e.g. , Ref. 6(b) Chap. 4, Sec. 3]. The sum over
g runs here over the entire spectrum —discrete
and continuum —of normalized eigenfunctions
f„(r), thus including an integration over the range
g„&0. The function (3.10) is indeed singular when-
ever q coincides with an eigenvalue q„. The ex-
pansion of G(,"(r, r') which we seek is obtained by
combining Eq. (3.7) and Eq. (3.10) with (3.6),

G'," (~, &') =Qf.(&) — f.(&')
1

n & —&n
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functions f„ in terms of the standard f,„—=f(e„, f, r)
and of the normalization integrals (2.70), where
we set M =f„, obtaining

en&0

Q f,(r), , f.(r')

en&0 1 d=gf.„(r), , f,„(') „,(p, 6.,)
n

n
6&6n

n

(3.13a)
6*0

g f.(r) f.(r')
(

0
dq'f„(r), f„(r') . (3.13b)

ima =0'

Here we have had to specify the sign of Imk', be-
cause the coefficient k' in the density of states
has a branch cut along the real axis of integra-
tion; the upper edge of this cut has been speci-
fied in keeping with the connection k- i/v across
the branch point q=0 adopted in Sec. D. To veri-
fy that the singularities at &- &„&0 in the separate
terms of Eq. (3.11) cancel exactly, consider that
by Eq. (3.12),

6n&0 I
G'."(r,r')=g f.„(r), , f.„(r')

~ —(p, 6„)l
n

—If,(r)f,(r') cotan(p~+ 5„)],«

Ck'f„(r), f„(r'). (3.16)

This differs from the standard expressions of
Ref. 6 only by the explicit introduction of its mid-
dle term which has the same effect at & &0 as the
principal part symbol I' at & &0. Indeed the sum
of the first two terms could be approximated by
a principal part integral when q approaches a con-
densation point.

The nonanalyticities of the Qreen's function G',"
should be treated explicitly for long-range dipole
and zero fields owing to the behavior of the nor-
malization coefficients A and B. Firstly, each
function f, in E q. (3.16) should be expressed as
A'~2f 0 (or B'~2f'„ for &' &0) whereby a coefficient
A or B emerges in each term of G,"'. Secondly,
comparison of Eqs. (3.6) and (3.6') with Eq. (2.83)
shows that

&.&(g,f ')
w (,)

-- — ~l „(p,+ 5„) (3.14)
G '"'(r, r') = G"'(r, r') m9(v, —f)f,(r)f ',(r') . (3.17)

which is indeed the negative of the coefficient
multiplying f,„(r)f,„(r') in the negative energy sum
of Eq. (3.13a). For & &0, on the other hand we
first write f,(r)f,(r') in terms of the analytic
product as

f,(r)f.(r') =f'.(r)f '.(r')(»l~&. ,&:,)

This gives the useful identity

f ', (r)f '.(r')
el el

6+6 2Q I
= —llm cf& pe, , )W;, )

„f '„(r)f';(r')
(3 15)

E —6 Imk~ =0+

whereby the addition of the second term of (3.11)
reduces. the integral in (3.13b) to the familiar
principal part integration to be denoted by P. The
expression of G,"', fully factorized in the vari-
ables r and x', thus takes the final form

IV. SOLUTION OF THE SCHRODINGER EQUATION

In this final section we construct eigenfunctions
of H'~', in the close-coupling form (1.4) and for
positions of the Nth particle outside the core,
x&x„by determining the appropriate form of the
functions M, (r). These functions will be expres-
sed in terms of standard pairs of solutions of the
radial Eq. (2.1) and of a "smooth" reaction matrix
K"'. Smoothness is achieved by determining K"'
through an equation that makes explicit use of the
smooth Qreen's function G"' of Sec. III but con-
forms to standard practice in other respects.
Imposing boundedness conditions at r = on the

M, (r) for closed channels (i.e. , for channels with

e, &0) will then yield the discrete spectra of bound
and autoionizing levels in a form that constitutes
the desired generalization of the MQDT.

A. Coupled equations for the N,.(r)

Consider the Schrodinger equation (H'~'
—E)Z, (M, (r)C, (~))= 0 and its projections on the
various core functions 4&(v). Owing to the sym-
metry of the Q,4,), it is sufficient to specify the
core particle coordinates in 4» as (r„.. . , r„,)
and to perform the projection by integrating over
all these coordinates. The projection takes into
account that each 4, obeys Eq. (1.3); furthermore
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= [h(l), r)))) —e~]M~(r„)

N 1 N "&

r ~sr fII dr. e,(r)(P -r-'(r„))

x g(M, (r)C, ((d)}=0, (4.1)

each M, (r) may be regarded as orthogonal to all
single-electron orbitals in C „since any nonortho-
gonal components of M, would cancel in the anti-
symmetrized product JM, O,}. Thus we have

N 1

WN f 11dF eg(+)(H —E]g (Mg(r)r;(tr))
~=1

of a. coupled system to be solved for the M, (r).
Recall that Vz&(r) vanishes for r& ro, as per stipu-
lation (b) of Sec. I; all integrations will be limited
to x&r, whenever Vz, is a factor in the integrand.

In accordance with Sec. 1II, this system will be
solved formally in te rms of the smooth Green's
function G,",', of the operator h(l, , r) —e, , as though
the last term of (4.2') represented an inhomogen-
eity. That is, we regard Eq. (4.2') as a multi-
channel analog of (3.1) and write the analog of Eq.
(3.3) as

70

M, (r) =f(e, , l, , r)C, + dr'G,") (r, r')

where c& =E -E& and where the factor Wf)l cancels
the corresponding factor in the expansion of the
determinants in(M, C,}. The term with v'"(r„) in
(4.1) yields only v' (r~)M, (r„)5„owing . to ortho-
gonalities. Further, since the N —1 terms of the

yield equal contributions, we may deal ex-
plicitly with n =N —I only. Orthogonalities per-
mit us then to replace the antisymmetrization
(M, C)&} by a permutation operator P~ „,. Thereby
Eq. (4.1) reduces to

[h(l~, r~) —g~]jM~(r„)+Q (C ~ I
V

I
C. ,)M, (r~) = 0,

(4.2)

whereby Eq. (4.2) takes the form

fh(l„r) —e,)W,(r)+g V„(r)M, (r) = 0

(4.3')

(4.2')

where

V(r, r, ) = (f)l 1)(1-—P„,,)e'/r„„, v'"(r—„).
(4.3)

and the matrix symbol (C)C IVIC, ) involves inte-
gration over r„.. . , r„,. This matrix symbol
is still a function of r„which operates on M, (r„);
indeed it operates as a nonlocal exchange poten-
tial because V includes the operator I'N N, . To
stress this operator property we introduce the
notation

(4.4)

Here f(e J, l, , r) is the solution of [h(r) —e,.]u(r) =0
regular at ~;-0 and normalized per unit energy
according to Eq. (2.55); the coefficient C,. allows
adjusting of the relative amplitudes of the coupled
radial functions M,. as required to solve the sys-
tem (4.4). As we shall see, the coefficients C,.
must eventually be determined so as to enforce
boundedness of the M,.(r) at r = ~; at this point the
f(e, , l, , r) themselves generally diverge at r =~
for all closed channels, i.e., when &,.~0. To ver-
ify that M,.(r), as given by Eq. (4.4), satisfies
(4.2'), note that applications of h(l, , r) —e,. yields
no contribution from the first term on the right-
hand side of (4.4) and reduces its second term to
P,. V, , (r)M,.(r).

B. Coupled equations for the smooth reaction operator E~'~

The representation of M,.(r) by Eq. (4.4), in
terms of a Green's function, follows the Lipp-
mann-Sehwinger approach to scattering theory.
Continuing along this approach, notice that Eq.
(4.4) constitutes a linear system with inhomogen-
eous terms proportional to the coefficients C,
Hence each M, (r) must be. a linear function of the
set (C„.. . , C, , }. This functional dependence
is made explicit by replacing iteratively the M,.
on the right-hand side of Eq (4.4); the. result is
represented by a Born series of operators

(4.5)
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where we have replaced the subscripts & jlj by the
channel index j throughout. The sum of the series
in large parentheses is often written as
G!"(r)r')K!; '(r.'), where K,"., '(r') is an element of
a matrix of reaction operators that can also be de-
fined directly through the operator equation

(ii) apply to the result the operator V(r, r„,) de-
fined by Eq. (4.3); (iii) multiply again by
f(e„,l„,r)4, ((d) and integrate over both r and &u.

The integration turns the left-hand side of (4.5)
into a matrix element indicated alternatively by

P &, , (r)M, (r) =g K,(;)(r.)f(c, , l, , r)C, (4.5')

Note that the K&";'(r) are nonlocal operators, like
the V, ,(r), and vanish likewise for r) r, . They
are functions of the total energy E, on which they
depend implicitly —through the channel energies
c.=E-E..j'

Elimination of the C, . Equation (4.5') repre-
sents the unknown solutions M, (r) i.n terms of the
reaction operators K,".

, '(r) and of the coefficients
C, . Since these coefficients serve only to specify
a particular solution in te rms of boundary con-
ditions, we derive firstly from Eq. (4.5) an equa-
tion for the I7,'. (r) which is independent of C,. but
incorporates the whole collision dynamics. To
this end the following operations are performed:
(i) multiply Eq. (4.5) by 4,.(+) and sum over j;

(4.6)

The tiMe on c, specifies that this energy need not
coincide with e„=E—E,. Insofar as &„may coin-
cide with the eigenvalues of h(l„, r), the functions
f(e„l,r)4„((d) form a complete set. Accordingly
the projection of Eq. (4.5) over all elements of this
set—i.e., operation (iii)—preserves all the in-
formation of the initial equation. Equation (4.5)
for M, (r) is thus . transformed into

(f, lK,", 'If, )C, -,-p ((f;,IV„lf,, ) —p f ro
dr' f (e.„l„r)V„(r).

xG,",)(vr')Z, ,(r')f(c „(,, r'))(',. =0. . (4.8)

The structure of this new equation permits us now to leave aside the determination of the C& by requiring
instead that the coefficient of each C, vanish, namely, that the operators P,.;~(r) satisfy the system

(4.9)

Configuration mixing representation. This
equation is still complicated by double integra-
tion over the two variables x and ~', which
remain entangled even when we factorize 6"' in
the form vg(r&)f(r() since r& =max(r, r'). However,
we can disentangle x and x' by substituting the eig-

l

enfunction expansion of G "', (3.16), at the price of
introducing a summation over all virtual levels of
energy &,.„. Separate integrals over x and x' are
then represented as matrix elements and Eq. (4.9)
takes the form



The first two terms in the large square brackets
of this equation represent the extension to negative
energies &~&0 of the principal part integration over
e,'. &0.

A final change to more standard notation can now
be introduced in Eq. (4.10). The symbol V, ,(~) in-
troduced in Eq. (4.3') to indicate a one-particle
operator was obtained by integration over several

variables. Having now expressed Eq. (4.10) in
terms of matrix elements of V~,. we can condense
all integrations in the form of a matrix element of
the two-particle operator V(x„,r„,) over multi-
electron wave functions. Similarly the matrix ele-
ments of K,".

,.
' can be expressed in terms of a multi-

electron operator K"'. Thus we rewrite Eq. (4.10)
more explicitly as

-.. .I
V lf.,c,) cotan(P, + f, , )(f, @,(K"'(.f, .C', ) ], &,

+& «,'(f -, +,
I
V

I f;@;}. (4.11)

This equation is equivalent to Eq. (20) of Ref. 4

which had been developed by more heuristic con-
siderations. As indicated in Ref. 4, integral eq-
uations of this type for a reaction matrix have
been reduced to an algebraic system and solved
numerically. The introduction of the concept of
a smooth reaction matrix here and in Ref. 4, with
insertion of the middle term in-the large square
brackets for Eq & 0, extends the practical calcu-
lation of K matrices to ranges of E where some or
even all of the channels are closed. Moreover the
explicit use of energy normalized base functions
throughout Eq (4.11).should expedite the numer-
ical evaluation of the infinite P„and the calcu-
lation of the K"' matrix on a mesh of channel
energies which may be rather coarse. The prime
has been inserted on the symbol P,' in Eq. (4.11)
to implement the stipulation, in item (ii) at the
end of Sec. I, that only a finite number of channels
need be considered in practice because additional
channels would not contribute appreciably.

Note in Eq. (4.11) the occurrence of matrix ele-
ments ( f, 4, ~K"'

~ f, ,4;) th-at are not diagonal in

the energy label, since-the values of R„are un-
restricted whereas E,. has the fixed value E —E,
The eigenvalues ,„caned,' o.f h(l„v) in the sum
and integral on the right-hand side of the equation
also need not coincide with the energy-shell value

e,.=E —E, That is, Eq. (4.11) represents a sys-
tem of equations linking all the elements of one
column of the square matrix ( f , C, ~K"'~f;.C, )-.

[The matrix elements with i, values off the energy
shell would have to be obtained from separate
equations adjoint to (4.11).] Introduction of off-
shell elements of E "' is a consequence of using

the eigenfunction expansion of the Green's function
in contrast to its form 6"'(r, r') in Eq. (4.9),
even though our applications will require only the
use of on-the-shell elements of E"'. Recall also
that we introduced initially values of E~c&, to en-
sure completeness of the set ( f; C'~~ . In fact Eq.
(4.11) also involves a term with an on-shell value

e~ &0 which need not be an eigenvalue of h(l, , x);
this further extension of the range of E,. accords
with the QDT's removal of the boundedness con-
dition which relaxes the restriction on the eigen-
value spectrum.

Txeatnzent of nonanalyticity. As in the earlier
sections, we shall now consider and separate out
the influence upon Eq. (4.11) of the nonanalyticity
of the density-of-states coefficients A and B, in
the energy normalized functions f, and of the fac-
tor cotan(p, + &, , ). Recall that the nonanalytic-
ities reflect the behavior of wave functions at very
large radial distances and for small values of the
channel energies E,, while the reaction operator
E"' represents the effect of interactions at short
ranges, x(x, . Accordingly it should be possible
to remove any appreciable influence of the nonan-
alyticity from our calculation.

As in Secs. G and III we proceed by two steps.
Firstly we transform the matrices of V and K"'
to the representation of analytical functions

~
f O, .C,.} by separating out the normalization factors

A' t'(v, , t,.) or B't'(e, , I,.) according to Eq. (2.83).
The factors arising from ( f,-4,

~

and from ~f, 4;)
appear equally in all terms of Eq. (4.11) and ac-
cordingly factor out of this equation. On the other
hand a factor A(v, , l,.) or B(c,' , t,.) emerges in . each
term in the large square brackets of Eq. (4.11}and
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cannot be eliminated because it represents the
spectral density of virtual states

~

f0, 4,) which are
being summed over in the process of configuration
mixing. However, the very process of summation
averages over the nonanalytic singularities of the
factors A or 8, thus reducing their effect.

The second and more fundamental step for re-
moving nonanalyticities consists of deriving an
alternative K-matrix equation using the analytic
Green's function G ~ ' instead of G "' to dete rmine
a reaction matrix K "". The derivation differs
from the development of this section only in the
following respects. Analytic base functions

{f', g ] replace {f,g] throughout and density of
state factors &(v, , f,.) or B(e„f,) appear in the
large square brackets of Eq. (4.11). The sub-
stantive difference lies, however, in the occur-
rence of the additional second term in the eigen-
function expansion of G "'', Eq. (3.17). There re-
sults an additional teem in the equation corres-
ponding to (4.11), namely,

(f'; 4's
~

I'~f', .4'&)[-«(~;, I,)]
j

K"'=V+ VG "'K"'
K (so ) If + IfG (s )K (so ) + y( ~9)K (w )

(4.13)

(4.i4)

X(fO @ ~K( 0)s~f @0) (4 12)

This term is designed to cancel the nonanalytic-
ities remaining in the g,. terms, performing the
same role as the terms with a factor 8 in Eqs.
(2.45) and (3.17). The matrix K'"' constructed by
this procedure need not be itself analytic (since,
for example, tangents of phase shifts may diverge}
but the unnormalized solutions M,.(r) constructed
with K'"', ( f', g'), and the corresponding coeffic-
ients C,. must indeed be analytic, functions of &,

In the case of a long-range Coulomb field, the
function 9 is smooth as i -0, even though nonan-
alytic. One may then calculate K"' directly, in-
stead of K"". (In Ref. 2, a matrix IJ ' =-K"" is
treated nevertheless as fundamental. ) For zero
and dipole fields, on the other hand, K""is
smooth at threshold but K "' is not owing to branch
points of 9, A, and B. One should then calculate
K'~' first and then generate K"' from it. The
connection between these two matrices is illus-
trated by rewriting their respective equations
[Eq. (4.11) and its analog] in a compact operator
notation, namely,

Multiplication of Eq. (4.14) by the operator
(1 —vgK ~0)) ', from its right, shows now that the
operator K "0)(1-«K("))' obeys the same linear
inhomogeneous Eq. (4.13) as K~) whereby

K (s) K (s0 )(I )TgK (sO ))-1 (4.i5)

There remains now to reinstate the condition
that the radial functions M, (r) vanish at. r =~ for
all closed channels, with E&(0, and to examine
the consequences of this condition for the coeff-
icents C, This amounts to translating sec. IIID
of Ref. 4 into the present notation. To this end
we return to the expression (4.4) of M&(r), set-
ting r& r, . Since r'& r„Eq. (3.17) becomes here
(",",) = )(g(a, , I, , r)f (e, , I, , r '), and we obtain for
r&r„also using (4.5'),

M,.(r) =f(~„I, , r)C,.

+I (~„f,,r)g v(f, &, ~K")If, C,)C, .

i

(4.18)

This is a multichannel analog of Eq. (3.18), with
the reaction matrix on the energy shell and in en-
ergy-normalized form, whereas off-shell matrix
elements would result from use of the eigenfunc-
tion expansion of G ' ". Entering then the expres-
sion (4.18) of Mf into the boundary condition (2.13)
gives our basic result, analogous to (3.9), and
equivalent to Eq. (21) of Itef. 4,

t

Numerical calculation of K" ' from this equation
should start from the matrix form of the operator

(1 —)(9K' '), , =5,; —))9()f,, l,.)( f', @,~K""~f' 4' )

(4.16)

Inversion of this matrix presents no problem if the
set of channels j is truncated as indicated by the

p, in Eq. (4.11). The K"' matrix obtained from
(4.15) should eventually be cast in the energy-
normalized representation, yielding

(f.,~, IK"'lf. ~, )

=4"~'()f I }

)) (f0 @ ~K( )(I ))9K(sO))-).
~ f0 Ct ) fll/0(p I )

(4.17)

where A(v, l) is replaced by B(e, l), as usual, for
6 )0.

C. Boundedness at r = ~ and the coefficients C;
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The Wronskians which appear in this expression
reduce to trigonometric functions of the energy
since the base pair f f, , g,,] is related to the
base pair (v/m)'~'g 'f, Df '] by an orthogonal
transformation. By inspecting the large-x ex-
pression Eq. (2.66) for f"', and by recalling the
connection between f, g, and f"' discussed near
the end of Sec. II F, we obtain for c,.&0,

W, ,(f ',J ) = (4/v~, )'"[D(t';, &,)] '

xsin(p, +6, , ) =D;.'W, (f-„., ),

w, (f', g) =-(4/~vj)'"[D(v, , ~,.)]-'

xcos(p, +6, , , )= D;.'W, -(f ,f). -

(4.20)

These expressions reduce Eq. (4.19) to the form

P [sin(P, +6, , )6,,

(4.28)x W, (f', M,)6(E-E'.).
Substitution of Eq. (4.18) reduces the Wronskians
to their basic forms analogous to (4.20), namely,

x [dW, (f ",,M, )/de. , ], ,. (4.22)

where the energies E,.„=E„-E,. are determined by
the roots E„of the determinant of the square ma-
trix in Eq. (4.21). The Wronskians in this equa-
tion are reduced by Eq. (4.18) to linear combin-
ations of the explicit expressions (4.20). The coef-
ficients C,. in the expansion of M,. are the eigen-
vectors of the matrix in Eq. (4.21). For states of
the continuous spectrum the analog of Eq. (4.22)
is

e&& 0

dT@E.4E= '
m 2uJ N', . PM

-cos(P, +6, , )~(f, 4jifC" ~~f, C,.)]C, =0,

e,.& 0 ., (4.21)

W, (f', f) =(2k, /v)'~'exp[+i(q +6, , )],
W, (f', g) =(2k,./v)'~'exp[+i(q, +6, , - v/2)].

(4.24)

The implications of Eq (4.19). or (4.21) are only
summarized here as they have been discussed in
Hef. 4 and many times elsewhere in equivalent
contexts. When all channels are closed, the ma-
trix of the system (4.19) is square and solutions
fC,.J exist only for the discrete energy eigenvalues
at which the determinant of this matrix vanishes.
In the general case only some of the channels of
the truncated set ]M~] are closed, say, those with
1 &j &n The n .equations (4.19) permit the elim-
ination of n among the C, , typically of a.ll the C,-
with j &n. The remaining C,. are to be determined
by the boundary conditions at x =~, e.g. , of the
"outgoing-wave" or standing-wave type. However,
the existence of closed channels manifests itself
usua. lly through resonances, i.e., through rapid
variations of the C,. as functions of energy near
the discrete levels at which a minor determinant
of order &n of the matrix in Eq. (4.21) vanishes
or passes through a sha, rp minimum. In simple
examples the off-diagonal elements of the K"'
matrix are small and the resonances occur near
the zeros of diagonal elements of the matrix in
Eq. (4.21).

The representation (4.18) of the radial functions
M, at x&x„ in terms of the base sets ff, , g, .],
of the K"' matrix and of the C, , permits also a,

corresponding representation of the normalization
integrals developed in Sec. IID. For discrete
levels of a multichannel system Eqs. (2.50) and
(2.53) lead to

Equation (4.23) becomes then an algebraic expres-
sion quadratic in the Wronskians (4.24), quadratic
in matrix elements of K"', and quadratic in the
coefficients C, . The C,. are determined, for any
continuum state of interest, by specifying its
boundary conditions at x = ~. Their values vary
rapidly at the resonant energies of the closed
channels.

The complete expressions of the normalization
integrals thus obtained remain sufficiently com-
plicated to prevent analysis of their implication
by simple inspection. The same holds in general
for the closed-channel equation (4.21). Some
progress is achieved in these respects by diagonal-
izing the matrix K"' as we shall now discuss.

EigenPhase shifts and Ne MQDT. The quantum-
defect treatments are characterized by the casting
of Wronskians in the form of trigonometric func-
tions, as in Sec. IIC and in Eqs. (4.20)-(4.24).
This procedure extends to multichannel treatments
by expressing the information embodied in the
K"' matrix in terms of phase shifts. These are
not the phase shifts of ordinary scattering theory
but relate instead the phase of the radial func-
tions M, (&) to those of the base set functions
f, (&). The latter functions already involve phase
shift contributed by the optical potentials. We aim
here at incorporating the phase shifts contributed
by K"' together with those of the f, (r) into a
trigonometric form of the boundedness Eq. (4.21)
and of the normalization integral Eq. (4.22).
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In single-charm@1 problems the reaction matrix
K"' reduces, on the energy shell, to a single
element given in terms of a phase shift —n 'tan5.
In multichannel problems the same relation holds
between the eigenvalues of the K"matrix on the
energy shell and a corresponding set of eigen-
phase shifts. To extract these data one must
diagonalize K"' by solving the algebraic system

tr, 4,. K"',.4; U,'.
" = —U",. ' ta 5"',

(4.25)

The analog of (4.26) in terms of ~'„"' and of U", „"
is instead

+[sin(p~ +6, . , )cos5'„"'

—g(v„L, ) sin(p~. +6, , )sinb'„"'

+A(v;, L, )eos(P&. +6, , , )

x sin5""]U""A'„" =0 . (4.28)

The calculation of the normalization integrals,
Eqs. (4.22) and (4.23), is also facilitated by diagon-
alizing the K"', or K" ', matrix but does not lead
to expressions as compact as Eq. (4.26). General
formulas have been developed by Lu,"and es-
pecially by Lee and Lu, '4 for the case of a long-
range Coulomb field; a more limited treatment
has been given by Lee for the zero-field case." '

The resonant effects due to the coupling of closed
and open channels are embodied in these treat-
ments.

with eigenvectors U',-'„' normalized to form an
orthogonal matrix. Expressing K"' in Eq. (4.21)
in terms of &"' and U', „' then yields the condensed
form of the boundedness condition

pU', .'„'sin(pq +6, , +6'„")A„=O, (4.26)

where the set of coefficients

V. CONCLUSIONS

The formulation of the MQDT in this paper rests
primarily on separating the influence of short-
raqge interactions, within an atomic or molecular
core, from those of the long-range forces acting
on an excited, ionized, or detached electron.
Prom this point of view the long-range field need
not be restricted to the Coulomb law which was
characteristic of the original QDT. The basic
formulas of the original QDT combined the energy
parameter v of Coulomb wave functions with a
quantum defect p (or phase shift vp, ) which repre-
sents the effect of short- range interactions; the
parameter p was then replaced by a reaction ma-
trix in the multichannel version of the theory. The
present version combines three, rather than two
basic parameters:

(a) The main parameter of motion at extremely
large radii remains v ior the Coulomb field, but
it is replaced by nln2& —X„for a dipole field and
by a constant P~ for zero field, Eqs. (2.58), (2.61),
and (2.62). No other force law need be considered in
this range.

(b) Motion outside the core but at less than
asymptotic range contributes a phase shift 6„
which adds to the asymptotic parameter (Sec. IIE).
The dependence of this quantum defect on energy
may be slow but it need not be negligible as, e.g.,
in the case of polarization potentials, and is es-
sential when the field vanishes faster than 1/&'.

(c) The short-range interactions are then repre-
sented by a reaction matrix, much as in the tra-
ditional MQDT. However, the introduction of a

A„=gU'„", C, /cos5'„" (4.27)

replace the set fC&}. Notice how the matrix
U' „'sin(pq. +6,., +6'„"}combines the contribu-
tions of parameters pertaining to different base
sets. Inspection of the structure of this matrix,
and of the energy dependence of its parameters, may
readily reveal the occurrence of roots of its minor
determinants.

In typical applications of MQDT the parameter
p~ varies rapidly with energy, when e, -0. In
contrast the eigenphase shifts ~'„" vary slowly in-
sofar as the'matrix (f, @,~K "~f,,@, ) represents
interactions within the core which are unrelated to
the threshold energies of the various channels.
Rapid variations of 5'„" and of the eigenvectors
U", ~ may, however, result from the nonanalyticity
of K"' at the energy thresholds. In this event the
threshold influence should be removed prior to
diagonalization. Firstly the .matrix K"' should be
transformed to the analytic frame

~

fo 4& ) prior
to diagonalization, by factoring out the channel
normalization factor A' '(v„ I, ) (or B' ') in each
row and column of the initial (f, @,~&"'~f, @;), .
More basically one should instead diagonalize the
matrix of K" ', obtaining eigenphase shifts &'„' '

and eigenvectors U' „"that should vary slowly with
energy. The expression of the K"' matrix to be
inserted into Eq. (4.21) would then be derived
from the relationships (4.16) or (4.17) between
K"' and K" ' or from their simpler form, in
terms of reciprocal operators, K"' ' =K" ' '
+ wQ. The occurrence of the nonunitary transfor-
mation factors A'L2 in (4.17}prevents now the re-
duction of Eq. (4.21) to its compact form (4.26).
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smooth Green's function, in Sec. III, has enabled
us to construct a reaction matrix that is free from
resonance effects and can be calculated neverthe-
less in the presence of closed channels, thus
justifying the heuristic results of Ref. 4.
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(The dipole-field solutions are then linear combi-
nations of the zero-field solutions but with ~ com-
plex. For simplicity we will discuss here only the
case where A. is real. ) The radial dependence of
both expressions (Al) has the real integral repre
sentation [Ref. 15, Eq. (5.3.46}],

z &/2e &/2r (c)
z "e "Z(a, c,z) =—

I'(a) 1'(c —a)

1
x dt[estta-1(1 t )c-a-1]

0

(A2)

APPENDIX: LARGE-r EXPANSION OF f
We aim here at clarifying a persistent paradox

in the QDT literature, namely, the occurrence of
complex coefficients in the asymptotic forms of
the manifestly real Coulomb functions )fo, go] for
c & 0. This paradox appears also in the large-&
forms of the confluent hypergeometric function
E(a, c, z) as given by standard references [e.g. ,
p. 346 of Ref. 8, p. 608 of Ref. 15, and especially
Eq. (13.5.1) on p. 506 of the NSB Tables"]. Even
though the imaginary term was dropped by Eissner
eI; at. ,

"it persisted in Fano's analysis of the H,
spectrum" until it was again removed" at the sug-
gestion of Dubau.

The solutions to Eq. (2.1) with v, =- 1/r and v,
=0 are given in terms of the confluent hypergeo-
metric function E(a, c, z) by the following:
for Coulomb field

(2r}x«le-r/uf '(e, A., r) =
(

—E (A, + 1 —v, 2A. + 2, 2r/v);

for zero field

+X+ I -r /V

f'(&, &, r)=. )„,/, (,)
E(8+1,2A 2,+2r/ ).v

(A1 }

The integrand of this expression has two singular
branch points, at t =0 and t =1, whenever a —1 and
c —a —1 are not integers. At large z each of these
two points makes a separate contribution to the
solution which is proportional to f or f', re-
spectively. The two contributions are separated
in Ref. 15 by adding and subtracting a term
fo" dt[ ], giving

~/s -«/2z e 1(a cz)=

dt + dt

x [erat fc 1(1 t)c + 1] (A3)

. Note, however, that the integral which has been
added and subtracted is eomP~&, as its integrand
contains the factor [-

~
t~ ]' ', where a is generally

not an integer.
A change of variables in the two integrals re-

duces (A3} to the form

c/2e-~/2y(a c z}
1 (c) e- ~/2~«/2

I'(a) I'(c —a)
ch e-"u' ' '(1 —u/z)' '

+ ( z)-azc/2e. -g/2 dec t«' '(1+ / )' ' ') (A4)

The leading terms in the asymptotic expansions of
f and f' are obtained by setting the binomials in
the integrals equal to unity. In the continuum the
two contributions are complex conjugate as z
=- 2ikr and a —c/2 is also imaginary in our case,
so the function fo is real. Below threshold,
though, this is no longer true. At large g the two
integrals are approximately 1"(c —a) and I'(a},
respectively, so that the aPPa~ent large-z form

becomes

zc/2e s/2P(a c z) za-+/2es /2r(c)
1'(a)

&inn r(c} c/2-a -I/2+e r( }
z e

(A5)

So for real, positive z the second term is com-
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plex; its complex conjugate term fails to appear
in the contribution of the first term at large z
since it is converging to 0 exponentially.

The solution to the paradox thus appears to con-
sist of stipulating that only the zeal Par't of the

J,"dt[ ] is to be added and subtracted when
transforming Eq. (A2) into (AS). The factor
exp(+isa) in (A5) is thus replaced by costa. This
convention has been used in Sec. II of the present
paper. It could presumably be justified in greater
detail by adapting to the range of c & 0 the analysis

originally conducted by Sommerfeld and Schur"
for e &0. That analysis utilizes a complex integral
form of Eq. (A2) and the occurrence of branch
cuts exiting from t =0 and t =1. At «0 50M of
these cuts would run alongside the negative real
axis of t and the contributions to each term of
(AS) would follow paths on either side of each cut.
Altogether there would be four paths running be-
tween t =0 and I; =- , one pair in opposite direc-
tions between the two cuts and another pair out-
side the cuts.
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