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- The aim of this paper is to test a simple method for converting accurate nonrelativistic predictions of
atomic properties into accurate relativistic predictions with a minimum of additional computational effort.
The method connects smoothly the exact nonrelativistic LS-coupling results appropriate at small Z with the
relativistic jj-coupling results appropriate at large Z. For the processes stated in the title, the method

appears to offer a significant improvement in accuracy over relativistic Hartree-Fock or random-phase-

approximation calculations, particularly in the low and intermediate range of nuclear charge. For large Z,

the present results agree well with the relativistic random-phase approximation.

I. INTRODUCTION

The intercombination 23P{ - 1'S, electric dipole
transition of ‘'the helium isoelectronic sequence
has now been studied from two distinct points of
view. For small nuclear charge Z, where LS
coupling is approximately valid, the appropriate
starting point is the nonrelativistic two-electron
Schrodinger equation together with the Pauli form
of the Breit interaction introduced as a first-order
perturbation.”? In this picture, the spin-dependent
terms in the Breit interaction® mix the 23P? state
with all the n'P? states, which then undergo allow-
ed electric dipole transitions to the ground state.*
This approach works well up to Z =10, but then
begins to break down as mixing between the states
23P? and 2'P? can no longer be treated as a small
perturbation.® One should not diagonalize exactly
the Breit-Pauli interaction as an alternative to
treating it as a first-order perturbation, unless
other higher-order relativistic corrections are
simultaneously taken into account.

The second point of view uses the relativistic
generalization of the random-phase approximation
(RRPA) developed by Johnson et al.®” This ap-
proach works well in the high-Z region (Z = 30)
where j-j coupling is a good approximation, but
deteriorates rapidly with decreasing nuclear
charge. Rather 1afge empirical correction factors
are required for Z < 20 in order to obtain approxi-
mate agreement with the low-Z calculations dis-
cussed above.® No reliable a priori calculations
are available in the intermediate coupling region
10<Z <30 to check the empirical corrections to
the RRPA results.

The purpose of this paper is to develop a unified
computational scheme which is valid over the en-
tire range of nuclear charge. The scheme is based
on the observation that correlation effects are
essentially a low-Z phenomenon, while relativistic
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effects are essentially a high-Z phenomenon. A
judicious combination of expansions in powers of
Z™' and oZ is used, together with accurate non-
relativistic matrix elements and exact Dirac hy-
drogenic matrix elements. Since the states 23P¢
and 2'P? become strongly coupled by the Breit
interaction, we consider together the transitions
2°P9-1'S, and 2'P?~11'S,. The results for both
transitions reproduce the most accurate nonre-
lativistic variational calculations in the limit of
low Z, and they are close to the RRPA results in
the limit of high Z. It seems likely that the pre-
sent results offer a significant improvement in
accuracy, especially in the low and intermediate
range of nuclear charge. To the extent that ac-
curate nonrelativistic calculations are available,
the method can readily be extended to many-elect-
ron systems.

II. THEORY

The aim of this section is to develop a scheme
for calculating radiative transition probabilities
which makes maximum use of nonrelativistic
calculations for energies, and matrix elements
of transition operators and the electron-electron
interaction. All one-electron higher-order cor-
rections (summed to infinity in powers of aZ) are
then included by evaluating the corresponding
matrix elements with exact Dirac hydrogenic
eigenfunctions.

A. Calculation of wave functions

The major difficulty in calculating accurate
wave functions is to obtain an adequate descrip-
tion of the mixing of the LS-coupled 1s2p*P? and
1s2p 'P? states. Our approach is to diagonalize.
exactly the following matrix in the above two-
dimensional basis set

g:(LINR+§P)L5+E(§D+212+§)“E-l_é ’ sy
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where
n & Ze? e?
= — Vi =) +— 2
Hyg 2mi=1 < it 7&) +1,12 s (2)
20/ - = Ze? ’
H,= (ca-p +Bm2—————> (3)
D ; it Pyt Py 7 )
Vi=e/v,, 4)

B, is the Pauli form of the Breit interaction as
given in Ref. 3, B is the relativistic form of the
Breit interaction as discussed in Appendix A, and
R is the jj — LS recoupling transformation defined
by

[152p°P N\ _ p (11517220172, 1) 5)
[1s2pP))] ~ \|18,/52D4/5, 1)
with
1 N2 -1
R=-— . (6)

The subscripts LS and jj in Eq. (1) denote the
coupling scheme in which the matrix elements are
evaluated. The LS matrix elements are calculated
with accurate nonrelativistic variational eigen-
functions of Hyy including correlation, while the
jj matrix elements are calculated with antisym-
metric products of hydrogenic Dirac bispinors
for nuclear charge Z (i.e., the eigenfunctions of
Hp). The matrix A in (1) is a correction for those
parts which are counted twice in the first two
terms. Thus, if Hyy and Bp are expanded in the
form - h

Hyg =2%) HWZ™", )
n=0
B,-aiz*y BPZ™, ®)
n=0
then

A=Z*H\R+H\R/Z)ps + P Z4(BY + BYY/Z) 15 9)

since these particular contributions are also con-
tained in the jj terms of (1). The matrix H thus
contains all contributions of order Z%", a2Z*™",
a?Z*(aZ)®, and o?Z3(aZ)*", n=0, 1, 2, ..., arising
from the nonrelativistic Hamiltonian, the hydro-
genic approximation for the relativistic Hamil-
tonian, and the electron-electron interaction in-
éluding the exchange of a single transverse pho-
ton. Not included are the self-interaction and
radiative corrections of quantum electrodynamics
such as the Lamb shift (of leading order o?Z*

X lnaZ). Otherthanthese effects, the leading cor-
rections are of order a’Z*(aZ)*, n=1, 2, ...,
arising from the combined effects of relativity

and electron correlation on the electron-electron
interaction. This is also the order of magnitude
for corrections to the electron-electron inter-
action arising from the exchange of two or more
virtual photons.

The eigenvectors of H (labeled by the eigenvalues
E,) can be written -

]E1> __.I |132P 3P1> (10)
|E,) |1s2p 1P )
with
Z=<cos(9 sinf))« » (1)

—sind cosé

and 6 is the singlet-triplet mixing angle. In the
limit of low Z, T -1 (LS coupling) since the first
term of (1) dominates the sum of the second and
third, and Hyp > Bp. In the limit of large Z, T

- R (jj coupling)_since the second term dominates
the sum of the first and third, and Hp> V,+B.
This corresponds to the physical pﬂ:ture"thatmfor
small Z, relativistic effects are small, and for
large Z, the electron-electron interaction is small
compared with the relativistic electron-nucleus
interaction. As Z varies, T generates a contin-
uous sequence of transformations which tend to
the correct limit in both extremes. The 1s2p°P,
state connects with the 1s,,,2p,,,, 1 state and the
1s2p ‘P, state connects with the 1s,,,2p,,,, 1 state.
Ermalaev and Jones® and Sampson et al.® also do
an exact diagonalization, but their matrix contains
only the (Hp),s term of (1). Their results there-
fore do not tend to the correct one-electron Dirac
limitforlarge Z. Onthe other hand, the calculations
of Ivanov et al.'° arebased primarily on the ({1_)].]. term
of (1), giving inaccurate results for small Z.

The same Eq. (1) is used also for the 1s®'S,
ground state, except that now only a single state
is involved and the matrices become one dimen-
sional.

B. Calculation of transition matrix elements

For electric dipole transitions, it is convenient
to work in the velocity gauge'!(Coulomb gauge)
since the correspondence is then closest between
the Dirac ea- A from of the interaction operator
and the ep- A/mc Pauli form. Using notation
analogous to that of the previous subsection, the
column vector of transition matrix elements to
the ground state is

ﬁ:z‘[(MP)LS'*‘E(M)H-K]; (12)
where

- 3po 21
(Wp)gs = <;s2p P?| M, |1s%'S,) ’ (13)
(1s2p 'P2| M,, |15%1S,)) -
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- <131/22p1/2:1|2af'zﬂ 13?/2; 0)
M);;=e i ,  (14)

<131/22P3/2: llz&i' Aﬂ 1s3/5,0)
i

and the transformation matrices R and T are de-
fined in Sec. IIA. A is the double-counting cor-
rection term. The Pauli transition operators M
and M, for triplet-singlet (ts) and singlet-singlet
(ss) transitions, respectively, are in lowest non-
vanishing order

,=e Z B, A*/mc, (15)

J=1,2

Zw: Bp|n'PS)(n'P) | M,

(2°P%) — E(n'P9)

Z My, |"3Pe><”3PBIB
Z 1S ) - E (2°P%)

4mc Z 0;-VV, X A}

T2
4mw —s O, T X AF 1= 2), (16)
and M,,=M,,. Here, V,==Ze/7r,,T,=T ~ T, and

0 is the Pauli spin operator. As discussed pre-
viously, #1#13 the first two terms of (16) give the
contribution from the first-order perturbation
corrections due to By to the wave functions of'the
23P% and 1'S, states, respectively, and the last
two terms are spin-dependent corrections to the
transition operator. However, (16) differs from
the usual formulation in that the » =2 contribution
to the first term is excluded since the 23P% - 2'P?
perturbation mixing is now contained to all orders
in the T matrix. Mixing of 2°P¢ with higher-n
states never becomes large enough for higher-
order perturbation corrections to be important,
at least in the low and mtermedlate range of Z.
For large Z, Eq. (12) reduces to M=~ (M )4, and
the detailed structure of (MP)LS becomes unim-
portant.

The correction vector A in (12) subtracts those
terms which are counted twice in the first two
terms. In this case, (Mp).s can be expanded

2222 M(")Z'"
n=

(Mp),s = aZ . )

> Mz

n=0
Since the leading terms are also contained in R

(M)jj,

2 2M(0)
X=az e St> ) (18)
M

As in Sec. II A, the most accurate nonrelativistic

matrix elements available are used in the con-
struction of (Mp),s, while (M)“ is calculated with
jj coupled products of hydrogenic Dirac bispinors.
In the limit of low Z, T -1 and M~ (Mp),s. In

the limit of high Z, T ~R™ and M~ (M),;.

C. Evaluation of matrix elements

Since the calculations cover the entire iso-
electronic sequence from Z =2 to Z =120, it is
convenient to expand all the nonrelativistic LS
matrix elements in powers of Z™! and then sum
the truncated series for each value of Z, provided
that sufficient accuracy can be obtained. The ex-
pansion coefficients can always be deduced from
explicit calculations (or experimental data) if data
of sufficient accuracy are available over a range
of Z.'15 Alternatively, the expansion coefficients
can be calculated directly as described previously
from correlated variational basis sets.'®*°

Starting with Eq. (1), all the nonrelativistic
eigenvalues in Hyy were obtained to seven-figure
accuracy or better for all Z by summing the Z~*
expansions of Sanders and Scherr'® as shown in
Eq. (5). The leading two terms in the expansion
(6) for Bpwere calculated exactly by Doyle.*® The
higher-order terms were extracted from the ex-
plicit calculations of Accad et al.?! for the diagonal
elements, and Drake and Dalgarno' for the off-
diagonal elements in the range 2<Z <10. For
Z >6, the expansions (in a.u.)

(2P| By |2'P?) = a®Z%( - 0.1432292 + 0.05540312""
-0.089272+0.1232%), (19a)
(23P°|Bp | 23P%) = a?Z4( - 0.1536458 + 0.1304292""
- 0.162272+0.0412%), (19b)
(23P?|Bp|2'P?) = &*Z%(~ 0.0147314 + 0.0288508Z"*
-0.0047Z -2~ 0.014Z"®
+0.0019Z7%) (19¢)

reproduce the explicit calculations to about four
figures or better (five figures for the diagonal
elements). For Z <86, the explicit values given in
Table I were used. For the ground state, one can
use to sufficient accuracy®?

(1'S,|Bp|11Sy) = @*Z*(~ 0.25+0.480140Z"}
-0.636272+0.4532°
-0.17227%+0.03327%)  (20)

for all Z. The integrals over hydrogenic Dirac
bispinors in (V, + B);; were done analytically for
each Z as described in Appendix B. The cor-
rection matrix A is



2<- 0.625+0.225727792"* 0

+ a224(—

for the 2°P?, 2'P? subspace, and
1+0.625Z7') + a?Z*(~-0.25+ 0.4801402°1)
(21b)

0 - 0.625+0.25986890Z

0.1536458+0.130429Z!
0.0147314 +0.0288508Z"!

A=Z%(~

for the ground state.

The transition matrix elements required in Eq
(12) were evaluated in a similar way. In general,
the photon vector potential A in (14)—(186) is

A=neeit (22)

where 77 is a normalization constant, 2 is the unit
polarization vector, % is the propagation vector
]k] w/c), and w is the frequency. Since the

components of (Mp),s are to be calculated only in
lowest nonvanishing order, we use the long-wave-
length approximation

A=>ne (23)
for electric dipole transitions. The matrix ele-
ment of M, can then be expanded (in a.u.)

(1s2p 'P, | M, |1%1S,) = ina Zy_, Mz, (24)
. n=0

The expansion coefficients M{™ calculated up to
ninth order by the direct variation-perturbation
method described in Ref. 19 are listed in Table IL
The sums yield nonrelativistic oscillator strengths
which agree to four figures or better with the ex-
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)

—0.0147314 + 0.0288508Z !
—0.1432292 + 0.05540312"

(21a)

.
plicit-calculations of Schiff ef al.?® and the Z ! ex-
pansions of Scherr and Sanders'” for all Z = 2.

The corresponding expansions for the matrix
elements of the four terms in M,; shown in Eq. (16)
were extracted from explicit variational calcula-
tions in the range 2< Z < 10. The infinite sum-
mations over intermediate states in the first two
terms were replaced by discrete variational basis
sets as described previously.! Collecting together
the first and third terms of (16), which are both of
order @®Z3, the results are

(1s2p °P? | M4 |1521S )
=in03Z3(0.040217+0.0318/Z - 0.076/22)
+inaZ2(0.01772 — 0.01460/Z)

+in0aZ%(— 0.0448 + 0.0567/Z —0.007/2%). (25)

These expansions are adequate for Z >6, but for
Z <6, the directly calculated values in Table III
were used.

The second and third terms above correspond to
the second and fourth terms of (16). The coeffi-
cient of a®Z% in (25) is exactly 2 V2 [ +1n(3)].
One obtains precisely the same coefficient by
expanding directly the hydrogenic Dirac matrix
elements (1s,,,2p,,5, 1| * A[1s2,,,0) and
(Lsy32p, 2, 1|& » A[152,,,0) in powers of («Z)? and

transforming back to LS coupling. Thus the low-
est-order contribution from mixing with higher-»

TABLE I. Matrix elements of the Breit—Pauli interaction in LS coupling (2?24 a.u.).

z (2%P{1Bp| 2°PY) (2'P{|Bp| 2'PY) (2°P{|Bp|2'PY)
2 -0.12331632 -0.1275016 2 ~0.003039
3 ~0.1266020 —0.1309539 -0.006129
4 -0.130512 -0.133230 -0.008023
5 ~0.133709 —0.134786 ~0.009258
6 -0.136217 -0.135918 —0.010110
7 -0.138199 —0.136779 -0.010746
8 -0.139793 -0.137456 -0.011225
9 —0.141098 —0.138004 _—0.011602
10 -0.142182 —0.138456 —0.011908
15 -0.012833
20 ~0.013302
25 —0.013586

2The values tabulated are —[E; /(2 @?ZRy) +1/8] where E; is the relativistic shift in the

ionization potential calculated by Accad et al.!

bpresent work, calculated with 50—term variational wave functions.
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TABLE II. Expansion coefficients M(g‘s) in Eq. (24) for
the 1s2p 'P3-1s21S, transition (in a.u.).

Mt ;:’)

S

0.3950617
—0.4458974
—0.0840397.

0.0863962

0.0602542
—0.0308569
—-0.0583221

0.0021106

0.0544527

0.0384216

W00 =3O U B WNMO

TABLE TII. Contributions to ( 1s2p P§|M | 1s21Sy) in
units of inad a,u. The labelsty, ..., t, refer to the four
terms in Eq.(16), respectively.

z (t,+tg)/2° A t /2%
2 0.03306 0.00876 —-0.01737
3 0.04134 0.01240 —0.02647
4 0.04298 0.01393 -0.03103
5 0.04335 0.01476 —0.03374
6 0.04336 0.01528 —0.03556
7 0.04320 0.01564 —-0.03686
8 0.04299 0.01590 -0.03783
9 0.04282 0.01609 -0.03858

10 0.04263 0.01624 -0.03920

states in the nonrelativistic LS picture is auto-
matically included in the one-electron Dirac ma-
trix elements. The correction vector for double
counting is thus

- 272
7 - inaz (0-0402170°2%) 26)
0.395062

The relativistic matrix elements required for
(M)N were calculated directly for each Z from the
formulas given by Gra.nt_‘_8 With phases chosen so
that R(ﬁ)“ reduces to (M),s in the nonrelativistic
limit, the matrix elements for electric dipole
transitions are

(15,/52p,,, 1| 328, B(1s,:15,,0)
i

== (= 1A [+ 1@+ D]

V.
x<7 7>M,,,, @7
P —
2 2,

where j=3, i'=%, 3, and M“ involves only the
radial integrals

M, ;= H{[(k; = k)., + 215,,]/ V2
- V2 l(ky =KDy, -1, (28)
with

I = [ (P;Q,;+Q, P, (wr/c)dr,

j.(2) is a spherical Bessel function, P and @ are
the large and small radial components of the Dirac
bispinor as defined by Grant, !* and « is the usual
Dirac quantum number.

The first two terms in the (¢Z)? expansions of
the matrix elements are

<151/22171/2: 1 IZ &i' A)zg(llst./2’0>
1

=inaZ (32/81V3)[1 - a2Z2(3t =% 1n2 + In3)]

and
(18,/52P5/5, 1 lz &i' A% lls?/z’ 0)
i

= in0Z(32V2 /81V3)[1 —a2Z2( —$1n2 + $1n3)],

(30)
These expansions are needed to find the exact
value of the a®Z* coefficient in (25) in the LS re-
presentation.

III. NUMERICAL RESULTS AND DISCUSSION

The absorption oscillator strength f, and spon-
taneous emission rate A, are given by (in a.u.)

h= @/ w,) lMx Iz ’
Ax:%wfasfw

where A =1, 2 labels the two eigenvectors of (1)
and the M, are the two components of M obtained
from (12). Calculations have been done for all the
ions in the range 2< Z < 120. A selection of the
results is given in Table IV (with & = 15753805

The values of V2 tanf in Table IV measure the
degree of LS-jj recoupling that has taken place.
It is interesting that the values exceed unity at the
high-Z end. This is caused by a reversal in sign
of the off-diagonal matrix element in (V,+B);; at
Z=112. The sign reverses because the F(r,,)/7,,
and -G (r,,)@, - &,/7,, contributions to the matrix
element (see Appendix B for F and G) are of
opposite sign and, as shown in Table V, the latter
eventually overtakes the former. Thus, jj coupling
in the n =2 basis set is nearly exact at Z =112,
For Z in the range 20 to 40, the tan6 values are
about 1% larger than those calculated by Ermalaev
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and Jones, ® and about 6% larger than the values
of Sampson et al.’ [w(2p) in their notation]. For
Z in the range 2-10, the values are in close
agreement with the previous variational calcula-
tions of Schiff et al.?* and Drake, 2° but differ by
up to 4% from the estimates of van den Eynde et

al.?® derived from screened hydrogenic wave
functions.

The transition frequencies are compared with
other calculations in Table VI. Agreement with
the calculations of Accad et al.?! is exact to six
or more figures for Z in the range 2—9 when their

TABLE IV. Results for radiative transitions from 1s2p °P; and 1s2p P, to 1s?1S,. Frequencies are in a.u. and rates

are in s” !, Numbers in brackets indicate powers of 10.

2%P3-11s, 21py-11s,
z V2 tang Wy fi Ay W, fa A,
2 3.9272(-4) 0.77056 2.774(~8) 1.764(2) 0.77988 0.2762 1.799(9)
3 1.0883(-3) 2.25228 3.289(=1) T 1.787(@) 2.28663 0.4565 2.556 (10)
4 2.4106(-3) 4.48104 1.857(~6) 3.993(5) 4.54520 0.5512 1.220(11)
5 4.5488(~3) 7.45924 7.082(-86) 4.220(6) 7.55506 0.6084 3.719(11)
6 7.6891(~3) 1.11879(1) 2.107(-5) 2.825(7) 1.13164(1) 0.6462 8.863(11)
7 1.2036 (~2) 1.56680 (1) 5.300(~5) 1.394(8) 1.58296 (1) 0.6730 1.806(12)
8 1.7761(~2) 2.09001(1) 1.175(~4) 5.499(8) 2.10954 (1) 0.6928 3.302(12)
9 2.5045(-2) 2.68852(1) 2.369(—4) 1.834(9) 2.71146 (1) 0.7079 5.574(12)
10 3.4055(-2) 3.36243(1) 4.424(~4) 5.356(9) 3.38884(1) 0.7196 8.851(12)
11 4.4945(-2) 4.11183(1) 7.764(~4) 1.406 (10) 4.14178(1) 0.7289 1.339(13)
12 5.7847 (~2) 4.93686 (1) 1.294(-3) 3.376 (10) 4.97043(1) 0.7362 1.948(13)
13 7.2871(-2) 5.83763(1) 2.061(-3) 7.523(10) 5.87493(1) 0.7419 2.742(13)
14 9.0094 (-2) 6.81428(1) 3.159(-3) 1.571(11) 6.85545(1) 0.7461 3.756 (13)
15 0.10956 7.86696 (1) 4.679(-3) 3.101(11) 7.91218(1) 0.7491 5.022(13)
16 0.13126 8.99584 (1) 6.718(-3) 5.822(11) 9.04531(1) 0.7508 6.579(13)
17 0.15515 1.02011(2) 9.376(—3) 1.045(12) 1.02551(2) 0.7512 8.461(13)
18 0.18112 1.14828(2) 1.275(-2) 1.800(12) 1.15417(2) 0.7505 1.071(14)
19 0.20901 1.28413(2) 1.691(-2) 2.987(12) 1.29055(2) 0.7484 1.335(14)
20 0.23861 1.42768(2) 2.193(-2) 4.786(12) 1.43467(2) 0.7452 1.643(14)
21 0.26965 1.57893(2) 2.782(~2) 7.427(12) 1.58656 (2) 0.7407 1.997(14)
22 0.30182 1.73792(2) 3.457(-2) 1.118(13) 1.74625(2) 0.7351 2.401(14)
23 0.33481 1.90467(2) 4.215(~2) 1.638(13) 1.91378(2) 0.7284 2.857(14)
24 0.36824 2.07920(2) 5.045(~2) 2.336(13) 2.08918(2) 0.7207 3.369(14)
25 0.40179 2.26153(2) 5.936 (—2) 3.251(13) 2.27249(2) 0.7122 3.939(14)
26 0.43511 2.45170 (2) 6.874(-2) 4.425(13) 2.46375(2) 0.7030 4.570(14)
27 0.46790 2.64973(2) 7.844(-2) 5.898(13) 2.66300 (2) 0.6933 5.265(14)
28 0.49990 2.85566 (2) 8.830(~2) 7.712(13) 2.87029(2) 0.6832 6.029(14)
29 0.53089 3.06950 (2) 9.818(-2) 9.907(13) 3.08565(2) 0.6730 6.863(14)
30 0.56069 3.29130(2) 0.1079 1.252(14) 3.30914(2) 0.6628 7.773(14)
‘32 0.61626 3.75891(2) 0.1267 1.918(14) 3.780702) 0.6426 9.837(14)
34 0.66605 4.25878(2) 0.1440 2.797(14) 4.28538(2) 0.6234 1.226(15)
36 0.71000 4.79123(2) 0.1595 3.921(14) 4.82363(2) 0.6056 1.509(1'5)
40 0.78177 5.95529(2) 0.1847 7.017(14) 6.00281(2) 0.5743 2.216(15)
42 0.81060 6.58769(2) 0.1948 9.052(14) 6.64484(2) 0.5607 2.651(15)
45 0,84659 7.60049(2) 0.2070 1.280(15) 7.67514(2) 0.5424 3.422(15)
50 0.89136 9.46383(2) 0.2213 2.123(15) 9.57739(2) 0.5162 5.071(15)
56 0.92747 1.20002(3) 0.2314 3.569(15) 1.21808(3) 0.4893 7.775(15)
60 0.94434 1.38815(3) 0.2352 4.853(15) 1,41226(3) 0.4728 1.010(16)
65 0.95991 1.64587(3) 0.2374 6.888(15) 1.67977(3) 0.4529 1.369(16)
70 0.97115 1.93006 (3) 0.2376 9.480(15) 1.97680(3) 0.4332 1.813(16)
74 0.97790 2.17767(3) 0.2366 1.202(16) 2.23738(3) 0.4173 2.237(16)
80 0.98536 2.58544(3) 0.2335 1.672(16) 2.67023(3) 0.3928 3.000(16)
85 0.98982 2.96153(3) 0.2297 2.158(16) 3.07364(3) 0.3715 3.759(16)
90 0.99313 3.37416 (3) 0.2248 2.741(16) 3.52102(3) 0.3493 4.638(16)
100 0.99742 4.32754(3) 0.2119 4.250(16) 4.57459(3) 0.3016 6.760(16)
110 0.99971 5.49990 (3) 0.1940 6.286(16) 5.91069(3) 0.2487 9.305(16)
112 1.00001 5.76861(3) 0.1897 6.762(16) 6.22360 (3) 0.2374 9.847(16)
120 1.00083 7.00214(3) 0.1691 8.881(16) 7.69423(3) 0.1891 1.199(17)
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TABLE V. Contributions to the matrix element (1sy/42p4/5, 1| V4, +B| 184/92p379, 1) in

Z a.u.
z (F (r49)/743) (=G (745)Qe @ p/745) 2 total
20 0.0162175 —0.000728 0.015548
40 0.016774 —0.002848 0.013927
60 0.017453 —0.006167 0.011286
80 0.018046 —~0.010347 0.007699
100 0.018067 —0.014837 0.003230
110 0.017569 —0.016898 0.000671
112 0.017401 —0.017269 0.000132
115 0.017092 ~0.017784 —0.000692
120 0.016388 —0.018525 —0.002137

2The functions F(7y,) and G (7y,) are defined by Egs. (A5) and (A6).

singlet-triplet mixing correction®® is added to
their values. (However, for consistency, their
mass polarization and Lamb-shift corrections are
omitted from the tabulated values.) The contri-
bution from higher-order effects is just noticeable
in the sixth figure at Z =10. The RRPA® and
Ivanov et al.'® transition frequencies are in poor
agreement at low Z, where correlation effects are
important, but are quite close at intermediate

hand, the differences between our frequencies and
the RRPA frequencies increase smoothly as a®Z®
in the upper range of Z as expected.

A similar comparison for the oscillator strengths
is made in Table VII. The disagreements with the
Pauli approximation values fp for the 2°P -1'S;
transition in the range 3< Z < 10 are due in part
to the growing importance of higher-order re-
lativistic effects in f;, and in part to the decreas-

and high Z. A large part of the discrepancy with
the results of Ivanov et al. at high Z is accounted

for by their omission of the 2Z? terms in (19)

and (20). However, there remain irregularities
which are difficult to account for. On the other

TABLE VI. Comparison of transition frequencies (in a.u.).

shift corrections are uniformly omitted.

ing importance of relativistic corrections to the
1s? 1S, wave function. ' The latter correction was
omitted in the comparison calculations from Ref. 1,
but was included in the Z =2 transition integral
from Ref. 2. The RRPA oscillator strengths up

Mass polarization and Lamb-

1s2p°p3-1s%1s,

1s2p 1p3-1s%1s,

z Wy Wother WRRPA ¢ Wy @ other wRRéA ¢
2 0.770 559 0.770559 % 0.780 0.779 877 0.7798772 0.797
3 2.252281 2.252 280 2.256 2.286 627 2.286 626 2.305
4 4.481 040 4.481 040 4.483 4.545205 4.545204 4.564
5 7.459243 7.459 242 ' 7.460 7.555 064 7.555063 7.574
6 11.18795 11.18795 11.188 11.316 36 11.316 35 11.336
7 15.667 96 15.667 96 15.667 15.829 56 15.82955 15.849
8 20.90009 20.90007 20.898 21.095 36 21.09533 21.115
9 26.88520 26.88516 26.883 27.114 62 27.114 57 27.134

10 33.624 26 33.62416 33.621 33.888 37 33.888 27 33.908

20 142.768 142.760° 142,760 143.467 143.457" 143.483

30 329.130 329.110 329.119 330.914 330.900 330.921

40 595.529 595.488 595.512 600.281 600.258 600.275

50 946.383 946.315 946.357 957.739 957.711 957.718

60 1388.15 1388.05 1388.11 1412.26 1412.23 1412.23

70 1930.06 1929.92 1930.01 1976.80 1976.76 1976.74

80 2585.44 2585.24 2585.38 2670.23 2670.17 2670.14

90 3374.16 3373.82 3374.08 3521.02 3520.92 3520.88

100 4327.54 4326.39 4327.45 4574.59 4574.43 4574.41

2 Accad et al., Ref. 21.
b Ivanov et al., Ref. 10.
¢ Johnson and Lin, Ref. 6.
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TABLE VII. Comparison of oscillator strengths with other calculations.

1s2p 3pi-1s%1s,

1s2p 1Pg-15%1s,

z 1 fp S RRPA 2 JNR JRrPA
2 2.774(-8) 2.774(-8) 2 3.58(—8) ¢ 0.2762 0.2762 d 0.2518 f
3 3.289(-"7) 3.322(=17) b 3.63(=17) 0.4565 0.4566 0.4438
4 1.857(—6) 1.866(—6) 1.96(—6) 0.5512 0.5516 0.5443
5 7.082(—6) 7.107(—6) 7.32(—6) 0.6084 0.6089 0.6042
6 2.107(-=5) 2.116(-5) 2.16(—5) 0.6462 0.6471 0.6435
7 5.300(=5) 5.321(—5) 5.36(—5) 0.6730 0.6742 0.6712
8 1.175(-4) 1.183(—-4) 1.19(—4) 0.6928 0.6944 0.6915
9 2.369(—4) 2.393(=4) 2.39(—4) 0.7079 0.7101 0.7070
10 4.424(-4) 4.494(-4) 4.,46(—4) 0.7196 0.7226 0.7190
20 0.02193 0.0222 0.7452 0.784°¢ 0.7470
30 0.1079 0.1055 0.6628 0.808 0.6661
40 0.1847 0.1837 0.5743 0.5764
50 0.2213 0.2212 0.5162 0.5175
60 0.2352 0.2357 0.4728 0.4737
70 0.2376 0.2384 0.4332 0.4341
80 0.2335 0.2344 0.3928 0.3937
90 0.2248 0.2259 0.3493 0.3504
100 0.2119 0.2131 0.3016 0.3029

2 Drake, Ref. 2.
®Drake and Dalgarno, Ref. 1. These results do not include the ls“SO wave function per-

turbation by Bp.

¢ Johnson and Lin, Ref. 6, including their empirical correction for Z=20.

4 Schiff ef al., Ref. 23.

€A, Dalgarno and E. M. Parkinson, Proc, R. Soc. London Ser. A 301, 253 (1967).

f Johnson and Lin, Ref. 6.

to Z =20 contain an empirical correction factor
due to 1P°-3pP° energy splittings which come out:

too large® (i.e., too little mixing). For the same
reason, stronger mixing would decrease the RRPA
21p9-11S,oscillator strengths, bringing them

into better agreement with the present values. The
larger splittings also show up in the RRPA transi-
tion frequencies in comparison with w, and w,

(see Table VI). However, the corrections made
by Johnson and Lin® appear to be too large in ab-
solute magnitude by about 5% at Z =~ 14; increasing
to about 20% at both smaller and larger Z.2” The
oscillator strengths themselves are in good agree-
ment throughout the intermediate and jj coupling
region. The new theoretical decay rates are com-
pared with the experimental data in Table VIIL

All the results fall within the experimental error
bars, and the overall agreement is not substantial-
ly altered by the present values.

It is interesting that the relativistic corrections
to the accurate nonrelativistic oscillator strengths
of Schiff et al.?* are as large as 0.4% at Z =10.

The differences shown in Table VII are due pri-
marily to the dilution of the 2'P? state by the
23P9 state. For Z = 30, nonrelativistic calcu-
lations are seriously in error, even for allowed
transitions.

IV. CONCLUSIONS

The results of this paper for the transition fre-
quencies and oscillator strengths of the helium
isoelectronic sequence show that one can easily
incorporate relativistic effects into accurate non-
relativistic calculations with a minimum of ad-
ditional computational effort. The method, as
summarized by Egs. (1) and (12), requires only
one- and two-electron integrals over Dirac hydro-
genic wave functions, in addition to the nonrelativ-
istic results. The additional computer time is
only a few seconds per ion. Since in general it is
easier to perform accurate nonrelativistic cal-
culations than accurate relativistic calculations,
it may be that the present approach will turn out
to be both more economical and more accurate
than a priori relativistic calculations for many-
electron systems.
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APPENDIX A: DISCUSSION OF THE BREIT INTERACTION

Mittleman®® has derived from quantum electro-
dynamics an expression for the two-body trans-
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TABLE VIII. Comparison of theoretical and experi-
mental decay rates (in s™) for the transition
1s2p 3Pg—ls2 1sp.

fon Theory Experiment

No 1.394(8) (1.7 +0.30)(8) ¢
1.41(8)°

of* 5.499(8) 2 (5.80+£0.50)(8) 9
5.56(8) P (6.01+0.33)(8) ©

(6.01+0.42)(8) f

F 1.834(9) % (1.77+0.10)(9) 8
1.85(9)° (1.77£0.07)(9)

site+ 1.571(11) @ (1.57 £0.08)(11) P
1.58(11)°

td+ 5.822(11) (6.37+0,73)(11)
5.87(11) P

2 Present calculation.

5 RRPA with empirical correction, Refs. 6 and 7.

°1. A. Sellin, B. L. Donnally, and C. Y. Fan, Phys.
Rev. Lett, 21, 717 (1968).

a1 A, Sellin, M. Brown, W. W. Smith, and B. Donnally,
Phys. Rev. A 2, 1189 (1970).

¢ P. Richard, R. L. Kauffman, F. F. Hopkins, C. W.
Woods, and K. A. Jamison, Phys. Rev. Lett. 30, 888
(1973).

f C. F. Moore, W. J. Braithwaite, and D. L. Mathews,
Phys. Lett. A 44, 199 (1973).

£J. R. Mowat, I. A. Sellin, R. S. Peterson, D. J. Pegg,
M. D. Brown, and J. R. MacDonald, Phys. Rev. A 8, 145
(1973).

bs L. Varghese, C. L. Cocke, and B. Curnutte, Phys.
Rev. A 14, 1729 (1976).

verse-potential matrix valid for both diagonal
and off-diagonal matrix elements. Defining two-
particle matrix elements by

Bnl.n’ = ffd;ld;z ll«‘ﬁ(;l)ll),*(;z)

X By, 2w (—;1)‘/)1 (-;2) (A1)

the results can be written in terms of the state-
dependent operator

Bi2=— (eﬁc)z[&x . azvxz - (&1 . Vlz)(axz . 612)]
X (1/7,E7 ) sin(r ,E,, . /25C) (A2)

where E, ., =E ~E_ and V,, operates only on the
7., part of (A2). The matrix elements of the total
two-body interaction, including the Coulomb re-
pulsion, are

Vig+ Bty wrr = (€/7 1) nt,m 10 + Bty 1o + Biyo - (A3)

For computational purposes, B, , can be re-
written in a more convenient form. Since the §’s
in (Al) are eigenfunctions of the local Dirac
Hamiltonian (3), the term (&, V,,)(&,- ¥V ,,)f(r},)
can be replaced by the double commutator [H,
[H,,f(r,,)]]/(Fc)?. After replacing the H’s by their

eigenvalues and some further algebra, the total
two-body interaction operator becomes

Vio+B=(e/r,)[Flr,) - & . 4,Gwr,)] (A4)
with

F(r,)=1-(E, . /2E, ,)(1-cosQ, ,.)

= (B, w/2E,,,)(1 = cosQy,;.) (A5)

G(ry,)=3(cosQ, , +cosy, ;) (A6)
and §, , =E, .7,,/fic. For diagonal matrix ele-
ments, either E; , =E, . =0 (direct term), or
E, ;. =-E,, (exchange term). In either case,

Eq. (A4) reduces to the familiar form®
Via+B=(e?/7,)(1- 51 . @) coS8y, v - (AT)

For the off-diagonal 1s,,,2p,,,, 1 = 15, ,,2p5/,,1
matrix element, it makes little difference whether
(A4) or (A7) is used, except at very high Z where
severe cancellation takes place (see Table V) and
the fine-structure splitting is no longer small.
Even here, the off-diagonal element is much
smaller than the difference between the diagonal
elements in jj coupling, and the changes in the
final results are quite small.

As has been pointed out a number of times, 2% 3°
the Hamiltonian
H=H,(1)+Hp(2)+V,,+B (A8)

is not suitable for an exact diagonalization in a
complete basis set of Dirac functions because
every eigenvalue is degenerate with a continuum
of solutions in which one electron drops into a
negative energy state. However, the projected
Hamiltonian A, ,H A,,, where A,, is the positive ener-
gy projection operator, has a well-defined eigenvalue
spectrum. In the high-Z limit, our Hamiltonian
is, in effect, restricted even further to A, HA,,,
where A,, projects onto only the =1 and =2
positive energy levels.

APPENDIX B: GENERAL FORMULAS FOR
RELATIVISTIC TWO-BODY INTEGRALS

This Appendix gives general formulas for the
two-body matrix elements of 7, and &, « &,7",,
n= —1. Integrals containing in addition factors of
cos(wr,/c) can then be done by expanding the
cosine in power series and integrating term by
term. Although such integrals can, in principle,
be done directly (in terms of complex ,F, hyper-
geometric functions), the above procedure leads
to simpler integration formulas which are quite
efficient to evaluate. Except at very large Z, the
first few terms give sufficient accuracy.

The single-particle Dirac eigenfunctions are
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o L (B1) where 6,, ¢, are the polar angles of T,, and x is
Ju ) the angle of rotation of the triangle formed by T,
Xsiu T,, and T, about the T, direction. The angular

with integration over 6, ¢,, and x then leaves finite
. sums of radial integrals over 7,,7,, and 7., with
=iP 12 12
g =P OV 7 0, (B2) integrands multiplied by Legendre polynomials
Xyiu=—QW)/ 7z, 1=2-1, (B3) P,(cosb,,). Here cosf,, is regarded as a radial
- function given by

and
cosb, =2 +vi—v2,)/ 27 7,. (B6)
- 1 MY ™ “
Q=3 Umip [IM)YT@)x With the definition
Wym (B4)
1 0 Ly, 75, 71,)]
1/2 _ =1/2 _
X *( )a X —< ) o o T Ty
0 1 = f dv, f dr, f V1,07,
0 0 Irl-rzl
The integrals are done by integrating explicitly
over the 7, coordinate as discussed in detail in X P,(cosb . f(r,, 7, v,) (BT)
Rlef. 3r11t .Isn this coordinate system, the volume for the radial integrals, the reduction of matrix
element 1 elements to radial integrals in the J i, +]2 coupled
d?l dr, =7, av,v,dv,v ,dv,, sinb d6 dy, dy, (B5) . representation is of the form

J

<],1 » Joly J'M’ | @, a 712 I] L5 dals M) = Z{ c). ]1 1’]2l,2v]111:]2 2 I(n) (PP QIQZ)
+C§1}(]1l1;j2 ?’]1l1)72l2)1{")(PiQéQ1P2)
+c)(.1)J(]11 17j’ z;jllujzl I(") (QJ{P’PIQZ)

_0{1}(7 l )]2l21.71 15]2 2 I(n, (QleP P )} (B8)

and
G, akas I M 75, [,y ol TM)= Z{c{"} (G2, 350 sl ol IS (P PLP P
+ O (100 703 51k o) (PLQLPQ,)
+ 8 (T, 583 9,1, ol ™ Q1 PR, P)
+ 8% (G0, 3500 5,0, 4oL ™ (@425,

(B9)
. f )
The angular coefficients ¢{¥}, x=0, 1, can be de- A== (1)t (B vk 5 FAF3)
rived by a graphical analysis similar to that de- ’ 1 1y //1 1
—-3FAF3)/(5 3
scribed in Ref. 31. The result is proportional to X ey +ky =2 FAF2)/ (G +A%32), (B11)
a 15-j symbol of the third kind, ** which decom- 1y 2a+1 . F g g
poses into sums of products of 6-j and 9-j symbols. L% Taa(n 1)[(2]1+ D+ (=) + 1]
The 9-j symbols can be rewritten in terms of 3-j . Jedo (o
symbols with relations given by Brink and Sat- X[@a+ 1)+ (~1)20% (@ + vl (B12)
chler®® to obtain the final result A% = =1yt (2n+ 1), (B13)
(x) TS 1 :
oxs 1 (G100 3585 51y ol) ky=(;-j)(2,;+1), and similarly for ;. The I,'s

are to be replaced throughout by I,’s as necessary
for integrals containing small components in (B8)
and (B9). For the large components, k;=k;, and

(_1)11-11*-!'2-1'2*‘14%*1 [

:%61r'~16,w'M j;’j;,jujz]l/z

&\ gy gl (3 a0 Y\ [ d Nae | for the small components, k;=—-k, The notation
Sy g\ = o\ 1o 4 [a,b,...] means (2a+1)(2b+1) +++, and the sums
’ over X in (B8) and (B9) include all nonvanishing
(B10) contributions.

There remains now the calculation of the radial
where integrals defined by (B7). Since the Dirac hydro-
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genic radial functions are similar in form to the
Schrodinger hydrogenic radial functions, except
that the powers of » are nonintegral, all necessary
integrals are of the form

KO (ravbymstemr®7s)
—

with a and b arbitrary, and » integral. Only the

A =0 case need be calculated directly since the

I follow from the definition (B6), and all the
higher I{°) are obtainable from recursion relations
given in Ref. 31. After some analysis it can be
shown that

FUb+ 144, —a—n—1+4;b+2+1; B/(a+B))

1~y = 2l(a+b+n+3) ™Y, /n+ 1 @y
I (rrlyiteen "’2>=“7+1—E< X ){C’*B)

i1 i

(b+1+3)(a+p)* o™

/B
+a+ﬁ

The ,F,’s are hypergeometric functions, ** and 2!
means that only the odd terms are included in the
summation. For the integrals required in the pre-
sent work, the power series expansions of the
,F,’s yield numerically accurate values and, ex-
cept at high Z, are rapidly convergent. If a and

Jlatl+i,=b-n—-1+i;a+2+i; a/(a+B))
(a+1+i)(a +}$)““/§b‘"'2

a>=2,0>=-2,n=20,(a+b)>- (B14)

- —
b are non-negative integers, then the power series
terminate after a finite number of terms. If a and
b are nearly non-negative integers (as is the case
for small @Z), then the residual contribution after
the first “near-zero” term in the power series
expansion is small.
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