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Calculations of the electronic energy of the Be-atom ground state are performed using a configuration-

interaction technique and a nondegenerate formulation of diagrammatic many-body perturbation theory. Both
methods are applied within the algebraic approximation defined by three finite-basis sets. One of the basis

sets contains only s functions, and it defines an algebraic problem without degeneracies where agreement

between the two methods is excellent. The other two basis sets, although more complete, both contain p
functions, and they define algebraic problems involving a near degeneracy where agreement between the two

methods is found to be less satisfactory. It is concluded that either a degenerate formulation of perturbation

theory is required, or certain diagrams in the model perturbative scheme need to be summed to high order

through denominator shifts in order to properly handle the nondynarnic-correlation effect found in the Be
atom.

I. INTRODUCTION

The determination of the electronic structure of
an atom or molecule involves solving for an ap-
propriate eigenvalue and eigenfunction of a semi-
bounded self-ad joint Hamiltonian operator SC in

Hilbert space. A tractabl. e scheme for treating
such equations is the algebraic approximation in
which eigenfunctions are parametrized by expan-
sion in a finite set of functions. This procedure
transforms differential equations into algebraic
equations that need to be solved to find expansion
coefficients. Use of the algebraic approximation
induces a restriction on the domain of the opera-
tor K to a particular finite-dimensional. subspace
S of Hilbert space. For an N-electron system,
the algebraic approximation may be implemented
by defining a suitable orthonormal basis set con-
taining Pi(&N) one-electron spin orbitals and con-
structing alt. unique V-electron determinants that
can be formed using the &I one-electron functions.
The number of unique determinants that can be
formed is q= (g), and rl is the dimension of the
subspace 8 spanned by the set of determinants.
The algebraic approximation restricts the domain
of X to this q-dimensional subspace. Even the
exact solution to this restricted problem is only an

approximation to the solution of the original prob-
lem. The quality of the approximation depends on
the extent of "completeness" relative to the full
Hilbert space of the q-dimensional subspace,
which in turn is strongly dependent on the size and

composition of the one-electron spin orbitals
chosen as the expansion functions.

A given choice of basis functions defines a
particular algebraic approximation. In principle,
the exact solution to this restricted algebraic
problem may be obtained by using a full configura-
tion-interaction technique that includes all possi-
ble N-electron determinants (i.e. , including all
single, double, etc. , and N-tuple excitations from
a reference configuration). The exact solution to
the algebraic problem may also be obtained, in

principle, using appropriate convergent perturba-
tion theory techniques in which all terms in the
perturbative series are treated exactly. In prac-
tice, usually, neither the configuration-interac-
tion nor the perturbation theory can be utilized
without introducing further approximations and

truncations.
The purpose of this work is to present a com-

parison of results obtained using configuration-
interaction' and many-body perturbation theory, '
where each of these methods is applied to the Be
ground state within the same basis set. The Be
atom is chosen because both methods can be ap-
plied to this system, and a large basis set has
been determined. ' There have been numerous
previous calculations of the Be atom ground-state
energy' "', none of these is relevant to the speci-
fic objective of the present work.

Details of the theoretical approaches have been
fully described previously"'": the reader is re-
ferred to these earlier papers for all pertinent
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definitions. Section II of the present work contains
the numerical results on the Be atom. A com-
parison of the results is given in Sec. III followed
by a short discussion in Sec. IV.

II. CORRELATION ENERGIES OF THE Be ATOM

A. Basis sets

The Slater basis functions used in this work are
given in Table I. These functions are the s, P,
and d functions used in the previous Be atom work'
except that a 3d(f = 16.0) function has been dropped
from the previous set to facilitate current com-
puter limitations. These functions are used to
form three basis sets: one using only the ten s
functions, a second using the ten s and nine P
functions, and a third using all s, P, and d func-
tions. The matrix Hartree-Fock reference ener-
gy obtained with this basis set is -14.57302
hartree.

B. Results of configuration-interaction calculations

The correlation energy has been computed using
a variety of trial wave functions. One of these
choices consists of the matrix Hartree-Fock sin-
gle determinant as a reference state plus all pos-
sible configurations that are doubly excited rela-
tive to the reference state. The corresponding
energy is designated WED. Another choice con-
sists of the reference state plus all singly and

doubly excited states: the energy is 4E~. The
numerical results are presented in Table II for
the three choices of basis set. In addition, for
the sPd basis, a further calculation was performed
using a natural orbital scheme, described previ-
ously, ' which included 511 configurations including
a selection of single, double, triple, and quad-
ruple excitations from the reference natural orbi-
tal: this energy is AE»~z. Finally, an extrapo-
lation procedure' was used to obtain an extrapo-
lated "full CI" energy, ~E,„„,p.

The calculated energies have been split into en-
ergy increments in Table III to indicate their

10s 9p

1s
1s
2s
2s
3s
3S
3S
4s
4s
5s

3.437
6.225
0.869
7.45
1.08
1.776
8.8
2.7

16.0
2.2

2p
2P
3P
3p
4p
4p
5p
6p
6p

1.036
2.9
2.1

14.9
5.0

14.0
14.0
2.8

14.0

3d
38
4d
4d
5d
5d
6d

1.6
7.1
1.74

16.0
2.55

16.0
16.0

source. After the double excitations, the triple
and quadruple excitations are next in importance
but an order of magnitude smaller than the double-
excitation contribution. The single excitations
are still another order of magnitude smaller. For
correlation purposes, the P functions are the most
important. Of course, the P subspace includes the
nondynamical correlation effect" arising from the
near degeneracy pf the 1s'2s' and 1s'2P' config-
urations in Be. However, the energy increment
corresppnding to the lowest 1s'2P' cpnfiguration is
-0.044 hartree. " Thus the residual increment
from double excitations in the P subspace is about
-0.021 hartree which is larger than the s or d
contributions.

C. Results of perturbation calculations

The components of the perturbation expansions
for the correlation energy of Be are presented in

Table IV. Two different reference Hamiltonians
are used' to generate perturbation series: model
and shifted. The relative importance of the vari-
ous diagrammatic contributions is evident.

The convergence of the perturbation series is
displayed in Table V as a function of the number of
interacting bodies through third order. The addi-
tion of d functions is rather ineffective in the

TABLE I. Basis-set parameters of Slater orbitals for the
Be atom (orbital exponents in bohr ~).

TABLE II. Correlation energies from configuration interaction calculations for Be (energy
in hartree).

Basis set

+ESD

AE sang

+@extrap

10s

-0.01863

-0.01869

10s + 9p

-0.08401

-0.08457

10s+ 9p +7d

-0.08779

-0.08837

-0.09239

-0.09243
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TABLE III. Energy increments from configuration interaction calculations for Be (energy
in hartree).

Source of increment spd

Doubles b

Singles
Tr iples + quadruples

-0.01863
—0.00006

-0.06538
-0.00050

-0.00378
—0.00002

-0.08779
—0.00058
—0.00402

'Column headings indicate the group of basis functions from which the energy increment
is obtained. For instance, p represents E (sp) —E (s), and E(sp) is the energy obtained with
the sp basis.

b Correlation energy corresponding to AE z .
Correlation energy corresponding to 4E&z—AE&.
Correlation energy corresponding to b, E&D&~ —&S~D.

shifted scheme but has a sizable effect on the two-
body terms in the model scheme. The distribution
of two-body energy contributions among the elec-
tron pairs in Be is shown in Table VI. The effect
of the d functions is strong for E, both in the model
and shifted scheme and for the restricted third-
order energy in the model scheme. As is seen in
Table V, the d functions are rather ineffective for
the total two-body restricted third-order energies
in the shifted scheme. However, this ineffective-
ness can be seen from Table VI to arise from a
cancellation due to a positive contribution to the
2s' pair in the third-order (shifted) energy.

To give another representation of the source of
the correlation energy contributions, a second-
order energy increment is defined using the pre-

vious' notation:

ei&(nb) = (~i lO l~b& (nb lo lj &r'D;,.&
~

The second-ox'der energy is therefore a sum of
these increments

F., = Q g e,q(ab) .
s& j a&b

The energy increments are plotted in Fig. 1 for
the model scheme as a function of the unoccupied
orbitais (a, b) for each occupied pair (f,j) The.
unoccupied orbitals are arranged in order of in-
creasing orbital energy as indicated in Fig. 2.
The contributions to the core arise predominantly
from the orbitals 4-6 of the unoccupied list. The
core-valence contributions are an order of mag-

TABLE IV. Components of the perturbation expansions for Be.

Basis set
Ko model

10s
shifted

10s + 9p
model shifted

10s+9p +7d
model shifted

E 2

E 32(pp)

E 32{hp)

E 32(hh)

E 33(hp)

E 33(hh)

Intrapair energies (two —body)

-0.01590 -0.01736 -0.06425 -0.09347 -0.07195 -0.10272

+0.00170 +0.00125 +0.01689 +0.02136 +0.02153 +0.03112

-0.00552 -0.00240 -0.04404 -0.01977 -0.04708 -0.02032

+0.00168 0.0 +0.01233 0.0 +0.01316 0.0

Interpair interactions between pairs having a common hole state (three-body)

-0.00014 —0.00016 +0.00044 +0.00108 +0.00044 +0.00109

+0.00009 +0.00010 +0.00007 +0.00006 +0.00007 +0.00006

Interpair interactions between pairs having no common hole states (four-body)

x~4(hh) +0.00001 +0.00002 +0.00003 +0.00005 +0.00003 +0.00005

Overlap 6 t~- +0 00216 +0,00352 +0 02829 +0.13549 +0.03033 +0.13944

Energy terms are labeled with subscripts to denote order and superscripts to denote
number of interactinj bodies. The parenthetical description indicates the nature of the
diagram fram which the energy is calculated: h=- hole, p=- particle. Energies are in hartree,
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TABLE V. Convergence of the perturbative series with increasing number of interacting
bodies for the correlation energy of Be (energy in hartrees).

Basis set 10s 10s+9P +7d

Z2+E3 model

E 2 +E 3 shifted

two-body
three —body
four —body

two-body
three-body
four —body

-0.01805
-0.00005
+0.00001

—0.01851
-0.00006
+0.00002

-0.07907
+0.00051
+0.00003

—0.09187
+0.00114
+0.00005

-0.08434
+0.00051
+0.00003

-0.09192
+0.00115
+0.00005

nitude smaller but arise predominantly from orbi-
tal, s 3-5. The valence contributions arise from the
lowest unoccupied orbitals and principally from the
lowest unoccupied P orbital, as would be expected
since this is the orbital responsible for the non-
dynamic correlation effect."

A summary of the various perturbative correla-
tion energy contributions is given in Table VII.
Also included are the [2/1] Pade approximants
E[2/1] and the many-body perturbative upper
bounds E„,. For the sPd basis, the contributions
arising from quadruple excitations in fourth order
in the model scheme" are presented in Table VIII.
The unlinked diagrams contribute about -2
mhartree while the linked diagrams contribute
about +1 mhartree.

III. COMPARISON OF METHODS

The total energies calculated for the Be atom
are summarized in Table IX. In addition, the ma-

trix Hartree-Fock reference energy, the esti-
mated nonrelativistic energy eigenvalue' for Be,
and the estimated correlation energy for Be are
presented.

A direct comparison of the configuration-inter-
action and perturbation theory results is given in
Table X. Using a given basis set defines a par-
ticular eigenvalue problem within the algebraic
approximation. For the ful. l spd basis set, E, $ p
is taken to be a good estimate of the exact eigen-
value of the corresponding algebraic problem.
For the s and sp basis sets, E» is used for com-
parison purposes. A further comparison is pre-
sented in Table XI which gives an indication of the
quality of the various algebraic approximations
relative to the estimated correct nonrelativistic
results' for the Be atom.

The most obvious feature of Tables X and XI is
that the second-order energy results are in poor
agreement for both the model and shifted scheme.
The full third-order results are much better be-

TABLE VI. Two-body pair energies for the Be atom (energies in hartrees).

Basis set 10s 10s + 9P 10s + 9P + 7 d

E2 model

8 2 shifted

E&+E3 " ' shifted

E2+ E3 "' shifted

1s2
1s-2s
282

total

1s
1s-2s
2s
total

2

1s-2s
2S
total

1S
1S-2S
2S
total

-0.01247
—0.00108
—0.00236
—0.01591

-0.01305
—0.00118
—0.00313
-0.01736

—0.01374
—0.00119
—0.00312
-0.01805

-0.01383
—0.00120
—0.00348
-0.01851

—0.03492
-0.00488
—0.02445
—0.06425

-0.03661
—0.00545
-0.05141
-0.09347

-0.03788
-0.00555
—0.03565
-0.07907

-0,03808
—0.00567
—0.04812
-0.09187

-0.03844
—0.00529
-0.02822
-0.07195

-0.04028
—0.00589
—0.05656
—0.10272

-0.04096
—0..00592
—0.03746
-0.08434

-0.04111
—0.00604
—0.04477
-0.09192
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FIG. 2. Logarithm of the absolute value of the orbital
energy of the unoccupied orbitals.
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FIG. 1. Energy increments to the second-order ener-
gy in the model perturbative scheme as a function of the
unoccupied orbitals.

haved as are the [2/1] Pade approximants and the
optimized upper bounds. For the s basis, all of
the third-order results tend to be in reasonable
corresponding agreement.

One measure of the convergence of the pertur-
bation series is obtained by comparing the extent
of agreement between corresponding results ob-
tained in the model and shifted scheme. This is
because the converged result should be invariant
to changes in the unperturbed Hamiltonian. For
the sP and sPd basis sets, the best agreement is
found for the E„,(y,&,) which signifies that these
are perhaps the most reliable of the perturbative
results. If so, then the remaining third-order re-

suits in the model scheme would be judged more
rel. iable than the shifted results.

A second measure of the convergence of the per-
turbative expansions is to compare the extent of
agreement between the two third-order results,
E, +E, and E[2/1], within a given perturbative
scheme. The converged result should be indepen-
dent of whether a Taylor series or Pade approxi-
mant representation of the energy is employed.
Prom this point of view, the shifted scheme shows
reasonable convergence. In this regard, it is in-
teresting to note that previous perturbative calcu-
lations for Be by Kelly' and by Kaldor' had
achieved excellent correlation energies using
shifted denominator techniques corresponding to
the shifted scheme of the present work.

Another feature of interest is that for the s basis,
all of the third-order perturbative results are in
much better agreement with the s basis configura-
tion-interaction values than are the corresponding

TABLE VII. Perturbative correlation energies, the [2/1] Pade approximants and the many-body perturbative upper
bounds for Be (energies in hartrees).

Basis set
Xo model

10s
shifted

10s + 9P
model shifted

10s +9p +7d
model shifted

jV

E2+ E3 ~ shifted

-0.01591

-0.01805

-0.01808

—0.01843

—0,01804

1.15517

-0.01837

-0.01736

-0.01851

-0.01855

-0.01864

-0.01849

1.06 969

-0.01857

-0.06425

—0.07907

-0.07853

-0.08261

-0.07637

1.23065

-0.07907

—0.09347

—0.09187

-0.09068

-0.09076

-0.07986

0.87118

-0.08143

—0.07195

-0.08434

-0.08380

-0.08613

-0.08133

1.14924

-0.08268

-0.10272

-0.09192

-0.09072

-0.09198

-0.07962

0.81290

-0.08350
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TABLE VIII. Fourth —order quadruple excitation contributions in the model perturbative
scheme for Be using the sPd basis (energy in hartree).

Source Energy

Linked diagrams

Unlinked diagrams
Total linked and unlinked diagrams
Total linked diagrams

E 4(Ag)
Z4(Bg + Cg )
E 4(Dg +Eg )
E4(I'"& +G& )

E4(e~.+ V 2)

-0.00041
—0.00087
+0.00041
+0.00190
—0,00218
—0.00115
+0.00104

results for the sP and sPd basis sets. This is ap-
parently a ramification of the absence of any near-
degeneracy effect when the domain of the Hamil-
tonian is restricted to the subspace spanned by s
functions. In this case, the strictly nondegenerate
formulation' of perturbation theory is being applied
to a strictly nondegenerate algebraic problem and

the perturbative results to third order are in ra-
ther good agreement with the configuration inter-
action results. This is the situation that has been
observed in several previous comparisons"" "
involving strictly nondegenerate ground states of
atoms and molecules.

When the domain of the Hamiltonian is all. owed
to include the subspace spanned by the P functions
(as is the case for the sP and sPd basis sets), then
the near-degeneracy problem is present. As a
measure of the magnitude of this difficulty, the

normalized configuration-interaction coefficient
of the 1s'2P' configuration is" -0.2949 while the
1s'2s' configuration has a coefficient of" 0.9533.
Together these two configurations account for
0.995'7 of the unit normalization integral for the
full. Be atom wave function. ""Application of
nondegenerate perturbation theory to this near-
degenerate probl. em gives the somewhat degraded
results indicated in Tables X and XI. A similar
degradation for Be can be seen from a comparison
of perturbative results for Be and Ne. '

IV. DISCUSSION

Because of the near-degeneracy of the 1s'2s'
and 1s'2P' configurations for the Be atom, this is
a severe test of the nondegenerate perturbation
theory. It is an appropriate choice of system for

TABLE IX. Comparison of total energies for the Be atom (energy in hartree).

Basis

Configuration interaction

ZD
ESD
E extrap

Perturbation theory —model scheme

E [2/1]
E...(V,„,)
Perturbation theory —shifted scheme

E2+E3
E [2/1]
E... (V.„,)

10s

—14.59165
-14.59171

-14.588 93
—14.59110
—14.59145
—14.59139

-14.59038
—14.59157
-14.59166
—14.59159

10s + 9P

—14.65703
—14.65759

—14.63727
—14.65155
-14.6 5563
-14.6 520 9

-14.6664 9
—14.66370
-14.66378
—14.65445

10s+ 9P + 7d
E.pa

-14.66081
-14.66 139
—14.66545

—14.64497
—14.65682
—14.65915
—14.65570

—14.67574
-14.66374
-14.66500
-14.65652

Escp 14 57302 E 14 66736 Ecorr 0 9434
l

Escp is the matrix Hartree-Fock reference energy.
E&r is the estimated nonrelativistic energy eigenvalue for Be from Ref. 1.

C~cori =@nr Escp
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TABLE X. Comparison of calculated correlation energies with the estimated solution to the problem defined by the
algebraic approximation. '

Bas is

Configuration interaction

Esa
Eextrap

Perturbation theory —model scheme

E 2+E3
E [2/1]

Perturbation theory —shifted s cheme

E2
E2+E3
E [2/1]
Ev~ (V,pt)

10s-
100(E—E „)/ESD

99.7
100.0

85.1
96.7
98.6
98.3

92.9
99.3
99.7
99.4

10s + 9P
100(E E CF)/E

99.3
100.0

76.0
92.9
97.7
93.5

110.5
107.2
107.3
96.3

10s + 9P + Vd

100(&-E )/E extrap

95.0
95.6

100.0

77.8
90.7
93.2
89.5

111.1
98.1
99.5
90.3

Tabulated values are percentages: E, E&&., and E extrap are given in Table IX.sCF'

demonstrating the inherent limitation of a non-
degenerate formulation of perturbation theory for
applications involving a near degeneracy. The
comparison of results in Table XI is particularly
interesting in this regard since it exhibits excel-
lent agreement between all of the third-order per-
turbative results and the configuration- interaction
values for the nondegenerate algebraic problem
defined by the s-orbital basis. Concurrently, it
exhibits the degradation of this agreement es-
pecially for the model perturbative scheme when
the near degeneracy is introduced into the alge-

braic problem by the inclusion of P functions in the
basis set. Clearly a remedy for this problem is
to take specific account of the 1s'2P' configuration
by using a degenerate formulation of perturbation
theory, particularly when the model scheme is
used to define the perturbative expansion.

It should be noted that the shifted third-order
perturbative energies are in quite good agreement
with the non relativistic energy eigenvalue for Be:
E, +E, and E[2/lj in the shifted scheme give
96.2% and 97.5% of E„„,respectively, while the
extrapolated full configuration-interaction result

TABLE XI. Comparison of calculated correlation energies with the estimated correlation
energy of the Be atom given as percentages of E „.

Configuration interaction

E
Esa
E extrap

Perturbation theory —model scheme

E2+E3
E[2/1)
E„„(V,„,)
Perturbation theory —shifted scheme

E2

E [2/1]
&,„(v,„,)

19.7
19.8

16.9
19.2
19.5
19.5

18.4
19.7
19.8
19.7

89.1
89.6

68,1
83.2
87.6
83.8

99.1
96.1
96.2
86.3

93.1
93.7
98.0

76.3
88.8
91.3
87.6

108.9
96.2
97.5
88,5

'Tabulated values correspond to 100(Z-S P/8 „where E&cF = -14.57202 hartree and
E~„=-0.09434 hartree from Ref. 1.
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gives 98.0%. One interpretation" of the signifi-
cance of denominator shifts that are used in the
shifted perturbation scheme is that they provide a
means for summing certain diagrams in the model
scheme to infinite order. In this sense, the
shifted third-order result represents a compro-
mise which includes all of the diagrammatic con-
tributions through third order in the model scheme
plus a selection of additional diagrams summed to
infinite order. This interpretation allows for the
conjecture that, although the third-order calcula-
tion in the model scheme is not sufficient to handle
the near-degeneracy probl. em in Be, this difficulty
can be overcome by including certain higher-
order diagrammatic terms.

The use of a shifted zero-order Hamiltonian
seems to lead to a more rapidly convergent per-
turbation series for the correlation energy. The

shifted perturbation scheme has previously been
found to converge more rapidly for the LiH and

BH mo1.ecules. " This is due to the presence of
low-lying virtual orbitals in these species. The
small positive single-particle energies lead to
denominators in the perturbation expansion based
on the Hartree-Fock model operator which are
very large. The use of the shifted zero-order
operator appears to avoid this problem.
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