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Radiative collapse of a relativistic electron-yositron ylasma to ultrahigh densities
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It is shown that a relativistic electron-positron plasma formed by the coalescence of two counterstreaming
intense relativistic electron and positron beams can collapse into a very-small-diameter filament. The collapse
is accompanied by the emission of intense coherent y radiation. The radius of the collapsed state is
determined by the quantum-mechanical uncertainty principle. At its maximum contraction the electron-
positron plasma can approach nuclear densities. The predicted effect may have many interesting applications,
some of which are briefly mentioned. The generation of the intense beams seems to be possible with existing
techniques.

The transient generation of matter possessing
very high densities is of great interest in many
areas of physics. One example are the densities in
white dwarf and neutron stars, until now unattain-
able in the laboratory. It is clear that if nuclear
densities could be attained this would have far-
reaching consequences in applied nuclear physics.
However, so far no way to reach such ultrahigh
densities has ever been conceived but we propose
here a method by which this could possibly be
achieved. 'The basic idea behind our proposal is
explained in Fig. 1. Two relativistic beams, one
consisting of electrons and the other of positrons, ,
each having the current ~I and each having equal
energy per particle, that is equal y value [y= (1
—P') ' ', where P=v/c, v is the drift velocity of
electrons and positrons, c is the velocity of light]
are set up in the toroidal chambers I and II of a
double storage ring. Both beams are confined by
an external toroidal magnetic field Hp and are
either produced by well-established storage-ring
techniques, or by the method that has been pro-
posed for the generation of intense relativistic
electron beams. ' In this latter case, the elec-
tron and positron beams mould be produced by par-
ticle injection from the periphery of the toruses
I and II, and compressed towards the axis of these
toroidal sections by the rising external toroidal
magnetic field H, in conjunction with the time-
varying magnetic flux produced by the transformer
T with the core C going through both principal
torus axis of Secs. I and II. By this-time-vary-
ing flux the electrons and positrons are acceler-
ated in equal and opposite directions, that is, wi, th
their respective currents in the same direction.
Since the electron and positron velocities in their
respective toroidal Secs. I and II are equal and
opposite, both beams attract each other by elec-
tric and magnetic forces. Therefore, if in the
vicinity of the torus Secs. I and II the externally
confining magnetic field is increased, but not in

the intermediate toroidal Sec. III, the beams
will be pushed towards the intermediate Sec.
III, and where they coalesce into a relativistic
space- charge-neutralized electron- positron plas-
ma with a total toroidal current I. In order to
prevent the premature coalescence of the electron
and positron rings during their buildup, the mag-
netic field in between Secs. I and II and Sec.
III must be stronger than in the sections them-
selves. This can be done by a coil having the
same geometry as the sections. If this coil is
then surrounded by a second coil that has an el-
liptic cross section and that can increase the mag-

, netic field in Secs. I and II above that in Sec.
III, both rings will be pushed towards this section
resulting in their coalescence. We will show that
above a certain critical. range of the current I and
particle energy, this electron-positron plasma
will rapidly shrink down to a very small radius,
determined by Heisenberg's uncertainty principle.

The time dependence of the plasma is ruled by
two processes, one enhancing its expansion and
the other its shrinkage. 'The process enhancing
its expansion is the internal heating by Coulomb
scattering taking place between the electrons and
positrons colliding head on. 'The other process,
enhancing its shrinkage, is cooling by emission of
radiation from transverse oscillations of the par-
ticles confined in the magnetic field of the plasma
current. If the radiation losses exceed the trans-
verse energy gain by Coulomb collisions the plas-
ma will shrink.

The energy gain by Coulomb collisions is most
easily calculated in a local reference frame in
which either the moving electrons or positrons
are at rest. If the particle number density, either
for the electrons or positrons, in a laboratory
system is n, then in a co-moving system the num-
ber density of that particle species colliding head
on is equal to n'=ye. Furthermore, if the time
element in the laboratory system is dt, it is in a co-
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RELATIVISTIC
ELECTRON - POSITRON
PLASMA

FIG. 1. Cut through double storage ring for relativistic electron and positron beams and for the formation of the
relativistic electron-positron plasma.

moving system equal todt'= df/y. The transverse
energy gain of one electron or positron in a co-moving
system, assuming the relative drift velocity is v = c,
is then given by'

dE e4
, =4'' lnA',

PlC

H, = (2I/r, c)(r/r, ),
and the radial restoring force acting on a beam
particle therefore given by

2ePI 2eI
ePH~ =--

CFj CFj

and hence in a laboratory frame

dE e4
=4' — lnA.

tBC
(2)

This restoring force in conjunction with the exci-
tation by the Coulomb collisions leads to the trans-
verse radial particle oscillations determined by
the equation of motion

Here lnA' is the Coulomb logarithm with A' = b ~/
b „. One has to put b „=x„where r, is the plas-
ma radius and furthermore* b „=e'/y mcr, /y
(r, = e'/mc' is the classical electron radius). In

going to a laboratory system the value of b „has
to be multiplied by y and one has A= r~/r, . The to-
tal current in the plasma (using electrostatic cgs
units) is I=2necvr~. One then finds that

2 'I 3

lnA, Ig = = 1.7 x 104 A. (&)

'The azimuthal magnetic field inside the plasma
column x &~, is given by

ymi' =F,
or

r'+ ver= 0,
with ur' = 2eI/ymcr~ = (2/y)(c/r, )'(I/I„). Note that
the relativistic transverse mass ym enters into
Eq. (6). These transverse oscillations result in
intense emission of radiation. The energy loss
for one particle due to this radiation is given by'

I', = —', (e'v,'/c')y', (8)

where v, is the perpendicular velocity component,
in our case i~ = P. One thus finds that 8,'= V'

= s ~'r~ and obtains
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y2

Since aP = (2/y)(c/rn)'(I/I„) 4=—one'/ym, it follows
that the plasma remains optically transparent for
all frequencies of the emitted radiation, regard-
less of its radius r~ or particle number density n,
and for this reason the emitted radiation cannot
be reabsorbed. by it. Therefore, if P, &dE/dt, the
plasma will ultimately shrink down to a radius
r „determined by Heisenberg's uncertainty prin-
ciple:

ymir f
—@.

The condition P, &dE/dt implies that

y'I/I„& —', lnA.

(10)

The condition against the plasma to pinch itself
off by action of its own magnetic field is given by

Hn/4v & 2ynmc',

which results in

(12)

I & yI„, (13)

and which can be combined with the inequality (ll)
to give

y &I/I„& ', inA/y'. -
'The maximum current is thus given by

I „=yI„=1.Vx 10'y A.

To satisfy inequality (14) requires that

(14)

y'& —', lnA, (16)

setting a minimum y value which isy „=(n~lnh)'~n.

The minimum current I „required to lead to col-
lapse is thus given by

9 lnA y' „y„&9

mfn 4yn A yn A I~ Imnn ' (17)

0 .=(y'/vr, ~;)g/I„), (18)

Assuming that ~ lnA=10', which is valid for r~
= 1 cm one has y „=4.5 and I „=I.V & 10'y ' A.
If, for example, y=10', corresponding to beams
with a particle energy of -50 MeV, one has I „
=170 A. For y=3& 10', which is typical for elec-
tron intersecting storage rings, one has I fg 0.17
A. Electron beams of this magnitude can be eas-
ily produced and also seem to be principally at-
tainable for positrons with the state of the art in
storage- ring technology.

After its collapse to the radius r „given by Eq.
(10), the number of particles per unit beam length,
counting both electrons and positrons, is equal to
(1/r, )(I/I„) The particle .number density in the
plasma is therefore calculated to be

with X, =N/me= 3.8 & 10"cm and hence n =8
& 10"(I/I„)y'. The maximum density in the col-
lapsed plasma is given by p,„=ymn „=V. 3
& 10'(I/I„)y A.ssume for example that I=I„=17
kA, which seems technically feasible, and y=10',
it follows that p = 10'9 g/cm'. With I =170 kA,
y= 2 & 10', which seems at the limit of technical
feasibility, p -10"g/cm'. This is in the range
of nuclear densities.

The collapse time is given by &,=E,/P„with
the perpendicular kinetic particle energy E,
=-n'ymv, '=-n' ym~'r, =me (I/I„), hence

', (r,'/—rncy') g„/I) . (19)

Assume that initially r', =1 cm and thatI=I„, y
= 10, it follows 7', = 10 ' sec. This time is large
compared with the time needed to push both beams
together by increasing the magnetic field in Secs.
I and II of the double storage ring. The two
beams can therefore coalesce without difficulty
into the electron-positron plasma.

In the last stage of the collapse the maximum
photon energy, estimated from the lowest har-
monic of the emitted radiation, is

a&,„=E,= mc'(I/I„) . (2o)

=2.1 x 10'(I/I„)'y' erg/sec, (21)

where rs =N'/me' is the Bohr radius. If for ex-
ample I=I„, y=10', one finds P, '*=2n1x 10"
erg/sec. The energy of this pulse is delivered in
the time &,"obtained from putting r, = r „into
(19) and one finds

~mtn 9 (r /cy4)g„/I) (22)

During the time the plasma collapses down to
the radius r „, it decays by electron-positron an-
nihilation with a cross section equal to' |r= (vrnn/

2y') in(2y'). The decay time for annihilation is
theref ore given by

(23)

The smallest time &„"is obtained by putting r,
= r, , with the result

For example if I=I„one has Sv = mc'. Because
of the small plasma diameter this presents a
highly coherent y radiation. Furthermore, since
the collapse time 7', depends on the plasma radius
r~ according to &, r» most of the dissipated
beam energy is released in the last moment of
the collapse, resulting in a burst of very intense
y radiation. 'The maximum power of this final
burst can be computed by putting r~ = r „into Eq.
(9) with the result

,' (clr )—(I/I„)'y'mc'
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4r~ I„
cin(2y2) T '

From Eqs. (19):and (23) we find that

~,/v, = —", y'/ln(2y') .

{24)

(25)

the order H~ = 0 2I./x „If, for example, I=I„,
y-10' one obtains H -2x10" Q.

The magnetic confinement condition for the rela-
tivistic beams in the external magnetic field, prior
to their coalescence into the plasma, is given by

Since the collapse must occur prior to the radi-
ative annihilation of the plasma, it is required
that &~» &,. Thi.s condition implies that ~9'y
» ln(2+), and which is always satisfied. Fur-
thermore, in order for the collapsed plasma to
form a quasistatic quantum mechanical state, &&

has to be large in comparison with the "orbital"
time scale vo=r „/c=5/ymc'. For ri, =r» one
finds that

4y Sc Iz
ln(2y') e' I

If y=10', I=I„one obtains v„/v, -l0', which satis-
fies the condition for a quasistatic state.

%e had assumed that the azimuthal magnetic
field H~ remains trapped inside the plasma dur-
ing its collapse. This implies no decay of the cur-
rent I. It is easy to show that this assumption is
rather good. The decay of the current and hence
magnetic field is determined by Eq. (3). Froin this
follows the decay time for the azimuthal magnetic
field

yw c' ymcr,'
dE/dt 2e'lnA I

or in conjunction with Eq. (19)

(27)

(28)

and it follows that for y»y „—4.5 the current
decay can be neglected.

During its collapse the magnetic energy changes
by the change of the self-inductance L of the pl.as-
ma channel. . The self-inductance of the plasma
channel with return current conductor radius R
& r, is computed to be

I =2 && 10 'I in(R/y~) H, (29)

where / is the length of the plasma column mea-
sured in cm. Therefore, if r~ changes from r,
=1 cm down to r~=r, =10"cm the self-induc-
tance and with it the magnetic energy increases
by the factor ln(R/r, )/in(R/r~). If for example
r~ = 1 em, R = 10 cm this factor is equal to 14.
This increase in magnetic energy must go on the
expense of the particle kinetic energy. Therefore,
the initial value of y must be actually -10 times
larger than the final val'ue required to,satisfy the
collapse condition.

Near the surface of the collapsed relativistic
electron positron plasma the azimuthal magnetic
field ean reach enormous values and which are of

Ho/Bm&Es/Bm Hs/8w, ,

where Ea and H~ are the electric and magnetic
self-fields of the beams at the beam surfaces. If
the beam radius is r =r, one finds Es =I/ri, cP, Hs

I/r~c, -and hence

P 1 Pop2212gm (31)

Expressing I in amperes this condition is H, &0 lI/.
yr, . For I=I„=17kh, r, =1 cm, y=10' one finds
that H, &17 G. The generation of the field for
beam confinement thus poses no problem.

The presence of an axial magnetic field intgo-
duees another problem that upon first inspection
seems to pose an insurmountable difficulty for the
proposed collapse towards nuclear dimensions
actually to take place. It is to be recalled that the
decay time of the azimuthal magnetic field was
found to be long compared to the collapse time if
y»4. 5. Therefore, if the same should Qe the
case also for an axial magnetic field trapped with-
in the plasma, it would follow that below a certain
plasma radius the repulsive magnetic force from
this field will become larger than the attractive
magnetic pinch, force from the azimuthal field. If
at an initial plasma radius r, = 2, the axial field is
H, (0) =H, it would at a smaller radius, y, &r,', be
equal to H, =Ho(P~/r~)' lt thus fo. llows that the re-
pulsive magnetic force, which is proportional to
H,', increases as r, , in contrast to the pinch
force, which is proportional to 02~, and which only
increases as K'. 'Therefore, after having reached
a pl, asma radius where H,'=H~, the collapse
should be stopped. Taking the above given exam-
ple x~=1 cm, I =17 kh, and0, =1'7 6 one finds
that this would happen already atr, = 5 x 10~cm which
would be not a very interesting value. To over-
come this difficulty one might consider a plasma
configuration satisfying the confinement condition
(30), where H, is very small inside but not outside
the plasma. However, for a collapse down to a
radius of -10 " cm this would require that the
residual axial magnetic field trapped within the
plasma to be less than -10"G, a completely un-
realistic demand. Fortunately though, on closer
inspection it turns out that the lifetime of the axial
magnetic field is much shorter than for the azimu-
thal field. 'The axial magnetic field is connected
with azimuthal electron and positron trajectories,
in contrast to an azimuthal field which is connec-
ted with axial trajectories. But because the scale
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length for the azimuthal motion is smaller by many
orders of magni. tude, the axial field can diffuse
out the electron-positron plasma very rapidly.
Furthermore, since the particles are relativistic
the diffusion by radiation under certain conditions
can predominate collisional diffusion.

During the collapse of the plasma cylinder a
trapped axial magnetic field induces an azimuthal
current whereby the electrons and positrons would
assume an additional azimuthal velocity compo-
nent v~ of equal but opposite magnitude. Let us as-
sume that the plasma collapse proceeds until

3 c'lnA I
i»(R)

2 4 P
Again using Eq. (34) and the expression for ur',

and furthermore the definition of y „, we can
write for Eq. (39)

1y' Iis (R) m|n A

6

(39)

(40)

From Eqs. (36) and (40) we can find out when the
diffusion loss by radiation predominates the loss
by collision. This obviously happens if i~»(R) &i'»,
which implies that

H =H» = 2I/cr», (32) I& (y~„/12'~ ')I„=2I„. (41)

H, = (m/e)y(o' r» (33)

The azimuthal velocity for both electrons and pos-
itrons is then simply given by the relativistic
Larmor formula

v» = (eH, /ymc)r»= (&or»)'/c. (34)

%e first compute the diffusion loss of H, due to
collisions. The characteristic loss time for this
process is given by

2
~ymv~
dE/e

For this we can also write

s 1 ~v 4 1 +5

(35)

where it would be stopped if H, does not diffuse
out of the plasma. At this radius the electrons and
positrons would reach their maximum azimuthal
velocity. Expressing the current I in Eq. (32)
through the previously found relation ~'=2eI/
ymca,', one finds

From this result we conclude that in our first ex-
. ample, where I=I&, collisional diffusion still pre-

dorninates but in the second example, with I= 10I„,
diffusion by radiation is far more important.

The inclusion of an axial magnetic field now leads
to the following modified sequence of events. After
the formation of the electron-positron plasma the
collapse first proceeds by the time constant v, un-
til the plasma radius becomes -10 ' crn, where H,
~H~. From there on the collapse proceeds to con-
tinue down to the radius determined by the uncer-
tainty relation, but only if the two following qon-
ditions are met: (i) The diffusion time for the ax-
ial magnetic field must be short in comparison to
the diffusion time by the azimuthal field; (ii) the
time for the diffusion dominated collapse must be
short in comparison to the time for electron-pos-
itron annihilation. In the diffusion-dominated re-
gion below -10 ' cm the time scale for the col-
lapse is the diffusion time i»' or i»(R), whichever is
shortest. In general, the diffusion time can become
larger than the time v, . The diffusion-dominated
collapse therefore will be, in general, slower.

The first condition implies that

where we have used Eq. (34) and the previously
found value &o' = (2/y)(c/i»)2(I/I„).

Next we compute the diffusion by radiation. The
rapidly circulating electrons and positroris emit
synchrotron radiation at the rate

78 &&1 ~,
or

I«(~/~)I~,
for collision dominated diffusion, and

(42)

(43)

2 (e2v4/c3y2)y4 (37) i'„(R)«i», (44)

&'»(R) = 2r~v', /P» = 'mc'r, '/e'v'»y'. —(38)

For this we can also write

This formula can be obtained from Eq. (8) by mak-
ing the substitution v'~2= v~~/i».

Since both the electrons and positrons have equal
but opposite azimuthal vel. ocity and at the same
time are oppositely charged, the emitted synchro-
tron radiation is circularly polarized. 'The dif-
fusion time by radiation losses is given by

or

I )) s I~/y (45)

for radiation-dominated diffusion. Let us check
if these inequalities are satisfied for our two nu-
merical examples given above. In the first case
it was assumed that I=I„, y = 10'. It follows that
I=I„«70I„and inequality (43) is 'well satisfied.
In the second case it was assumed that I= 10I„and
y=2 && 10'. One verifies that inequality (45) is here
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even better satisfied.
The second condition implies that

ol

1Q y i,y I~l~
9 ln(2y') I &

(47)

T~ && Ta(R), (48)

or

64 y
3 ln(2y') I„ (49)

r

Once again one easily verifies that for both exam-
ples given above the inequalities (47) and (49) are
well satisfied.

We thus have arrived at the important conclusion
that even the presence of a trapped axial magnetic
field is unable to stop the collapse of the elec-
tron-positron plasma down to. nuclear densities.
Since below a radius of -10 ' cm the collapse is
determi. ned by the diffusion velocity of the axial
magnetic field, the collapse time is increased.
'This increase is given by the factor

ymq~ I~ )

respectively

T„(a)/T, = ', yf„/I-

(50)

(51)

For our two examples we find T'„/T, = 2.2 and

Tz(B)/T, = 33. It therefore follows that the diffusion
process can substantially slow down the collapse.
However, since without a trapped axial magnetic
field the collapse time decreases with K', it would
be of the order -10 ' sec at a radius of -10 ' cm.
This time would thusr be increased by about one or-
der of magnitude. In the last stages of the col-
lapse where r, becomes very small the collapse
time would in any ease become extremely small,
or alternatively, the collapse velocity would be-
come always very large.

The presence of some axial magnetic field H„
not exceeding the azimuthal field H~, may actually
be an important advantage since it should help to
suppress the m = 0 pinch instability. The m = 0 in-
stability is suppressed if H, & (I/VY)H~. It is
clear that this condition will here be automatically
met, in case the m = 0 instability proceeds in a
time shorter than T'„or Ta(R). In this case the
ratio H, /H~ would locally increase as r,' near the
neck of the m =0 instability and therefore rapidly
exceed the critical value I/~ above which stabil-
ity is restored. As the experience with relativistic
electron beam suggests, magnetohydrodynamic

instabilities are-much less violent in a relativistic
plasma, and there is therefore good reason to ex-
pect that the next most serious m= 1 kink instabil-
ity, as well as all other higher instabilities are of
no great concern.

Besides magnetohydrodynamic instabilities one
has also to deal with microinstabilities, the most
important of which is the electron-positron two-
stream instability. However, the high beam tem-
perature combined with the large radiation damp-
ing should work strongly against the growth of this
fastest rising instability.

We will present here some semiquantitative ar-
guments which seem to be in support of the view
why for a highly. relativistic electron-positron
plasma the two-stream instability is likely to be in-
significant. The growth rate of this instability is giv-
en by

e= &u = (4mne'/ym)'~'. (52)

or simply

P', =NP, = (c/&u)snP, . (54)

Using this expression one can define the collective
damping time ~D to be

Ta = E/P = T /N .
From this one obtains that

(55)

oTg) —4DTD;=, 127k/y (58)
' ~

and it follows'that for y» (12'')' '=. 2.5 the radi-
ative dampinj would ensure no growth of the two-
stream instability.

We would like to mention a few possible appli-
cations for tge proposed device.

(i) The high: magnetic field of -10" G makes it
conceivable that in case the collapsed electron-
positron plasma makes an impact on some thermonu-
clear material, this would lead to nuclear reactions
by magnetic shielding of the Coulomb barrier.

In Eq. (52) the transverse mass ym enters into
the expression for the plasma frequency because
the fastest-growing instability propagates in an
oblique direction relative to the two counterstrea-
ming beams.

'The effect of the two-stream instability results
in collective bunching of the beam particles, form-
ing clusters with the dimension of the Debye-
length XD=c/&o. This particle clustering leads to
enhanced radiation losses, since it requires to
replace the single particle charge e by the collec-
tive charge q =Ne = (c/&o)' ne in the loss equation
(9). Furthermore, since these losses apply to N

particles one computes as the average collective
radiation loss per one particle P,':

NP =NP
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The proposed scheme may thus present another
way towards the release of thermonuclear energy
and with almost any thermonuclear material.

(ii) The intense bursts of y radiation conceivably
can also be used to fission heavy elements, such
as lead, for the generation of energy, by letting
the collapsed plasma hit a target consisting of
fissionable material.

(iii) If the circular torus geometry of the col-
lapsed electron-positron plasma is deformed into
the shape of a racetrack, the radition emitted
from the straight segments will have the charac-
ter of collimated highly coherent y-ray beams
with a very small diameter. Such beams could be
used to make large scale photonuclear reactions
at a rate otherwise not possible. The reason for

this is that a coherent highly focused y-ray beam
will act like g, classical large-amplitude y wave,
and which is much more potent to induce photonu-
clear reactions that single y quants.

(iv) In its collapsed state, the electron-positron
plasma has the characteristics of an upper laser
level where the final state is obtained by complete
electron-positron annihilation.

(v) It is conceivable that the intense emitted y
radiation can be used to accelerate protons by ra-
diation pressure to very high energies unattainable
with conventional methods of particle acceleration.

(vi) The very high plasma density in the collapsed
state combined with its comparatively long lifetime
may also open new avenues in hi.gh-energy physics,
in the study of the electron-positron collisions.
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