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Quantum aspects of classical and statistical fields
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A generating functional for a classical system described by coordinates satisfying nonlinear equations of
motion is constructed in terms of which any functional of the systems phase-space trajectory may be
expressed. Statistical behavior of the system arising from either random initial conditions or random stirring

forces may be handled simply within this theory. The analogy with Feynman s action-integral formalism of
quantum theory provides an alternative approach to the operator methods recently developed by Martin,

Siggia, and Rose. The connection with the earlier work of Onsager, Machlup, and Graham is also pointed

out.

I. INTRODUCTION

A method invented by Onsager and Machlup' 25
years ago and later generalized by Graham'
enables one to write, in the form of functional in-
tegrals, the correlation functions of the system,
i.e., the averages of products of the system's
coordinates, when the equations of motion contain
a stochastic force over which the averaging is
performed. This method does not apply, 'however,
when the averaging is performed only over the
initial value data, for reasons which will be de-
scribed later. Functional-integral representations
of correlation functions have also been derived
by Hosokawa' and Rosen' which apply whether the
average is taken over a stochastic force or over
the initial data. It has recently become apparent
that such functional integrals may also be used
to describe the response of the system to per-
turbations. " This theory therefore provides a
complete formal desc'ription of classical statisti-
cal dynamics and is analogous to Feynman's ac-
tion-integral formalism of quantum theory.

Since quantum theory may alternatively be for-
mulated in terms of state vectors and operators,
one is led to suspect that this possibility should
also exist for classical systems. In fact a forma1.
Heisenberg operator theory has recently been
constructed by Martin, Siggia, and Rose, ' to be
referred to as MSR theory, in which correlation
and response functions are represented by vacuum
expectation values of time-ordered products of
Heisenberg operators. A peculiar feature of MSR
theory is the appearance of new operators "con-
jugate" to the coordinates of the system and sat-
isfying boson-type commutation relations with
them. As these author's recognized, the formalism
so developed lacked a clear foundation but seemed

to provide a good operative procedure for repro-
ducing the perturbative solution. However, a
justification of MSR theory has since been given'
and the operators and state vectors defined more
precisely. The connection between the functional-
integral representations and MSR theory has also
been pointed out."

The purpose of this paper is to present a fuller
discussion of the analogy with quantum mechanics
starting from the functional-integral theory. For
the sake of completeness a brief derivation of
this theory is presented differing slightly from
those previously given. This is based on a gen-
erating functional for nonstatistical motion of the
system. The Heisenberg and Schrodinger repre-
sentations are derived by the usual arguments in-
volving the propagation kernel. Finally it is
shown how the result of Graham may be recovered
for the case of white noise stirring forces.

H. DERIVATION OF THE FU¹TIONAL-INTEGRAL
REPRESENTATION

For simplicity we consider throughout a system
with just one degree of freedom g(t) which satis-
fies an equation of motion

4+A(Q) =f(t), (2.l)

where A and f are given functions of Q and t, re-
spectively. This equation of motion may be de-
rived from the Lagrangian

g(r) =P(r)[Q(r)+A(Q(r)) —f(r)]+G(Q(r)) (2.2)

by requiring that the action integral f,",dr S(r)
should be stationary for arbitrary variations of
the conjugate variable P(r). The function G(q)
can be chosen arbitrarily. An equation of motion
for P is obtained from the condition that the action
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is stationary for variations of Q satisfying the
fixed endpoint value condition

6Q(t, ) =6Q(t,) =o .

~ dA dGP=P --+-
dQ dQ

(2.3)

which clearly depends on the particular choice of
G.

If the solution of (2.1) satisfies the initial con-
dition Q(0) = t) then Q(t ) satisfies the integral equa-
tion

functional integral. This expression is not in a
useful form since it involves the solution q which
may not be known explicitly. However, we may
write

6(q(O) —t )6[q+A(q) -f]=J-'6[q —q],
where J is the functional Jacobian det(5f/5Q) which
will be nonzero if, as we assume, there is a one
to one relationship between f and Q. This identity
is analogous to the one for the 5 function

5(B(x)-y}= [1/ (B'(xo) l]5(x- x ),
where x0 is the unique solution of the equation
B(x) =y. We therefore obtain

q(t) = tp+ dr[f(T) -A(q(r))] . (2 4)
D[ql&[q]J& 4+A(q) -fl (2.6)

We now pose the problem of determining an
operation for picking out the value attained by a
functional &[q] of q(T) when q(r) is the solution
of (2.1) with a given initial value. , It will be as-
sumed that I' depends on the form of q only in a
finite time interval (0, T) in order to simplify the
discussion. We give a purely formal analysis
which will be commented on later. Firstly we
may write

q(0&= 5)

where, as the notation implies, the integral is
taken over all functions q(r) satisfying the given
initial condition q(0) = tp.

We now make use of the Fourier representation
of the 5 functional

r
e [x]=X( '(r) ie[p ] exp i f drp (r)x(r) I

.
0 )

~[q]= &[q]~[q]6[q- Ql, (2.5)
Here Jt(T) is an infinite normalization constant
depending only on T which has the property

where 6[ ] denotes the 5 functional for functions
of 7 on the interval (0, T), and fD[ ] denotes a

3I(t +s) =3I{t)6I(s) .
Using this we obtain

T
p[()]=X( (T) 8[el fD[p]p[e]d exp if drp(r){i](r)+X(e(r))-p( )]) . r

(e(0) = &$ 0
(2.'0

The simplest way to assign a meaning to the
formal procedures outlined above is by means of
a limiting process. The time interval (0, T) is
divided into a number N of equal subintervals of
length l = T/N, and the differential equation (2.1)
is replaced by a finite difference equation. The
Jacobian J is then obtained as the limit of an or-
dinary Jacobian, and similarly the functional in-
tegral is defined as the limit of a multiple inte-
gral of order Nas-N-~. It is found that the val-
ue obtained for J depends on the particular dif-
ference equation chosen. For example, taking

(Q„+) —Q„)/I+A(q„) =f„,

where f„=f(nl) and Qo = tp, we find that the Jacobian
relating the two sets of variables Q„.. . , Q» and

f„.. . ,f„,is given by

Bf, ] 1
sq ) t»

However, taking the difference equation

(Q.—Q. ,)/I+-'. (A(q.)+A(q. ,))=f. ,

where f„=f(t,*) with t„*=—,'(t„,+t„) we find, '~ as
L-O,

1 1—exp —— drx'(()(r))l,
0

where A' denotes dA/dQ. Correspondingly, the
functional integrals are obtained by different
limiting procedures. These different represen-
tations are presumably equivalent although there
has been much discussion of this point. ' " We
shall here adopt the representation most com-
monly used in quantum mechanics and described
in detail by Katz." The right-hand side of (2.V)

is to be regarded as the limit as N ~ of the ex-
pression
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1(,„dq, ~ dq„dp, dp p(q„. . . , q„)exp] ——) QA'(q ))2n E) 2

x exp it p P „q " ' + -,'A. (q„}+ ~A(q„,) -f„]
n=&

n . n 1 n (2.9)

xexpi dT gr
0

(2.9)

where P„=P(t„*),q„=q(t „),f„=f(t„*),and

V(q„. . . , q„) denotes the discrete approximation
to the furictional F[ql.

It is seen that we may write

p[Q]=p( '(r)f p[q] plplplqt
fe(0) = &}

where 2 is the Lagrangian (2.2) with the partic-
ular choice of G

G(q) = --,'iw'(q) .
Taking I' =-1 we see that

T
q((q) f =p[ql p[p]exp dr d(r)

]
.

(e(0) = tt} 0

A particular case of (2.9) arises in the represen-
tation of correlation functions

Q(t, ) "Q(t.) =& '(&) D[ql
T

[P] q(r) q(r,„)ex~p(i drdlr)) .

al' '(&)
e(0&= &}

&[ql D[P lF[q,P )

( T
x exp]r' dr Z(r)) .

0

The definition of this in terms of a limiting pro-
cedure involves an expression like (2.8) but F is
replaced by a function of q(t„) andP(t„*) for n

=1,... , N as described by Katz." One applica-
tion of this more-general integral is in the rep-
resentation of the system's response to small
changes in the force. The linear change of the
functional F[Ql is described by the functional
derivative

5F[Q]/|)f(t )

The statistical distribution is sharp and the cor-
relation functions reduce to products in the pre-
sent case. The analogy with the canonical form
of the Feynman action-integral formulation of
quantum mechanics is apparent.

It is convenient to consider more-general in-
tegrals in which g is a functional of both p and q

as

G(t t')= Q( )
(t I)

G t t . tr t. q
~ fQ(tq)Q(t2)l

( 1) 2) 1) 2) gf(t q)gf(t q
)

p

and it is clear that these are represented by in-
tegrals of the form

& '(&)(-i) D[ql D[P lq(4) ' "q(t.)
e(o) = &}

xp (t,')".p(t „)

(2.10}

From Eq. (2.4) we see that 5Q(t)/5f(t') is zero
for t '& t (the causality property), while it ap-
proaches the value 1 as t '- t . The quantity thus
has a jump discontinuity at t'=t and 5Q(t)(5f(t)
is not well defined unless we adopt a convention,
whereas the corresponding functional integral

e(0) = &}
D[ql D[P lP (t)F[q l

and from (2.9) we see that this is given by
& '(&)(-i)

xexp i dr z(r)

p[ql fre[pip(r)q(r)
e(0)= &}

T
xexp i AC 7

0

Similarly higher-order functional derivatives are
given by integrals with several p factors in the
integrand. The response functions of the system
are the functional derivatives of q products such

is well defined provided we have adopted a suit-
able limiting procedure. The particular one used
here assigns a value —,

' to the above integral and
we must define the equal-time response functions
accordingly if (2.10) is to be valid for all values
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of the time arguments.
The functional integrals over p and q introduced

above must be carried out in the order indicated
although the introduction of a suitable convergence

factor into the integrand would enable this condi-
tion to be relaxed.

A generating functional may be introduced in the
obvious way

T
Z[q, q]=p( '(» D[ql D[e]exp i dv[ (qr)q(r) r(qr) p(r) +Z()r]) .

(,~0&= a} 0

The correlation and response functions are then obtained from Z by functional differentiation with
respect to the test functions $ and/or ]f. For example,

G(t; t ') = i[[)'Z(bt (t) [)g(t ')],—,—o

III. HEISENBERG AND. SCHRODINGER REPRESENTATIONS

In order to demonstrate the connection with the MSR operator theory and the Fokker-Planck the-
ory, which correspond, respectively, to the Heisenberg and Schrodinger pictures of quantum
mechanics, we introduce the propagation kernel

K(q„ t, ]q„t,) =3f-'(t, —t,)
e(t2) = e2

D[q] o]P] e~(t drZ(r&)
t2

(3.1)

the integral being taken over all trajectories
passing through the two points (q„ t,), (q„ t,).
This quantity gives the conditional probability
density that Q(t, ) =q, given that Q(t, ) =q, . The in-
tegral can be rewritten

T

4'x dq2qP(q). ) t).lq2 t2) s K(q2)t2Ibt 0),
~Q'2

(3.3)

where we have used the identity

qt '(t, —' )fD[q] D[p]e(q(t &-q )

tg
xe(q(t, )-q, )exp(v' dvq(v)).

t2

Clearly, as ty t2 0 we have

K(qi, t.lq2, t,) - b(q. —q2) ~

From (3.1) we see that K has the semigroup prop-
erty

v

2 K(qlq t 1 [q2q t2)K(q2) t 2jq3) t 2)

=K'(q„t, jq„tg . (3.2)

The functional integrals representing correla-
tion and response functions can be expressed in
terms of K. Taking, for example,

t
' = (—t}qt '(»f D[q] D[p]q(t, )p(t, )

(tt (o) = [t)

]'.
x epx)i dr Z(2.) (

o

we obtain for t, &t„

3i-'(t, —t.) „, D[ql D[t 9 (")
1e(t2) =~2

xexp g dvZ v

t2

9--i 5(q, -q, )

as t& ~ 7+ and t2~ T

The propagation kernel may be regarded as
the coordinate representation of the evolution
operator Xintroduced in Ref. 8 since it may be
seen from the definitions that

K(q', t']q, t) =X(t ', t)b(q -q'),
where Xacts only on functions of the variable q.
Using this result it may easily be verified that
the expression (3.3) for the response function can
be rewritten in the form derived from the opera-
tor theory of MSR. The same argument may be
applied to higher-order correlation and response
functions and we find, as in quantum theory, that
a functional integral involving a product of p's
and q's with different time values may be ex-
pressed as a vacuum expectation value of a time-
ordered product of operators

(-t» '(» f D[q] fD[p]p(t, &q(t.&".p(t.&exp(v «Z(r&) =(e., q[q(t )q«. ) q(t. )]pd (X'q&
4~(0) = b) 0
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In the operator representation the "state vectors"
are functions of q, 40—= 1 being the "vacuum state. "
The operators q(t) and q(t) are Heisenberg opera-
tors

q(t) =~(t)q~-'(t),

q(t) =
I z(t) —z-'(t)

sq

where E(t) = X'(t, 0) and j' denotes the adjoint of
an operator. The scalar product is defined by

B 9—K(q, t
I

~ ~ ) =—[A(q)-f(t)]K(q, t I
~ ~ ~ ).

Bg Bg

Similarly we find

(3.6)

which is obtained from the classical one

-P [A(q) -f(t)]+-', iA'(q)

by replacing products of p's and q's by symme-
trized products of the corresponding Schrodinger
operators. Hence the equation is

(t', I) =ftttttt(t)t'(t)t (tt),
8—K(q, t I" )= [A(q) -f(t)]—K( ~ ~ ~ Iq, t).8t Bg

(3.7)

Z(tt, t l 0)t=tfttdq
' tt(t, t t t(q ', t )

xK(q' t Ib 0) ~ (3.5)

The propagation kernel for the infinitesimal in-
terval (t, t + e) can be obtained by an argument
identical to that used in quantum mechanics. "'"
It is important to keep in mind the particular defi-
nition of the functional integrals since this deter-
mines the operator ordering of the Hamiltonian.
The definition used here leads to a Hamiltonian

where p(q) is the probability density function for
the initial data which, in the present case, is just
6(q —t).

The commutation relations for the operators
follow directly from the definitions and we see
that

[q(t), q(t)] = 1 .
It also follows that (@„q(t)4) = 0 for any state 4).
The equations of motion may also be deduced from
the definitions but it is probably simpler to make
use of the identity

( T

[p] expIi dr fg(r)q(r)

+ tt(t)t (t) t t'(t))) = o

and a similar one involving 5/5q(t) to derive the
Schwinger equations

1 8 5Z 1
(( )+ q(t)-f(t)+A —. (( ))

Z=O,

1 8 6Z - 5, 1
~ st 6q(t) 6q(t, ) t 6g(t))I

Replacing each term by its corresponding opera-
tor expression we can derive the following equa-
tions

q(t)+A(q(t))-f(t ),
q(t) =q(t)A'(q(t)).

To establish a Schrodinger type representation
we use the semigroup property to write

IV. STATISTICS

So far in this discussion the initial data and the
force f(t) have been assumed to be given p'recise-
ly. However, the form of the functional integrals
is such that an average over either, or both, of
these quantities can be performed. I et us con-
sider the case where f(t) is a white-noise function
so that, denoting averages over f by angular brac-
kets, we have

(f(t)f(t ')) = c~(t —t ')

and

exp g d7p 7 7 =exp —
2

p'
)

~

The formulas obtained above for response and
correlation functions, etc. , all involve f in the
form of a factor

r
exp —s drp 7 7

0 j

in the integrand so that, when the average over f
is performed, this factor is simply replaced by

exp —
g c1

The correlation functions, etc. , are thus given by
the same formulas as before, such as (2.9), (2.10),
and (2.11), but with the Lagrangian given by

~( ) -P(.)[q(.).A(q( ))] —. P (.)--:A(.(.)) .
(4.1)

The normalization constant is unchanged in the
averaging being independent of f.

Since S(~) is still local in the time variable ~
the propagation kernel satisfies the semigroup
property and a Schrodinger equation (the Fokker-
Planck e(luation) can be derived

8 (S' B
K(q, t

I ) = —,
' c I

—+—A(q) K(q, t
I

I),BQ

(4.2)
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The Heisenberg representation can be developed
a.s before, tQe operator equations of motion fol-
lowing most simply from the Schwinger equations.
We now obtain

q(t)+A(q(t)) =cq(&),

q(t) =q(t)&'(q(t)),

so that the averaging has led to a coupling. of the
equations.

Since the new Lagrangian involves p only in
quadratic form the functional integral over p can
be performed explicitly and we recover the result
of Graham. For example, the propagation kernel
is given by

&(s„&,lq. , t)=x , '(t, —&.)f
0 (&y) = ey
e (&g) = e2

t

D[q] exp-
t2

1
dT [—y(r)+a(q(~))]' ,'z--(q(T))I

Since the integrand contains products of j and
functions of q evaluated at the same time the in-
tegral must be defined correctly. The appropriate
definition is the same as that given by Feynman
and Hibbs" for the quantum-mechanical problem
of a particle in an electromagnetic field.

Averages over the initial data may also be easily
carried out. If the initial-value condition is in-
corporated into the integrand by means of a factor
5(q(0) —b) the average over 5 then gives p(q(0)),
where p is the probability density function of the
initial value. In the case where no stochastic
force acts the integration over p simply gives
back the 5 functional and so does not lead to a
useful functional-integral representation.

If a statistically stationary distribution exists
described by the density function R(q) then the
Fokker- Planck equation gives

e)' e—c —
I

+—A(q) R(q) =0.
2 gQ' j 8Q'

The stationary nature of R also leads to the equa-
tion

'&(q, t Iq' t')R(q') =R(q) .
It follows that the response and correlation func-
tions in the stationary state are given by

(
~q(f, ) &R(q, )

(f ) 41 42ql (ql ~1 Iq2,~ 2)
J 2 stat ~f2

(Q(t )Q(t )), , = dq dq q q ff(q, g Iq, f )R(q ) .

Using these results we can establish the fluctua-
tion-dissipation theorem

(2/el(()(t, )q((,))„=„')
stat

This relationship is not valid for systems with
more than one degree of freedom unless the
stationary state satisfies additional conditions.

The generalization of the functional-integral
representations to the case of a Gaussian stirring
force which is not white noise is straightforward.
If f is of zero mean and has a correlation function
(f(t)f(t ')) = c(t —t ') then, instead of a term
cf d7 p'(7) in the Lagrangian we have

0

dT~ dT2 c(T) —T2)p (T) )p (T2) .

The Lagrangian is now nonlocal in time, the
analogy with quantum mechanics breaks down,
and a Schrodinger formalism does not exist.
However, a Heisenberg operator theory can still
be formu)ated by means of the Schwinger equa-
tions which can be derived as before. It is also
possible to deal with situations in which the ran-
dom force appears in the equation of motion
multiplied by a function of the system coordi-
nates. ' Finally it should be mentioned that the
Schwinger equations provide a simple way to
obtain both "bare" and renormalized perturba-
tion series."
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