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The problem of 'scattering of a charged particle (an electronj by a potential in the presence of a single-

mode classical electromagnetic field (a laser) in the dipole approximation is considered. No expansion in the

strength of the field is made, but an expansion in the frequency of the field is carried out. This problem has

been considered previously by Kroll and Watson, who showed that, if only the first two orders in eu are
retained, then the scattering is describable by an on-shell T matrix obtained in the absence of the field.

They show this to be an essentially classical result. A different method is used to obtain their result and the
next order ir1 eo which yields the first off-shell correction is obtained. Far off-shell contributions are found in

this order.

A recent experiment' on'the scattering of 11-eV
electrons by argon atoms in the field of an intense
CO, laser has yielded the first observation of
multiphoton (a three photons) free-free transi-
tions. The laser field intensity is too high to al-
low a perturbation theory in the electron-laser
interaction, but the CO, laser photon energy (-1.2
x 10 ' eV) is low enough to allow an expansion in
this parameter. The complete p~oblem does not
seem to have been considered in the published lit-
erature, but the approximation in which the atom
is replaced by a structureless potential has been
discussed by Kroll and Watson. ' They expanded
in powers of the laser frequency and retained
only the first two terms, In that approximation
they obtained the result that the T matrix for
transfer of E photons could be related to an on-
shell T matrix in the absence of the laser for
slightly different initial and final momenta. They
also show that this is an essentially classical re-
sult. It is difficult to see how to generalize their
method to higher powers of & so we shall use a
different technique to reproduce their results and
also obtain the next-order correction, which
yields the first off-shell corrections to the T ma-
trix.

The method used is a Born series in the scat-
tering potential. To that end we start with the
Schrodinger equation (S= 1),

(
ie e——T —V ——p ~ A(t) 4'=0,
et

where for a linearly polarized laser

A(t) = (E/&o) cos&dt .
In the absence of V, solutions to Eq. (1) are

X, =exp(i[q r-q K(t) —~,t]),
where

~, = q'/2m,

&T(t) = &7, s inst = (eE /m &@~) sin&dt,

(2)

(4)

where the brackets indicate both space and time
integration. The solution of (1) can be expanded
in powers of V such that

,'.";"= g (x, , v(&=v)"x,&,
n=0

(6)

where 6 is the Green's function in the absence of
po

&"(rt, r't')= -ie(t —t' dQ
(2,),X~(r, t)X~*(r', t') .

This is now substituted into 7'"'. The spatial in-
tegrals now may be performed in terms of

V(k) = d' i e~V& ( ),i'
with the result

with p, being the arpplitude of a classical particle
moving in the vector potential, (2). The transi-
tion amplitude for scattering from state X, to g, , ,
is given by

7,;=(x, , V4',"),

&n+&i ( i)n
q& 0 ),„"V(K, .)".V(K„,)

xf d&
fn

dt,» exp(i[a, , —e,,)t, + (e, —a, )t,+. ~ ~ +(c„„-a,)t,]]

x exp{i [K& ~ &&.'(t, )+ ~ .+K, ~ &T(t,)]].,
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where

K1=Q —k1 K2=k1 —K2 . . . , K 1=K„—q .
The time integrals may be performed by an (n
+ 1)-fold use of the identity

(10)

We may set I-0=l and rewrite this as

(14)

ktt s( tt) ~ j (K, g )&-ttt(«ttl) y 0 Z (l) xI (o«t)(l)
n=

with the result

g(«+1 )
C,tt(

$1+~ ~ f

(12)

(
d'lt " V(K, ) V(K~, )

(2v)' (a, + u)I, ,). ~ (6„+(oI,„)
x J, (K, ~ a(,). .Jt (K~, a(,)

X 5(%ox —t —(dI o),

is identified as the transition matrix for scatter-
ing with transfer of l photons from which the cross
section is

da(, l} q(l) m (}

where

+t=~o —et')Io= Q lt.
j=S+1

(13)

where q'(l) is obtained from the 5 function in (14).
The expression for T,',",)(1}implied by (12) and (14)
may be expanded in &u (holding ato fixed) with the
result

r(",")(l)= i
J 1o ~ ~ $

"') ""'"""-'z,(K, t.)z, , (K, «)" ~, (I„, t.)~ ~ ~ ~ ~

tf
l L1 1 0 L,1L,2 2 L,„a+1

n L n J2 n I y
x ( —«Q —'+ «' P, x «' g "+...),~1 ~s

where we have shifted to the capital I, 's of Eq. (13}
as summation variables.

There are three Bessel-function sum rules which
we shall need to perform the L sums.

&1"'J.n
J, ~ (K, ' a(0)J~ ~ (K, 'a(o)'' ~ J'~ (Ko„'@0)

=Z, (x), (18)

Q ~.(y&».b')=~»(y+y'),

g ~.(»»-.(y')=,~»(y+y'),

(18a)

(18b)

where x = (q'- q) ~ a, and where we have used

«e«

K~= q'- q.
-"1

Equations (18a) and (18b) can be used to give

(20)

Q &'~.(y&» .(y'}
~«CO

N2y

X+X
«& (x+ « )+-'-'«, &(«+'«')) .

3'+ X
(18c)

The first of these can be used n times to give

—'Z, , (K, ~ @,) "Z, (K„,~ 8,)
Ss)1 L, 1oo ~ Z, S

g lZt(x)(k, -q) ~ (I,
( )x

and finally Eqs. (18a) and (18b) can be combined to
give

—;+p p ' ') z. ..(K, «,)" z, (K„„«.)~ ~ ~ ~ ~

I ~ ~ ~ L, Sgf j L, o e1 N 1

(V, (x) g ). ((-„-) )), ~ («, —«) «, )*
S=1 S

Z,'(x) x" (Ic, —«) «, («'-k, ) «„x" (k, -«) «,
) (~

S=1 S= 1 S

(q'-k, ) a„~(%, kt) aT, -

(22}

Equations (19), (21), and (22) may be used to simplify the first three orders in ~ in Eq. (17}:
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d'k "V(K ) ~ ~ V(K )

II

3

~

3

~
~ ~

I~

I

«
~

n

~~

I~
1

~ 1~ ~ ~ 2 n
~

~

~ 2 ~ 2 n
~ ~ ~ 2

(2v)K Q ~ ~ ~ n,

cak},(x}k" (k, -j) ~ a, . ca'PJ;(x)k" (k, —c() ~ K, ' ca'PZ(x) k" (k, —k) ~ a, )'

ca*J'(x)k" (k, -j) ac,(c('-k) ac ca' ((x) K (~lc -c}) cc„K (c)'-kc} ai)

aPP(x) g (k, —k,} ac;
2

%e can follow the results of Kroll and Watson by noting that we may define

D,= 4,+ (cdl/x)(k, —q) n, = e, , —q. ..
K = (m(dl/x)n, . (25)

a, (x)/(D, ~ *D„)

may be expanded in powers of (d with a result which is identical, up to order a, with the first four terms
in Eq. (23}. If we now shift the integration variables by k& = k& —7 and define

Q=q —A. , Q'=q' —A. , (26}

then (dropping the primes on k&} we get

c(k "
(K,) " (K.„)

& ( )
ca Zc(x} K" k, ~ cc, ' " k, ~ cc )'

(2)i)' a' ~ a' ~ 2 x Z
1 n s 1 s s= s

ca%((x) " (k, - icc) a,
I

where the K& are given by (10) with q-Q and q'
-Q' and &~ is give~ by (13) with q-Q. The first
term of (27) can be rewritten as

correction to this result. They can be reexpress-
ed by use of the identities

where the last factor is the nth term in the Born
series for the T matrix for scattering in the ab-
sence of the laser The ene. rgy 6 function in (14)
can be rewritten in terms of the new momenta and
it becomes 5(cz, —cz) indicating that the T matrix
in the absence of the laser is evaluated on shell
in this order. Insertion of this result into (15)
yields the result of Kroll and Watson.

The remaining four terms in (27) are the e'

d'u "P(K,')" V(K„',) "
(27i)' ~' ~ ~ a'

1 n s= s

(Ql
~

T(k}+1)(E)
~
Q&

d'a "V(K')" V(K' )
(2)i)' n, ' ~ ~ a'

1 n

n ] n ] 2-
x g—„+ P—, , (28b)

- s=l s s=l s
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[()., '(v +v )]'&Q'I T'"'"(z) IQ&

d'k "V(K') ~ ~ ~ V(K' )
(2))')

6"-":)' (~"-.':)' ™4-':
(28c}

(I) I {V + V ) &Qt T(n+t)(z) Q&

dna tt V(Kt) V(Kt
(27()

n

— ~'. — (i".,")(~-.',)
(281)

The last term of (27) is, perhaps, the most in-
teresting. It can be rewritten as

S(d())'ltt'""'(s, &lt)&= t z (~)f'' .* s. sSP =1

0 1 1-2 I &k IT"-"(z)ll &] (29)

or in operator notation The sum over n may now be performed:

n+g
8T(n+1)(z) gl(+} T(s)(Z)

2 ' s'(z)

x [T(s-t)(Z) &&,y] T(n-ssl)(z)
a'(z)

If we define a new operator

(30)

8T g 8T(n+x)
n=o

=','" (ns) „',x(s) x(s),,', ns)),
(34)

where X(z) is the sum over all n on X™(z).It
can be written

X(ns).)(Z) V
1

Un 0 ~

a(z) —(oZ, p

1
V

b,(z) - &a(xo p

(31)

X(z)= V+ V
)

V (38)

and can be shown to satisfy the integral equation

containing n+ 1 factors of U, then it can be expand-
ed in powers of &d up to first order with the result

x(z) = v+ v x(z) .1
(36)

tt+g (dQX(nsl)(z) T(ns&)(Z)+ ~ T(J)(z) 0 P T(n-Jsl)(Z)
a2(z)

(32)
T(E)= V+ V T(z).1

(37)

Similarly T, which is the sum over all n on T~"'

satisfies

The last term in (32) is the form occurring in (30)
which can then be written

18T(n+&)(Z)- «) T(s)(z) X(n+(-s)(z)2, ~'(z)

X(s)(z) T( lnss)(Z)
a'(E)

A straightforward comparison of these two yields

&I"'IX(Z) k& =&I '+ m~~s
I
T(z+ nm"'~2o) lk+ m~~g

(38)

Then if the right-hand side of this equation is ex-
panded in powers of ~, keeping terms up to the
linear ones, it can be substituted back into the
matrix form of (34) with the result

&Q 8Tle&='""'
2 , ((tt lns)lit&~. .«.+~.xt les&ll)t&

21(

—[m()( (V(), + Vn)&Q'I T(Z) lk&]&I(I T«) IQ&
g

(39)
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The results may now be assembled to give

+ st&0— T P~ +&Q'l»(&o) IQ&.

The first term is the Kroll and Watson result ex-
tended to second order. The next bracket is a col-
lection of second-order corrections which contain
the T matrix in the absence of the field evaluated
slightly off shell. Finally, the last term is also a
second-order correction but it depends upon this
T matrix far off shell because of the integral. "..ver
all k which occurs in (39).

In conclusion, it has been shown that the T ma-
trix for the scattering of an electrons with trans-
fer of I photons by a potential in the presence of a
low-frequency laser is describable, in lowest
order, by an on-shell T matrix describing the
scattering in the absence of the laser, but that
the ~' corrections are describable in terms of
slightly off-shell T matrix terms plus a term that
depends upon the T matrix far off shell. However,

one should be extremely cautious when applying these
results to scattering of an electron by an atom in
the presence of a laser field. An atom has in-
ternal degrees of freedom, and even when the la-
ser photon energy is much smal1er than the exci-
tation energy of the atom, the atom may not act
just as a potential. For example, the electron
can excite the atom and the energy of a single
photon may be enough to couple pairs of excited
states. The coupling may even be resonant with
the excited (e+A) complex and consequently
strong. This. will be discussed in a future publica-
tion.
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