
PHYSICAL REVIE% A VOLUME 19 NUMjBER 3 MARCH 1979

Statistical mechanics of stationary states. HI. Fluctuations in dense fluids
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I

The detailed structure of correlation functions in nonequilibrium stationary states is analyzed. The theory is
applied to time-correlation functions and static-correlation functions in simple dense fluids. We find that the
breaking of time-reversal symmetry induces important changes that cannot be predicted from local-
equilibrium theories. The spectrum of light scattered from argon at 235 K and 1 g/cm' subject to a
temperature gradient of 0.5 K/cm is computed. We find a pronounced asymmetry in the Brillouin peaks. The
static-correlation functions that are usually zero due to time-reversal symmetry are calculated and found to
be nonzero and show the existence of a long=range order (1/r decay in physical space). The connection to
phenomenology is discussed and a regressionlike hypothesis is shown to be consistent with the microscopic
theory once the changes due to symmetry breaking are made.

I. INTRODUCTION

In the first two papers of this series'~ (here-
after denoted as I and II), we have discussed some
general properties of correlation functions in non-
equilibrium stationary states (NESS). We have
shown that the very existence of a NESS is associ-
ated with the breaking of time-reversal symmetry.
The aim of this paper is to study the implications
of this symmetry breaking on the detailed struc-
ture of the fluctuations in NESS, with emphasis on
the changes in the spectrum of light scattered
from dense fluids in NESS. We shall show that
there is a significant change in the nature of the
spectrum and that time-reversal symmetry break-
ing is a novel source of a long-range order which
appears in NESS.

The traditional method for the calculation of
time-correlation functions in hydrodynamic sys-
tems has been the use of Onsager's regression
method. 3 Originally, the method was constructed
for equilibrium-correlation functions, and was
based on the assumption that small spontaneous
fluctuations regress to equilibrium in the samb
fashion as the macroscopic variables. Thus the
linearized macroscopic equations of motion and the
static-correlation functions were sufficient to
calculate the dynamic-correlation functions.

This method was generalized for the study. of
time-correlation functions in NESS. There the
equations of motion are linearized around the
NESS and are then used to obtain a relation be-
tween the dynamic- and static-correlation func-
tions. (For details see Ref. 4 or Sec. VI of this
paper. ) We shall show in this paper that faulty
application of this method has led workers in this
field to erroneous results. The reason is twofold.
First, the time-correlation functions were as-

sumed to be symmetric in time, and we have
shown already'2 and will reiterate here, that this
is not the case. Second, the nonequilibrium static-
correlation functions have been evaluated incor-
rectly. The most common procedure has been to
employ the local-equilibrium form for these quan-
tities, and as we show later this is not an appro-
priate description of the system.

The experimental technique of scattering light
from a macroscopic system, s offers an extremely
accurate probe of long-wavelength (or hydrody-
namic) fluctuations. The quantity measured in
light scattering is proportional to the Fourier
transform (in space and time) of the density-den-
sity time-correlation function. Due to time re-
versal symmetry, the spectrum of light scattered
from equilibrium systems is perfectly symmetric
in the frequency (shift). We have shown already in
I and II that the spectrum of light scattered from
NESS does not have this symmetry. The major
part of this paper is devoted to the detailed study
of this spectrum. We shall show that the asym-
metry can be quit'e pronounced and indicates a
preferential coupling of the NESS fluxes to one of
the two sound modes at the expense of the other.
The spectrum for argon at room temperature in
a small temperature gradient is given.

One of the most striking results of this paper is
that with the breaking of time-reversal symmetry
there is associated an appearance of a long-range
order. We shall show that static-correlation
functions that vanish in equilibrium due to time-
reversal symmetry are nonzero in the NESS and
decay like 1/r for intermediate values of r.

The organization of this work is as follows: In
Sec. II, we summarize the results of paper I that
are needed here, and restate the general forms
.of correlation functions in NESS. In Sec. III, we
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present a general method for the calculation of
the new terms in the correlation functions. This
method is applicable to hydrodynamic systems.
In Sec. IV, we apply the theory to simple fluids
and calculate the transverse-velocity time-corre-
lation function. Section V contains some of the
most interesting results of this work. There, we
calculate the NESS dynamic structure factor and
the spectrum of light scattered from a fluid in
NESS. Important changes from equilibrium spec-
tra are predicted. In Sec. VI we tie our theory to
phenomenology. We describe the connection to the
regression hypotheses and analyze the implications
of the breaking of time-reversal symmetry.

Among these is the appearance of long-range or-
der, reflected in a I/O' dependence (for interme-
diate wave vectors) of some static-correlation
functions. Section VII offers summarizing re-
marks and discussions.

II. GENERAL CONSIDERATIONS

A. Summary of previous results

This section contains the relevant results found
in I. As was shown there, when a macroscopic
system is close to equilibrium, any arbitrary
time-correlation function can be written as

(B(r,o)C(r')}„E=(B(r,o')C(r')}h, + (B(r,d)C(r')A(r&)}*(r~ - r) VP4(r)

d~ B r, v C r' I -7' ~ V 4 r
0

= (B(r,o')C(r'))„, + —,([B(r,(y)C(r') +B(r)C(r', -v)]A(r&))*(r& —.r) ~ VP4 (r)

d7([B(r,o)C(r') + B(r)C(r', -v }]Ir(-7})VP4(r),
0

(2.1)

nr(rt) -=g()(r r, (t)), —

E(i, t)-=$5(r r,(t))-
— + —,

' g U(t yy (t))
~2m )~gg )

(2.2a)

(2.2b)

where the second equality follows from stationari-
ty. In the above expression, the symbols ( )»,
( },and "horn" denote averages in the NESS,
equilibrium system, and the homogeneous equili-
brium systems where 4 =-4(r}, respectively,
while A is A —(A). As was discussed in I Ir is
the total dissipative flux and 4(r) corresponds to
the deviation of the conjugate thermodynamic vari-
ables from their equilibrium values. Finally, the
+ in Eq. (2.1) is used to represent integration over
r, .

The set of variables A(r, t) consists of the slow
variables which for our system are the densities
of the conserved variables, i.e., A(r, t) = {N(r,t}, -
E(r, t), P(r, t))where the number, energy, and
momentum densities are given by

and

P(r, t) -=pl)(r —r, (t))p, (t) . (2.2c)

The conjugate thermodynamic variables corre-
sponding to this set are

4„(r,t)= "' t('(r, t)--&, (2.3a)

4~(r, t) -=1 —P(r, t)/P,
4 (r, t) =p(r, t)v(r, t-)/p,

(2.3b)

(2.3c)

~ - &A(r, t)A(r, t) -='- =-V J(r, t), (2.4)

where P(r, t) =-[k~T(r, t)], v(r, t) is the fluid
velocity, p'(r, t} is the local chemical potential,
and P and p are the corresponding equilibrium
quantities. As has been argued in I the conjugate
variables are governed by the usual phenomeno-
logical hydrodynamic equations.

The hydrodynamic variables, A(r, t) are the'den-
sities of conserved quantities and thus
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where the currents

J(r, t) = (P—(r, t)/m, Je(r, t), gr, t))
with Js(r, t) and 7(r, t) being the microscopic ener-
gy current and stress tensor, respectively. As
we discussed in I, the total dissipative fluxes are
spatial integrals of the dissipative flux densities:

I(r, t) =J(r, t—}-M(r I r', t)*A(r, t), (2.5)

where

isotropic at equilibrium. This implies that the
various terms appearing in Eq. (2.1) depend on r
—r' and parametrically on r only through the
pC (r). It is thus more convenient to consider a
Fourier representation of the correlation func-
tions:

C(k, olr) =- J(dare' ' 'LA(r, (r)A(r-t)r))NE ~ (2.10)

Proceeding as in I we find from Eq. (2.1) that

and

M(r Ir';t) =—(J(r, t)A(r&))+E (r& Ir';t) (2.6a) C(k, o'Ir) =C (k, olr)+C"'(k, ol r)+ W(k, olr),
(2.11)

Q(r, t)A(r&))+Z ~(r& I r', t) =-6(r —r')1. (2.6b)

We remind the reader that the dissipative fluxes
are orthogonal to the slow variables in the sense
that

(I(r, t)A(r, )) =0. (2.V)

I))((r ) t}= 0

ie(r, t) =Je(r, t) —(h/m p)P(r, t)

(2.9a)

(2.9b)

(2.9c)

to lowest order in the slowness parameter. In the
last equations, h, p, and e are the equilibrium
enthalpy, number, and energy densities, and p„ is
the pressure, respectively.

This- completes our summary of the previous re-
sults which will be used in this work.

B. Correction functions in NESS

As has already been discussed, ' we consider
systems which are translationally invariant and

For times I; larger than some microscopic de-,
cay time vo (of the order 10 sec), is has been
argued that the quantity M(r I r', t) becomes con-
stant in time and will then be denoted by M(r I r').

The significance of M(rlr ') lies in the fact that it
governs8 the- macroscopic relaxation. That is for
g) 7'~

a(r, t) =- V.M(r I r')ea(r', t), (2.8)

where a(r, t) is the nonequilibrium average of
A(r, t). It has been shown that Eq. (2.8) is equiva-
lent to the linearized hydrodynamic equations and
is correct to second ord, er in the smallness. pa-
rameter characterizing A. Finally, using the fact
that the A's are slow allows us to set the time
appearing in M in Eq. (2.5) to zero thereby ob-
taining 6

where

C"' (k, o I r) -=(I/V)(Ago)A 1}„, (2.12a)

In the last expressions, Ap(o) denotes the space
Fourier transform [cf.Eq. (2.10)] of A(r, o), etc.
We remark that, if one considers the (N, N) com-
ponent of Eq. (2.11), then Eq. (4.18) of paper I is
obtained.

The various terms on the right-hand side of Eq.
(2.11) may be interpreted as in I. From Eq.
(2.12a) we see that Q" (k, o'

I r) is given in terms
of an equilibrium time-correlation function in a
system where the thermodynamic state properties
correspond to those in the NESS at the point r.
As such, the standard techniques for computing
their small-k and large. -r forms may be used.
In fact, usihg Eq. (2.6a), one may show that

C"' (k, olr)=tk M(klr) C"'.(k, o Ir), (2.13)

where M(kl r) is the Fourier transform of the
long-time form of M(rl r', t) evaluated in the ap-
propriate homogeneous system. Thus

C ' (k, o I r) =exp[ik-M(k I r)o]-Ch~(k, o = 0 I r) .
(2.14}

Equation (2.14) is the Onsager regression hy-
pothesis form for equilibrium time-correlation
functions and is valid for times' larger than wa

and to second order in k.
The second term appearing on the right-hand

side of Eq. (2.11) is a nonlocality correction as-
sociated with local-equilibrium averages. While
these nonlocality corrections are unimportant for

(:"'(k,sir) -=-,' Jdaidr, e'

x([A(r, o )A(r —ter)+A(r)A(r —br, -O)]

xA(r&))(rq - r) VP@(r), (2,12b)

and

I'(k, vi() -=& I dr([A-„(a)A.~+A-„&.e(-. &)I
0

xI,(-7)) vpC(r). (2.12c)
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static quantities [see Eq. (3.12}of paper II], the
nonlocality correction here may be important for
large e since the t;orrelation length associated with
this term may have time to grow, In principle
the calculation of g"'(k, o I r) may be carried out
using mode-coupling techniques (i.e., multilinear
hydrodynamics}. To see this we note that Eq.
(2.12b) can be reexpressed as

C"'(k, g i r) = — lim &p-([A}-,.p(o)A-&Vf. 0

+Ay pA-g(~)]A }r} ~ gp(j)(r} .,
(2.15)

I

where the equilibrium transl. ational invariance has
been used. The equilibrium correlations appearing
in Eq. (2.15) are between linear and bilinear vari-
ables and are thus subject to mode-coupling anal-
ysis.

As we shall now show, Eq. (2.15) can be evalu-
ated without resorting to mode-coupling theory
when one is interested in the diagonal elements of
C"' (i.e., in autocorrelation functions}. The proof
of thip follows in exactly the same fashion as
used in obtaining Eq. (4.15) of paper I. Starting
with Eq. (2.12b) we have

C"„(}rr }r)= fdr&drrdrrr 'Q([A, (r&, tr)d, (rr) +d, (r&)d,(rr, -r}}d(rr))(rr -r&) )d}d(r}, (2.16)

where translational invariance was used. Making
use of time-reversal and inversion symmetries
and the fact that the product of the signatures for
this transformation is always equal to 1 for the
hydrodynamic variables (cf. Sec. IV of paper I) Eq.
(2.16) becomes

C"' (k, o I r)

In Sec. III we present a theory of the long-time
and wavelength form of Eq. (2.1&} in dense sys-
tems.

III. CALCULATION OF fV(k, a tr)

FOR AUTOCGRRELATION FUNCTIONS

(2.17a)

(2.17b)

In I and II some infermatxon concerning 8'was
obtained by examining its symmetries and low-
density sum rules. Of much greater interest is
the long-time dependence of long-wavelength
fluctuations, since these play an important role
in scattering experiments.

In this section, the small-k and long-cr behavior
of

Hence, Eq. (2.17b) in conjunction with Eq. (2.14)
may be used to evaluate the nonlocality correction
for NESS autocorrelation functions which are the
subject of this paper,

The last term on the right-hand side of Eq.
(2.11}is not simply related to equilibrium auto-
correlation functions. Nonetheless, for NESS
autocorrelation functions, it can be reexpressed
in a simpler form by using time-reversal and
inversion symmetries in Eq. (2.12c}. The result
is

'}"('( , (r)r=- f dr(d, ,r(o)d„.r(, „(-r}) (3.1)

A "'(k,(r)=A "6(-k,o)*, (3.2a)

is investigated. The results will then be used [cf.
Eq. (2.18)] to arrive at an expression for W, The
function A'"' (k, o} has a number of symmetry
properties which may be proved in the usual
fashion:

(3.2b)

(3.2c)

(2.18}

where the superscript * denotes complex conjuga-
tion, and g and e are the signatures of A under
inversion and time reversal, respectively.
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The calculation of A ~'(k, a) follows from the
separation of time-scale assumption which is
equivalent to the statement that correlations in-
volving the dissipative fluxes decay quickly. We
use this to advantage by writing the equation of
motion for A in a form which exhibits as many
dissipative fluxes as is possible. Thus, using
Eqs. (3.2) and (2,4)-(2.6) we find

A'"'(k, v) =M)'(a)A'"'(R, v) + fk II~ (R,v), (8.3}

where

n "'(k,v) = dv(I. ;(.v)w„„-f, ,(-r}), (3.4)
(

MP'(v) -=ik. ((J„-(v}A „-) (A-„(v)A;) '} ', (3.5)

+
J

dv'[exp/1„-(v —r)}ik Q'(k, r}]. (3.7}
0

As was mentioned above, A may diverge as k
-0, and for those cases the first term on the
right-hand side of (8.7) should be more important
at small k. We shall show, however, that for
other cases the first term on the right-hand side
of Eq. (3.7) vanishes by symmetry and then all
the cor.tribution arises from the second term which

and where the convention that repeated greek in-
dices are to be summed over is adopted. The
quantity appearing within the curly brackets in
Eq. (8.5) is the Fourier transform of Eq. (2.6).
It has been studied extensively for long times and

long wavelengths by Selwyn and Qppenheim. The
main results concerning this quantity are that for
small k (i.e., to order k2) it becomes a constant
for 0» 7'D and that it governs the macroscopic re-
laxation of a~gt) [cf.Eq. (2.6)]. Thus writing the
equation of motion for A in the form given by Eq.
(3.3) is useful since it makes part of its "macro-
scopic" evolution explicit.

Finally, writing the equation of motion for A in
the form of Eq. (3.3) has the additional advantage
that the "nonmacroscopic" part 0 appears multi-
plied by k and is thus small. Qn the other hand,
one can easily verify that some of the A's diverge
as k-0 [cf. Eq. (3.1)]. Therefore, we expect that
the "macroscopic" part of A will be more impor-
tant at long wavelengths.

For convenience, we rewrite Eq. (3.3) in ma-
trix notati. on. We do so by regarding 5 as an in-
dex that is fixed from the start (i.e. , we consider
couplings to I~ and Iz separately), and thus ob-
tain

A'(k, a) =M„-(v)A'(k, a)+ik 0'(k, a). (3.6)

For a & rn we can drop the v dependence of Mr(v}
and formally solve Eq, (3.6) for A':

A'(k, a) =exp[M-„a]A'(k, v =0)

we now calculate.
Using Eq. (8.4), we may find an expression for

the time dependence of 0'(k, v), at small k. Noting
that for o» &D

Q'(k, v)= t dr(I;A ~(-v)I, r(-r)),
~ 40

(3.6)

+ikik: d7 I~1 q -v I, -&, 39
eo

where the superscri. 'pt T denotes matrix transpo-
sition. Using Eq. (3.5) and time-reversal and
inversion symmetries, it is easily shown that

M;(~) =-M-„(v) (8.10)

and thus Eq. (3.9) becomes (for a &~~)

ik 0'(k, v)=ik 0'(k, v)M;, (8.11)

where we have used the long-time form of M„-(a).
We have neglected the second term on the right-
hand side of Eq. (3.9) since the correlation function
appearing there contains only dissipative fluxes.
In addition it is at least O(k') and is of the same
order of magnitude as the corrections that are
omitted when the long-time form of M~(v} is used.

The solution to Eq. '(8.11) is

fk 0'(k, a) =ik 0' (k, a =0)exp[M;v].

Substituting Eq. (3.12) in Eq. (3.7) yields

A' (k, v) =exp[M~v]A'(k, v =0)

(3.12)

+ ~t drexp[M~(a —r}]ik-0 (k, r =0)
4p

x exp[Mar], a & &~. (3.18)

This expression shows that all the time depen-
dence of A' is given in terms of the macroscopic
evolution matrix M-„.

The matrix M-„ is diagonalizable; i.e., for some
matrix P„-:

J'~ .M~.P~ = $(k), (8.14)

where $ is a diagonal matrix. We note that in
general the matrix elements are complex,
Be($ (k))& 0 (in stable systems), and $ (k)-0
as k-0. Using Eq. (3.13) in Eq. (8.12) gives

where &I-(0) should be calculated using the long-
time form of M(rl r';v). The difference between
this form and the forms (2.9) using M(r 1 r', 0) is
negligible to the pertinent orders in k. We see
that 0'(k, v) may still have a "slow" part. In fact,
at k=0, 0 is constant in', since theA's are con-
served. We use Eq. (3.8) to find the equation of
motion

ik 0'(k, v}=- sk 0'(k, v)M ~ (-v)
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A'(k, o) =P-„~ e'-'"'(Pg')A'(k, o =0)

+ dre&" "(P)", )ik 0 (k, v=0)
0

X(PP)'eL'P;"). (8.15}

The integration in Eq. (8.15) can be now easily
performed. Without going into the detailed struc-
ture of Mp we see that the first term on the right-
hand side of Eq. (3.15) decays exponentially where-
as the second decays as either a pure exponential
or as v times an exponential. The detailed forms
of the various terms are considered in the subse-
quent section.

We now turn our attention to the static quantities
that appear in Eq. (3.15). From Eq. (3.1) we have

I"'(k, t) =M-, I'(k, t)+ I'(k, t) M';

+ ik [&I~(t)A=„(t)I, )
' —Qp(t)I=, (t)I, r&], (3.18)

where the symbol j denotes Hermetian conjunction
and where the long-time forms of M-„(t) are used.
The formal solution of the above equations is

1"'(k,t) =exp[M~t] I'(k, t= 0)e xp[M~t]

where the second equality follows from time trans-
lational invariance. Using the techniques described
above, an equation of motion for I' is easily found.
For t & Tg.

A "'(k,o=0)=(l-e e„e(})

dr&A, jA„„-I,r(-r)&, (8.16)
0

which follows by using time-reversal symmetry.
In order to evaluate A "' (k, o.=0) we define

t
+ d v' exp[M}-, (t —&)]

40

'k &QI"„A ", -A.-„I"„]I,„(- )&

x
exp[~Mt (t —r)], (3.19)

I' +(k, t) -=&A ~Ay, },I(},r(-t)&

=&A, i (t)A „-X(t)I6,r& (3.17)

which when used in conjunction with'Eqs. (3.17)
and (3.16) yields after some simple manipulations
of the integxals

00

))'~(k, e=O}=(}-&,&„&,}) dv'exp(M~~}()" (k, ) 0)=
E&0

00 OT

dt ik &LI},A I -A)I=„]I(}
~
z(-t)& exp Mt}, v']

0
(8.20)

This last expression is the final result for
A + (k, o =0). Noting that M-„-0 as k - 0, we see
the source of the divergence in this quantity as k
-0. The parts of the right-hand side of Eq. (3.20)
not containing M-, explicitly do not require a
separate analysis. They are typical quantities
which appear in nonlinear response theory as
applied to conserved variables. ' ' They are well
behaved as k-0 and it has been shown that
I'(k, o =0}appears as the coefficients of the non-
linear reversible (or Euler} part of the hydrody-
namic equations. The remaining quantities cor-
respond to the nonlinear dissipative coefficients.
In Sec. IV, the detailed form of these quantities
will be given for a simple fluid.

The other static quantity that appears in Eq.
(3.15) is

fl "'(k o=0)=(I+ s 'y'6) «&I.,xA„=kI~, r(-T)&
0

(3.21)

where the equality follows by using time-reversal
invariance in Eq. (8.4}. This shows that 0 ~(k, o
=0) is related to terms which appear on the right-.
hand side of Eq. (3.20} and hence the discussion
presented above applies.

We remind the reader that the aim of this sec-
tion is to evaluate Eq. (2.18), the new contribution
to the autocorrelation function. Combining Eqs.
(2.18}, (8.1), (3.13), (8.20), and (3.21) gives
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[tp, (k,elr)=- I[exp(M"„e)['"(1-r.„e,e,) drexp(M-, r)[1'(k, p)
. 0

+ dtik IgA t, -A»I=„ I,, z -t exp% &
0

a
+ dr[exp(M „(o-' —i))]'"ik (1+~„cd~, )

0

dt(I„,A I, -„(--t))[exp(Mxt)) 'I xtdp (r), (3.22)

where all repeated greek indices, except n, should
be summed. With the help of Eq. (8.14) the inte-
grals appearing in Eq. (3.22) may be performed.
This form for 5' is valid for cr & va and for long-
wavelength phenomena. To be more specific, we
note that k appears in Eq. (8.22) in two different
fashions. In the first place we have the k depen-
dence of M-„which always appears multiplied by
some microscopically long time (i.e., v or a time
integration variable &en) in an exponent. The
other manner in which k appears is via the ex-
plicit k dependence associated with the static
functions I'(k, o) and Q(k, o). As was discussed
earlier, these quantities do not diverge in k nor
involve any long-time contributions. |Irate are thus
safe in expanding them in k, as they never appear
multiplied by some possibly long time. In fact,
for the remainder of this work, we shall consider
only the leading nonvanishing contributions of these
factors.

In the following sections we evaluate the new

term appearing in the expression for the NESS
autocorrelation functions for hydrodynamic fluc-
tuations in simple fluids.

0
k rcp

M» =i ikxp

0 ikjm
-k a, ikk/mp
ikX, -k v,

0 0
0 0

0 0

0 O.

-k2v, 0
0 kv)

(4.1)

where we remind the reader that m is the particle
mass, h is the equilibrium enthalpy density, p is
the equilibrium number density,

x, -=~ ", x. -=~P

Kp =A.
~ K~-:$ p j (4.2)

~, -=(t++n)l~p, ~0=ni(mp);-
and where g, g, and g are the thermal conductivi-
ty, and bulk and shear, viscosities, respectively.
In Eq. (4.1) we have labeled the rows and columns
according to the choice A-„=[N»Z- P~k»IP~»P'-„] ~

In this section we examine fluctuations in the
absence of convection, and thus only the terms
with 5=Z in Eq. (8.22) arise. Using Eq. (8.17) we
have

IV. APPLICATIONS TO SIMPLE FLUIDS:

TRANSVERSE VELOCITY FLUCTUATIONS

A. Preliminaries

I' (k, 0) =((4kA kI~, r)

0 0 8~e~
0 0 H~e,

a~ca ~~~a

e~e, 8,e,
e,e, e,e,

o o + o(k'), (4.3)

In the remaining parts of this work we consider
only hydrodynamic systems and thus the set of
variables are the number, energy, and momentum
densities. Further, we may a)ways choose the
coordinate frame such that k is pointing in the x
direction (i.e., k = e,k). Thus P-*„ is the longitu-
dinal component of the momentum while the y and
z components are the transverse ones.

In such a system the detailed structure of M-„ is
given in Refs. 5 and 6(a). The result is

where as was discussed at the end of Sec. III,
. only the leading-order terms in k are kept. In
obtaining Eq. (4.3) time-reversal and rotational
invariances were used and

e. = s&&M, rprIs, r)I o'=»&.

Using Eqs. (4.4) and (2.9b) gives

(4.4)
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l8P& I s,v.

e, =- (&r)ka&l( 8 Bv, V
(4.5)

which may easily be shown using the standard
equilibrium fluctuation theories.

The last quantity which must be considered is
& (ft, 0). To lowest order in k

0 0
~zk 0

0 b~, ike, (b~,
0 &,ike,
0 6p ike

0
0

2b,~-,)ike, (b~ —24', )ikes + O(k2),
0

L,ike,

(4.6}

=2&~=—r d&(I~ r ix r( r)A~ r),-n =N, E,
0

(4.Va)

where we have used Eq. (3.21), time reversal, and
isotropy in evaluating sk A. In this last expression

~ (k, al .) = ae " " 'b~, ik. VP(r}, (4.10a)

macroscopic relaxation to equilibrium. That is,
the matrix M-, [cf.Eq. (4.1}]is block diagonal with
a diagonal transverse block. Further noting that
1-&~&~&, vanishes, we find

p
=2 d& Pp" pP" g z. -7 )

0

and

(4.Vb)

where we have employed Eqs. (3.21), (322), (4.1),
and (4.6). Using Eq. (4.9a) for &~, this last ex-
pression becomes

Qp 2 dT Ip gP E p + ~

0

In Ref. 6(c) it was shown that

(4.Vc)
W, ~ (k, a lr) =ae "'" 'v, , ik vp(r) . (4.10b)

~.=2Vl —,~.=-2VI(8pk &&pX

E~pp e, 8p a», v

In Ref. 6(d) it was proved that

b~, =2Vv, mp/P

(4.8}

(4.9a)

This equation is valid for cr & v~. The connection
to negative times is easily made using Eqs. (2.18)
and (3.2c}. They imply that W» (k, air) is odd in
o when convection is absent, i.e.,

W» (k, o Ir) =o'e "~ "'v,
q

ik.Vp(r), (4,10c)
and that

b~, =2Vv, mp jP (4.9b)

This completes the setup for the applications to
simple fluids in nonconvecting NESS. As was as-
serted earlier norie of the parameters which were
introduced above is new since they all appear in
the nonlinear hydrodynamic equations.

8. Transverse velocity Quctuations

A simple application of the theory presented
above is found in the transverse-velocity time-
autocorrelation function. The reason for the
simplicity is the fact that the transverse velocity
decouples from the longitudinal modes in the usual

where now }el &&~.
Equation (4.10c) is only one of the three terms

which appear in the expression for the transverse-
velocity time autocorrelation function [cf. Eq.
(2.11}].The equilibrium part has been shown to
equal

1
y k
—(P&(a}P"=„)=exp(-v@2 I a I )m pksT, I a I & &&. (4.11}

Using this result in Eqs. (2.12a}and (2.1Vc) and

finally in Eq. (2.11}yields for the NESS autocor-
relation function
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( lo i+ o) (Blnp)C» (k, o lr)=exp(-v, kz lo l)mp(r)kaT(r) 1+ Iol v, ik Vinp(r} —

~

+TjI»).~.

(4.12)

which is valid for lo' I& 7& and only to linear order
in displacements from equilibrium for a system
subject to thermal constraint.

The first term on the right-hand side of Eq.
(4.12) is simply the local equilibrium transverse-
velocity time-autocorrelation function and is even
in k and o'. The remaining terms are odd in k and
arise from both nonlocality and coupling to the
dissipation. For relevant times, that is 0
-(k v,), and typical values for the temperature
derivatives, it can be shown that the order of
magnitude of the terms proportional to VlnP(r),
divided by the local term is

t VlnP(r) I /O . (4.13)

For light-scattering wave vectors (k -10 cm z)

and macroscopic temperature gradients (VT - 10
K/cm, 7-100 K) the above ratio is of the order of
10 5 and thus, for this case, the transverse-
velocity autocorrelation function, all the new

terms are extremely small. Clearly, at smaller
k these terms become more important.

The size estimate of the new terms in Eq. (4.12)
is not applicable to all autocorrelation functions.
In fact the reasonthat the corrections were so
small in this case is that the divergent terms
associated with I'(k, 0) in Eq. (3.22) drop out by
symmetry. As we now show this does not occur
in the case of density fluctuations. Finally, we
refer the reader to Sec. VI for a comparison of
our result with the phenomenological approach.

V. DYNAMIC STRUCTURE FACTOR

IN NONCONVECTING SYSTEMS

In this sect;ion we apply the theory to the calcula-
tion of the dynamic structure factor in a dense
fluid. We refer the reader to paper I Sec. IV for
a detailed discussion of the symmetry properties
of this function. The aim of this section is to
present an analytical expression for the k and cr

dependence of this important quantity for a NESS
subject to thermal constraint (i.e., 4„=0, CD=0).

We first consider W»(k, o I r}. In the case of
the transverse-velocity autocorrelations Eq. (4.1)
was used to prove that all the terms in Eq. (3.22)
multiplied by the factor (1 -&„s &p} vanish. This
does not occur in the calculation of 8'». None-

theless, we need not consider all the terms in Eq.
(3.22) since those multiPlied by (1 —c„s &p) diverge
as k 0, while the others do not. In what follows
only the most divergent; contributions are kept.
Thus our starting expression is

W„.z,,(k, ol r) =—[exp(Mpo)]" "

dvexp(M-„z)1' (k, 0)
&0

&&exp(Mfpz. ) )

""Vp(r). (5.1)
]

In arriving at Eq. (5.1) we have used the fact that
Ã couples only to P„ in M-„[cf.Eq. (4.1)] and the
fact that (I -&„&z{ze)vanishes unless @=P. Fur-
ther, all static quantities of O(k) or smaller were
omitted. As. was previously mentioned, M does
not couple longitudinal and transverse modes and
thus the transverse block is not needed. In Ap-
pendix A we show that

W„„(%,olr)= — '
z p

'
p sin(kcpo)

1(e.X.+e.X.) .
V 2m cpI'

&e "'ik vp(r)+O(k '), (5.2)

where we have written the expression in a form
which is valid for Icr J&~~ and to linear order in
displacements from equilibrium.

For many applications, the time Fourier trans-
form of the dynamic structure factor is needed.
The Fourier transform of Eq. (5.3) (cf. I, Sec.
IV} is

w{'N{r)=j deere '-w „{Z,v)T)

k~T, I' '
- j.'kk. Vlnp(r)~

(

((y + kop)'+ (k'I', )' )
(5.4)

where the sound attenuation coefficient I'„ is
given in Appendix A. In Appendix B we show that

W»(k, o Ir) = sin(kcpo)
(ka&)p

2mcoI'sk

Xe ' ' p VlnP(r)+O(k '), (5.3)
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Note that Eq. (5.4) is odd both in k and in + as
was argued on general grounds in I.

Under the same type of approximations used in
this paper, is has been shown that5

1
(N—p„N=„)

C~ l I rk=kBTPy~ 1—
C I ~+(I" k2)z

1e

C~ I',k

C~ ((o + kco)'+ (I',k')'

( —k, )'+ (r,k')') (5.5)

where a small non-I orentzian correction has been
neglected, since it is of the same order as the cor-
rections to Eq. (A11) and thus to Eq. (5.4) ~

In Eq. (5.5)C~, C~, I'„ I r, andy~ are the heat
capacities per particle at constant volume and
pressure, the sound- and heat-mode attenuation
constants, and the isothermal compressibility,
respectively. (See Appendix A.)

As was done in Sec. IV, Eq. (5.5) is used in cen-
junction with Eqs. (2.1"Ib), (2.12a), and (2.11) to
obtain an expression for the NESS dynamic struc-
ture factor. As before, using typical values for
the thermodynamic derivatives and for light scat-
tering k's and v's we find

C"„'„(k,&o I r) I VlnP(r) I I 4

Cg'„(k, (o I r) k

16—

l2

58.4 x IO
sec-I

58.4 x lO
sec-I

2—

20—

gradient. The most striking change is found in
the sound or Brillouin doublet in that they are no
longer symmetric. We find that correlations in-
volving sound, propagating in the direction of the
heat flux (i.e., k along Vlnp) are enhanced while
those in the opposite direction are reduced.

From Eq. (5.7) we see that the relative size of
the new effect is given by the ratio

I Vlnp(r) I /(2I', k /c, ) .
Since in the light-scat;tering regime, I',k/c~-10
in most fluids, we see that we gain three orders
of magnitude over the transverse-velocity esti-
mate. Hence, we expect an effect of the order of
a few percent. It should be stressed that the rea-
son for the larger estimate lies in the fact that

(where all quantities are Fourier transformed in
time}, and thus we may neglect the nonlocality
terms. The remaining terms give
S-„„(r)-=C„„(k,(o I r)

a~7.'P Cp r,a'
mc, C» (u'+ (I'rk')' „

l6—

l2
3

I IOO sec

where

k, Tpr, k' 1+ s(P)
mco' ((o —kcoP + (I',k')2

1-s(r}
((g+kco)~+(I', k )~) „,

cp k VlnP(r)
2I',k (5.8)

where Eqs. (BS), (5.5}, and (5.4) were used and
where all thermodynamic parameters should be
evaluated in the fashion indicated by the horn sub-
script.

We thus see that the NESS dynamic structure
factor (and therefore the light-scattering spec-
trum) contains three Lorentzian peaks, whose
positions and widths are unchanged with respect
to their equilibrium values. The central or
Rayleigh peak is unaffected by the temperature

0
Frequenc y Shif t

FIG. 1. Various contributions to the spectrum of
light scattered from argon in a heat-conducting station-
ary state, all drawn to the same scale. Upper panel:
spectrum of light scattered from argon in equilibrium
(or local equilibrium) at 235 E and 1 g/cm3 density. The
wave vector here is @=852 cm ~. Middle panel: contri-
bution due to the existence of a temperature gradient
of 0.5 K/cm. It is antis~metric in k and in co and re-
Qects the breaking of time-reversal symmetry. Lower
panel: predicted fuI. I spectrum of light scattered from
the stationary state. The smaIlness of the Rayleigh
peak is due to the value of C&/Cz which is almost unity.
Notice the asymmetry in the Brillouin peaks. Here it
amounts to about 25 difference in the peaks intensities.
This asymmetry grows like 1/k2 for a given tempera-
ture gradient. For incident light with k&~= 1 && 105 cm
this spectrum can be observed at a scattering angle of
0.4'. Notice the break in the abscissas. The peaks are
extremely sharp, with width - 1100 sec '.
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the divergent terms in Eq. (3.22) now play a role.
Using the co or k assymmetries a differential ex-
periment should easily be able to isolate these
terms and thereby verify the existence of the dy-

namicc

broken symmetry associated with the heat
flux. We caution the reader that Eq. (5.7) is valid
only to linear order in displacements from equili-
brium and, more importantly, for k's larger than
the inverse macroscopic length scale. It cannot
be directly used at hydrodynamic instabilities
since among other things, Eq. (A11) is no longer
valid. The extension to instabilities will be pre-
sented in a later paper.

Figure 1 graphically summarizes the results of
this section for argon at 235 K and 1 g/cm~ densi-
ty. For this system I', =0.8&&10 3 cm'/sec, I'r
=1.0X10 3 cm /sec, co —6.9X104 cm/sec, and
C~/C»=1. 028. For Fig. 1 we choose I VTI =0.5
K/cm and k =852 cm ~ and points along VT (see
Fig. 1 of I). The first panel shows the structure
factor in the absence of the temperature gradient.
The Rayleigh peak is very small since C~/C» is
close to unity. The second panel shows the con-
tribution of Eq. (5.4). For the above choice of
parameters, ~ =0.12. The third panel presents
the predicted spectrum. The asymmetry is quite
pronounced although each peak is Lorentzian. Due
to the small k (scattering angle) the peaks are
extremely sharp (the width is about 200 Hz) and
the shifts are small (-10 MHz). Nonetheless,
this spectrum should be readily measurable using
modern light-scattering techniques. Note tha't

the total scattered intensity is not changed by the
temperature gradient and the Landau-Placzek
ratio is obtained. From Eq. (5.7} it is clear that
the ratio of the total intensities of the two
Brillouin peaks is given by (1+&)/(I -&), which
in Fig. 1 is 1.27. Note that as the effect is given
by the ratio of the macroscopic inverse length
scale (V'InP (r)) to the inverse of the length scale
on which sound is attenuated

(c,/k r,),
we require the steady-state system under observa-
tion to be several times larger than the sound-at-
tenuation length.

VI. BROKEN SYMMETRY, STATIC-CORRELATION

FUNCTIONS, AND THE CONNECTION

TO PHENOMENOLOGY

The results of this work have os striking fea-
ture in common: all the parameters which appear
in the expressions for the time-autocorrelation
functions occur in the nonlinear hydrodynamic
equations [cf.Eqs. (3.22), (2.13), and (2.17)].

Further, the nonlocality corrections were found
to be negligible in all cases. This fact suggests
that a connection to phenomenology is possible.

The common phenomenological approach has
been to extend the Onsager regression hypothesis
to the regime of the steady state. This assumes
that once a fluctuation occurs, its relaxation is
governed by the macroscopic equations of motion.
Since the fluctuations are generally small, the
macroscopic equations for the fluctuation are
linearized around the steady state. That is,

kg(v) =Maa(k) 5Ai (o'), (6.1)

(Ak ( c )A k) NS (ALA-k(++)) NE —(Ak(+}A 7I)NE t

(6.3}

where for simplicity we omit the 5 notation for a
fluctuation and where the second equality follows
from the fact that Ap(v) is the Fourier transform
of a real quantity. It is this last expression which
must be used in making the connection to negative
times.

The second problem associated with the use of
Eq. (6.2} lies in the fact that one must know the
NESS values of the static-correlation functions.
While thig is straightforward in equilibrium, it
was not clear how to make the extension to NESS.
In many cases the practice has been to use the
local equilibrium values for the static-correlation

where 5Ap(o } represents the values of the fluctua-
tions and M88(k) governs the linearized macro-
scopic relaxation to NESS. Equation (6.1) is then
solved subject to the initial values of the fluctua-
tions [5Ar(0)]. The formal solution is multiplied
by 6A=„(0) and averaged, thereby giving

(5A-„(o')5A r)„z=exp[M»(k)v](5A~ 5A=„)„z. (6.2)

There are two problems associated with the use
of Eq.. (6.2). The first is that Eq. (6.2) is valid
only for times cr larger than some microscopic
time (v~). . The regression hypothesis contains no
information concerning how the initial values of
the fluctuations are built up. This means that Eq.
(6.2} cannot be directly used for negative times.
In equilibrium this restriction is circumvented by
using the connection between positive and negative
times that is due to time-reversal symmetry. For
autocorrelation functions this implies that they
are even in time (or in &o). In many of the phenom-
enological studies, 'this property was assumed to
hold in NESS. We now know that this is unaccept-
able since time-reversal symmetry is broken in
NESS.

Nonetheless, a connection to negative times can
be made using the stationary property of NESS
time-correlation functions. This means that
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functions. In other cases low-density approxima-
tions have been used. 4'~ We shall now show that
neither of these approaches is adequate in dense
systems and then complete the connection to the
phenomenological approach.

(+7k+ 7l)NE (+k+-k)

dTI' k, 7' V Cq r .
0

(6.4)

When Eq. (3.15) is used for 1 '(k, «) and only the
most divergent terms are retained, Eq. (6.4) be-
comes

( k~-k)NE ( k+-Tk)

d~exp M„-v X' k, 0
0

~exp[Mk~] VPC, (r) . (6.5)

Considering the somewhat simpler case of a non-
convecting NESS (4& ——0), Eqs. (4.3} and (All) may
be employed to calculate any component of Eq.
(6.5). The results show that the static-correlation
functions separate into two groups. The first con-
tains all correlations between variables of the
same time-reversal signature (e.g. , (NkN=k)NE,
(Z-kN=k)NE, (PkP"=„)„E, etc.). For this group we
find that the static-correlation function is given by
the local-equilibrium value, up to corrections
O(l VlnP I/k). The second group contains tbe static
correlations between variables of different time-
reversal signature. These vanish in nonconvecting
local-equilibrium theories, that is, the first term
on the right-band side of Eq. (6.5) vanishes. There
are four types of correlations in this group for
simple fluids. We find

1 kETp k Vine(r) Vlnp il

y " »E 2kI' k k3 )
1 pkETyrT 1 &inP(r)
V " " k(v + I"r}k Ry

VlnP 't

k ) ' (6.6b)

1 „kETh k.Vlnp(r) Vlnp )I

V "" 2kI' k' k J'
(6.6c)

A. Static-correlation functions in NESS

The static-correlation functions can be com-
puted using the theory developed in this series of
papers. Neglecting nonlocality corrections and
using Eq. (2.11) and the definition, Eq. (3.17),
gives to linear order

1(PE& )
k»3T(h —pC», /yr)Tyr 1 Blnp(r}

V
P"= =-

k(, , + I,) k a,

+0 --k-, 6.6d

where, as before, x is chosen as the longitudinal
direction, y is one of the transverse directions,
and where the thermodynamic identities of Ap-
pendix 8 were used.

As has been stressed throughout this series of
papers, the existence of a NESS implies the
breaking of time-reversal symmetry. In equili-
brium systems with broken symmetries, it is
commonly founde that certain static correlations
diverge as k which shows the appearance of a
long-range order (i.e., the correlation decays in

space as «' '). Equation (6.6) show that in NESS
a k behavior is also found, thereby indicating
the existence of long-range order. We note that
the separation of time scales assumption forbids
us from considering k too small. Thus, we can-
not make any statements about the analyticity of
the static correlations at @=0. In the r represen-
tation, this implies that the correlation decays
like x for x large, but less than the macroscopic
length scale. Beyond this point this theory cannot
be used and we plan to investigate the very long-
distance behavior in a later publication. Another
limitation on the size of k may be 'found thr'ough

the Schwartz inequality, which implies, for ex-
ample, that

(Pvl+ k)NE (PkP 7I)NE (+l7+-7I)NE (6 7)

Using the local-equilibrium values for the auto-
correlation functions and Eq. (6.6a) we find

I
'& I( —,

'
(C p/C «)' »',

where s is given by Eq. (5.8) and where we have
employed Eq. (B3}. The results presented in this
work will not hold unless Eq. (6.8) is valid. We
note that the argon system considered in Fig. 1
satisfies Eq. (6.8} and in fact for most fluid sys-
tems Eq. (6.8) poses no serious limitations.

There i's a fundamental difference between the
symmetry breaking found in NESS and in equili-
brium. In the latter case the broken symmetries
are usually continuous symmetries, such as
translational or rotational symmetries, whereas
in NESS it is a discrete symmetry which is bro-
ken. The important significance of this difference
is that when a continuous symmetry is broken,
new slow modes appear (i.e. , tbe Goldstone mode/~
and must be included in the set of variables. This
does not occur when a discrete symmetry is bro-
ken and thus the use of the usual set of variables
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is sufficient.
We may now return to the analysis of the phe-

nomenological approach.

B. Connection to phenomenology

Once the static-correlation functions are known,
they may be substituted into Eq. (6.2) and thereby
yield the NESS time-correlation function, as pre-
dicted by the regression hypothesis. In order to
investigate the validity of the regression idea, we
shall compute the (N, N) component of Eq. (6.2)
and compare it with the results of Sec. IV. Thus

&N-„(o)N=„)„~=exp[M~~(k)(r]" &A, "N „-)„~. (6.9)

For k's in the light-scattering regime M~ z(k) can
be replaced by M„- defined in Eq. (3.5) since the
macroscopic gradients play a minor role in the
dynamics of fluctuations on the light-scattering
length scale. Of the three static-correlation func-
tions which appear on the right-hand side of Eq.
(6.9), only &P„*N -„)„~-cannot be computed using
local equilibrium. Hence, we rewrite Eq. (6.9) in
the form

&Ne(o)N-&& NE Q exp[M;(r)o]"' &A. ;N=„)„,
,E

+"p[M;( ) 1"'"&P,"-N=,)-.
(6.10)

The sum in Eq. (6.10) is simply the local-equili-
brium dynamic structure factor [cf.Eq. (2.14)]
whereas the second term is exactly +»(k, o'I r)
(to linear order) as is easily seen from Eqs. (5.1)
and (6.5). This shows that the regression hypoth-
esis is equivalent to the microscopic approach
[cf.Eq. (5.7)J and may be used providing that the
static-correlation functions are computed proper-
ly and the extension to negative times is made
using stationarity. The other correlation functions
may be treated in the same fashion, with the
same result.

VII. DISCUSSION

We have shown in this paper that the breaking
of time-reversal symmetry, which is associated
with the very existence of the NESS, has profound
implications on the fluctuations in the NESS. The
NESS static-correlation functions which vanish in
equilibrium or local equilibrium due to time-re-

versal symmetry may become large in the small-
k regime. As a result, the time-correlation func-
tions, which are related to the static ones through
the regression method (which was shown to be
consistent with our theory) acquire new properties
that are absent in equilibrium. The dynamic
structure factor is no longer symmetric in & (or
time) and this implies that the spectrum of scat-
tered light is nonsymmetric. We have found that
the density fluctuations are biased and there are
different couplings to the sound modes that travel
with and against the temperature gradient.

In a sense, this is a microscopic analog of the
well-known phenomena of convection heating.
There the appearance of a temperature gradient
destroys the symmetry between the velocity di-
rections through the nonlinear heating terms (i.e.,
the terms v VT) which appear in the hydrodynamic
equations. The same mechanism operates here
except that on the microscopic level the fluctua-
tions appear incoherently and therefore no macro-
scopic velocity field results.

An interesting result is embodied in Eqs. (6.6).
We see there that the static-correlation functions
that are now nonzero due to the breaking of time-
reversal symmetry have a 1jk dependence. As
noted, this is an indication of the appearance of
long-range order, since this dependence in k
space is equivalent to a I/x dependence in real
space, which is a very slow decay. This finding
is common to many broken symmetry cases, ex-
cept that usually (in equilibrium) it is continuous
symmetry that is broken. Here we found that
breaking a discrete symmetry yields similar con-
sequences, and familiar features of broken sym-
metry appear. The one difference that needs
stressing is that there is no indication of the ap-
pearance of a new slow mode (Goldstone mode).
This difference is interesting and may warrant
a separate treatment.

We stress that the results presented in Eqs.
(6.6) are not an artifact of the method used here
to derive them. In II (previous paper) we derived
Eq. (6.6a) using an entirely different method [cf.
Eq. (5.12) of paper II]. The fact that the same
result was obtained by two completely different
approaches is a strong indication that the method
used here to calculate the correlation functions is
correct. In addition, we now see that many of the
results of II are not dependent on the choice of in-
terparticle potential or density regime.

Within the context of the static correlations, we
note that our results are significantly different
from those already in the literature. For example,
Hinton has used a Boltzmann-equation approach
to derive expressions for these quantities at low
density. Contrary to our results he found no k
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dependence in the static correlations (or no long-
range order}. In addition, he finds no correlation
between density and velocity. The reason for this
difference lies in his assumption that one can re-
late all the nonequilibrium higher-order distribu-
tion functions to products of lower-order ones.
In particular [cf. Ref. 9 Eq. (25, 26}]he assumes
that

Wg g2(xp & ip qxg qxp q f}

0=1) 1-M

=$p + g k (tr, + v, )+ $ k (cp+k v, a, )

+ k4(X,a, X—,s,)/m,

where we have used Eq. (4.1) and where the
adiabatic sound speed is given by

(A1)

—W~ ~ g(xp& fp&xg f)'Wgp(xp fp'x2 f)/E(xp &p) (V, 1) c', -=X,/m+ X,h/mp. (A2)

where the notation is of Ref. 9. Taking the limit
t-tp in Eq. (V.l) we find absolutely no correlation
between particles 1 and 2. Thus, naturally, the
static correlations cannot exhibit any long-range
order. From the analysis of II we saw that is was
precisely the correlation between particles 1 and
2 initially that brought about the new effects. In
some of the phenomenological works, 4 Hinton's
results were used to compute the spectrum of scat-
tered light within the spirit of the regression
hypotheses and thus it is not surprising that re-
sults different from ours were obtained.

Since the regression idea was found to be con-
sistent with our theory, it seems that it may be
generally proved within its context. The next
paper in this series will indeed contain a proof of
the regression hypotheses in a NESS. In addition,
we shall discuss there fluctuation-dissipation the-
orems in far from equilibrium stationary states.

(m '

(ggik

X.
X,u,m

g;/ik mX, g, /ik j
(AS)

where

).h/m p —k'wp/m

$, + k'a, (A4)

It is well known that the three roots of Eq. (Al)
[which we denote by (,(k), $ (k), and $r(k)] have
negative real parts, that $, = )*, and $„ is real.

Corresponding to this block, the matrix P' [cf.
Eq. (8.14)] has columns equal to the eigenvectors,
that is,
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)rh/mp-k &p/m

$r + k'x (A5)

APPENDIX A: PROOF OF EQ. (5.2)

The eigenvalues $,(k) of the longitudinal block
~M-', of M„- are determined from the equation

The columns in the matrix in Eq. (A8) correspond
to the $„$, and $r eigenvectors of M,', respec-
tively. After some simple algebra we have

I mX, (u*.(r —ur$,*)/ik,
(P') ' = I

P'
I

' mX, (ur $, -n, $ r)/zk,
(u, f*, —u*, $,)/fk,

with

X,(g,*—fr)/ik, X,(u r —u *)
X.(&r &.)/ik X.(u,——ur)
(g, —$,*)/mik, (u,* —u „)/m

(A6)

IP' I=(2X,/k)Im[nr(, —urn, +n, g,*] (AV}

Using Eqs. (A3) and (A5) we. see that
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exp(M-'„o) =P' exp($(r)(P') z

' Imgzr'n„lz. +e' '(ur$, —gru, )j,

= IP'1 ' 'Im(ez"n, (n,*Jr- nr$.*)+e'r'uru. g*j,

,"' 1m''"(ur14, I' —h,u,*fr) -e'r'5ru, *5,j,
2Xe g+ e 2 QZX8 I (~z v(] ( ) + ez ro] j 4 ImJpz++(u n 4) +ezr~u4j

2 g"'lmfgz+'u ($ —$r)+urez '$$, 2X,iimg'+'u (u -n*)+e' 'u u*j

' Im(e'"g, ($.—$r)+ 'r'$r$, j, 'Im(8'"f, (ur -u*)+e '5ru*j (AS)

$,(k) + ikco —k I;, (AS)

~,(k) -- kzi „
with

and

I r =-x/pC„ (A10)

Equation (AS) is useful for a numerical calcula-
tion, but' for our purpose the fact that k is small
may be used to further-, simplify it. This is done

by noting that

r, =--,'[(C /C„-1)I', + z,].
In Eq. (A10) C~ and C» are the heat capacities per
particle at constant pressure and volume, respec-
tively. Equation (AB) represents an expansion of
the roots of Eq. (Al} to first order in kI', /co,
which is typically O(10 z) in simple fluids at light
scattering k's.

Equation (AS) is needed for long times [cf. Eq.
(5.1)] and thus we must retain the O(k ) terms
which appear multiplied by time. For the remain-
ing factors, it is sufficient to retain only the lead-
ing k dependence. With this in mind, Eq. (AS) be-
comes

lexp(M-'„o) =
2cp

(8' '+ 8 z ')Xpm + 2e zr'Xp/mn,

X„h(e"+e' —2e'")/mn,

coX.(e"-e' ),

X (p+e ~&z e 2&zre}/m co(e"-e' ')/m

cox,(e"-e'"), c'(e"+ e' ')

X,h(e "+e' )/mn+2X„r'/m, coh(e"-e' ')/mzz (A11)

Using Eqs. (All) and (4.3) in (5.1), performing
the indicated multiplications and integration gives
on retaining the most divergent terms, Eq. (5.2) ~

1
Xg pC y z/y zrTy r

where

(Bid)

APPENDIX B: PROOF OF EQ. (5.3)

In order to make the connection between Eqs.
(5.2) and (5.8) we make use of the following ther-
modynamic identities:

1 fSV& 1 RVr. =
Vl(,T) and-r.= V,p=

Further, using Eqs. (A2), (Blc), and (B1d) we
obtain the well-known result that

(82}

and

=k, T(1 —Ty, ),&h/p

ap zz

( =- kzz T(TCp + h(1 —Ty r)/p),
Bh/p&

SP is~
(hip -C J,/yr)

pC,r./r, Ty, '-
(Bla)

(B1b)

(B1c)

Cg Cg
SZt"p =

pCzrz —Trr pyzCv
(Bs)

(B4}

Using this result in Eq. (5.2) yields Eq. (5.3).

where the second equality follows by using the
standard relationship between Cp and C„.

From Eqs. (4.5), (Bl), and (BS) it follows that

(I/V)(tZ, X,+ 8.X.) =(k&Tco)'pm .



l9 STATISTICAL MECHANICS OF STATIONARY STATES. III. 1339

*Present address: Dept. of Chemistry, University of
California, Berkeley, Calif. 94720.

'I. Procaccia, D. Ronis, M. A. Colli'ns, J. Boss, and
I. Oppenheim, Phys. Rev. A 19,1290 (1979) (hereafter
referred to as I).

2D. Ronis, I. Procaccia, and I. Oppenheim, preceding
paper, Phys. Rev. A 19,1307(1979).

D. Forster, Hydrodynamic Fluctuations, Broken
Symmetry and Correlation Functions (Benjamin,
Reading, Mass. , 1975).

48ee, for example, J. P. Boon, Phys. ' Chem. Liquids
3, 157 (1972);V. P. Lesnikov and I. Z. Fisher, Sov.
Phys. JETP 40, 667 (1975).

58. J. Berne and R. Pecora, Dynamic Light Scattering
(Wiley, New York, 1976).

~(a) Ph. A. Selwyn and I. Oppenheim, Physica 54, 161
(1971). (b) D. Ronis and I. Oppenheim, Physica A 76,
475 (1977). {c)D. Ronis, Thesis (MIT, 1978). (d)
I. Oppenheim, in Correlation Functions and Quasi-
particle In teractions in Condensed Matter, edited by
J. Woods Halley {Plenum, New York, 1978), p. 235.

~T. Keyes and I. Oppenheim, Phys. Rev. A 7, 1384
{1973).

M. Lax, Rev. Mod. Phys. 32, 25 (1960).
~F. L. Hinton, Phys. Fluids 13, 857 (1970).


